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l Introduction* In a recent paper [5] Wright proves that if A
is an AW*-algebra [2] having a trace and if M is a maximal ideal of
A, then AIM is an AW*-factor (that is, an AW*-algebra whose center
consists of complex numbers) having a trace. The trace enters into his
argument in the characterization [5, Theorem 3.1] of the one-to-one cor-
respondence between maximal ideals of A and those of its center Z.
This is, in turn, used to verify that AIM satisfies the countable chain
condition, namely : every set of mutually orthogonal projections is at
most countable, which is crucial to prove that every set of mutually
orthogonal projections has a least upper bound (LUB). It is the purpose
of this paper to prove the following.

THEOREM. Let A be a finite AW*-algebra, and M a 'maximal ideal
of A, Then AIM is a finite AW*-factor.

It is not known whether a finite ATF;!ί-factor always has a trace.
Since [3] a finite Aΐ^-algebra of type / always has a trace, our result
adds nothing new in this case, and we shall be solely concerned with
algebras of type //lβ

Our terminology is that of [2]. We assume familiarity with [2]
and [1] (especially [1, pp. 234-242]).

2 Maximal ideal ΛfΦ We begin with a slightly sharpened version
of [5, Theorem 2.5] on p-ideals. A set P of projections is called a p-ideal
if

( 1) P contains e\/f whenever it contains e and /
(2) P contains / whenever it contains an

It follows from (1) that eL\/ \/etl is in P if eu , en are in P. For
any set S of A let Sp denote the set of projections contained in S.

LEMMA 1. Let A be an AW*-algebra. The closed linear subspace
M generated by a p-ideal P is an ideal with MP==P. Conversely an ideal
M of A is the closed linear subspace generated by the p-ideal Mp.

Proof. Let P be a p-ideal and M the closed linear subspace gene-
rated by P. For M to be an ideal we need to prove that M contains
xe ΐor any x e A and eeP. The left projection \2, p. 244] / of xe, be-
ing <β, is contained in P. Hence P contains ίr-=e\/ f. xee
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as gAg is the closed linear subspace generated by all projections <Lg.
Let MQ denote the linear subspace algebraically generated by P; the

elements of MQ are of the form #=Σ?=A^ Λ complex numbers, e^eP).
As P contains βjV ••• V^> "the left and right projections of x are in
P. Take an / in MP, and an ε>0. There is an xeMQ with | | / —a?|l
<^ε. The left projection h of fx, being <̂ the right projection of x,
is in P. We have h^f and \\f-h\\ = \\(f-h)(f-fx)\\^\\f-fx\\<ε.
Hence f=h. This proves that MΓ=P.

Assume now that M is an ideal. MP is [5, Lemma 2.1] a p-ideal.
Let Mr denote the closed linear subspace generated by MP. We wish
to prove that M=M\ Take xe M and ε>0. There is1 [2, Lemma 2.1]
a projection e, which is a multiple of x, such that \\x — ex\\<Cε. Since
exeMf and M' is closed, xeM'.

Let now A be an AW'~ -algebra of type IIu Z its center. Then [2,
p. 247] yl admits a dimension function Z) defined on AΓ with values in
Z. D has the following properties :

(1) 0 ^ D ( β ) ^ l for every e ,
(2) D(e) = e if β e Z ,
(3) D(e)=D(f) if and and only if e~f,
(4) ^(Σ^O^Σ^fe) if the e/s are mutually orthogonal [1,

Lemma 6.13].

Moreover, D is uniquely determined by these properties. It is an im-
mediate consequence of (4) that given 0 < / i < l there is a projection e
with D(e)=λ.

Let C be a commutative A FF;i:-subalgebra [3] of A. C is the closed
linear subspace generated by Cp. We shall extend D to a linear trans-
formation Γc of C into Z. First define T^ on the linear combinations
of projections by setting

We must show t h a t Tc is uniquely defined, i.e., if x=y then Tc(x) =

T0(y). If ίP=Σ?-i/\βi> there are orthogonal projections / 2 , •••, / m such

t h a t each eh is a sum of the / ' s :

,1 if βifi^fi
e i = Σ <^/J where c^, = -

(0 if eJj^O.

Σ ( Σ

1 To use [2, Lemma 2.11 we first imbed πx* in a maximal commutative self-adjoint
subalgebia of A. Working in this subalgebra we get a projection c with ||.vx* --cw.r* || < t - .
Then ||α;~ex\\ — \(x-ex)ix-exf || 1/ 2= [|iva/-* -C^Λ *ψl2 < 6 .
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It follows from % ) = Σ ^ n W J thai

Hence to prove the uniqueness of Tc we may restrict ourselves to the
n

linear combinations of mutually orthogonal projection, Σ ^ e i More-
1 = 1

over, as D is additive on orthogonal projections, we may assume that
all the coefficients ?H are unequal. Suppose therefore

•1 = 1 j = ί

where the e's and / ' s are mutually orthogonal and the λ'& and μ's are

all different. Then (ϋfJ=/ιlfJ=(Σiλiet)fj. Since the λ'a are all diffe-
ί = l

rent, to each j there is exactly one i such that ejj^fj and λi=μ1.

By symmetry eifj=ei. Hence Σ/Jj/? is merely a rearrangement of
n n

Σ^*β.£. This proves the uniqueness of To . If x=^*tei where the e's
•i = ί i=\

are mutually orthogonal and ^ > 0 , then

^ ^ = \\x\\.

Hence Tc is a bounded linear operator defined on a dense subset of C,
therefore can be extended to all of C. Tc is positive because D is. If
xeA is normal, x can be imbedded in a maximal commutative self-
adjoint subalgebra C ot A. Let C be the intersection of all such O,
Cand C" are AH^-subalgebras of A, As x can be approximated with-
in both C and C", T0'(x)=Tσ(x). Let Γ(a?) denote their common value.
Γ is unitarily invariant (i.e. T(uxu-ι)-=T(x) for every unitary u), be-
cause if Σ^«e« is a n approximation of a? then Ύ^λiUe^ is one of wasr1

and D is unitarily invariant. Γ is also linear on each commutative AW*-
subalgebra of A. We shall use this T to play the role of trace.

THEOREM 1. Let A be an AW*-algebra of type IIL, Z its center.
Let N be a maximal ideal of Z. Then the unique maximal ideal M of
A containing N is that generated by the p-ideal P consisting of all pro-
jections e with T(e) 6 N. Or, equivalently, M is the set of elements x ivith
T{x*x) e N.

Proof. Consider Z as functions on its structure space of maximal
ideals. Then N contains 6I>0 whenever it contains αl>δ; therefore P
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satisfies (2) of a ?>-ideal. (1) follows from T(β\/f)
because \2, Theorem 5.4] (A/f — c^-f — c^f. Thus M is an ideal by
Lemma 1. Moreover MφA as 10 P. Let M' be a maximal ideal con-
taining M. Then M is maximal if and only if MJΛ = M'j>. Take an e e M'P.
If e$P then T(e) = A (mod iV) with /^>0. Choose an integer rc. and a
projection / such that T(/) = l/?ι</. / is a simple projection with
central carrier 1, that is, there exist mutually orthogonal projections
f = fι, , fn with /j-1 4 - / M = l . Compare e and / ; there exists [2,
Theorem 5.6] a central projection g with ge^gf and (1 —
Then <?/ and, therefore, g are in M\ As

-flr)β) = (l/w-;)(l-flr) (mod A?)

and 1/w —Λ<0, 1 — <7 is also in M'. Hence l e M ' , contradicting the
choice of M'. Hence eeP and M=Mf is maximal. The uniqueness
follows from [5, Theorem 2.5].

Finally we assert that xe M \ί and only if T(x*x) e N. It is well
known that x e M if and only if x*x e M. Thus we need only to prove
that 0 < > e M if and only if T(x)eN. Suppose 0 < > e M . Given ε > 0
there is a projection β, which is a multiple of #, such that \\x — ex\\<^ε.
T{e) e iV because eeikf. Then T(ea?)^||a?||r(e) is also in N. Therefore
T(x)eN. Conversely, assume T(x) e N, x > 0 . Imbed ^ in a maximal
communtative subalgebra C. Given ε > 0 there are projections el9 •••,
eM in C and positive real numbers λlf •••, 4 such that

Γ(β4) 6 iV ( i = l , , n) for ;,,T(6>V)<:Γ(^). Hence eh e M ( i = l , . . -, w), and
a; e ΊΛ.

3. The quotient algebra AIM.

LEMMA 2. Lei elf e2, ••• be a countable set of mutually orthogonal

projections in AIM. There exist mutually orthogonal projections ex, e2,

in A such that en=en + M, (w = l, 2, •••).

Proof. By [5, Theorem 3.2] we can find a projection eλ represent-
ing eL. If a? is a representative of ~e>, so is (1 — ex)x(l — βι). Hence the
proof of [5, Theorem 3.2] shows that e2 admits a projection represen-
tative e, orthogonal to eλ. A straight forward induction yields Lemma 2.

LEMMA 3. e = f (mod M) if and only if T(e)^T(f)=T(efe) =
(mod N=M Γ\Z). Consequently AIM satisfies the countable chain condition.

Proof. If e = f (mod M) then 0<Le-efee M. Hence T(e)=T(efe)
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(mod N). Similarly T{f)~T(fef) (mod N). But [6, Corollary to Lemma
2.1] efe=u(fef)u* for some unitary a. Hence T{e)-.^T(f)~=T(efe)^
T(fef) (mod N). Conversely, if T(e) ^T(f) zT(efe) ~T(fef), then e --
efβ and f—fef (mod M). As (e-fe)%(e-fe)=e-efe^O (mod M) we
have, e=fe and e==/ (mod M). The above result permits us to define
an " a d d i t i v e " function D on the projections of AIM by setting* D(e)
to be the common value of T(e) at N where e + M=e. Ώ(e)φ§\ί~eφ§t

Hence AIM satisfies the countable chain condition.

LEMMA 4. Any set of mutually orthogonal projections in AjM has
a least upper bound.

Proof. By Lemma 3 such a set is countable. Let e19 e2, ••• be

mutually orthogonal projections. We first prove a sharpened version of

Lemma 2 :

(*) there exist mutually orthogonal projections e{, e,, ••• representing

eu e2, •••, respectively, such that T(en)=D(en) for n = l, 2,

Let fx be a projection representing eλ and gx a projection with T(g{)

=D(βi). Compare fx and gL; there is a central projection AL such that

ki&i^-hifi and (1 — ̂ i)^-<(l — AO/i. There are projections e[ and eί' such

that hιgι~e[^>hιfι and (1 — Λi)s fι^eί /^(l--/ι 1)/ 1. From

0 (mod

it follows that e[^=hvfv (mod M). Similarly e Γ = ( l — ̂ ) / : (mod M).

Hence e l=ei + ei /==/1 (mod Λf) and T(eι)=-D{e{). Next let / 2 , ^2 be pro-

jections < 1 — βL and be such that e 2 =/ 3 -f Af and T(g2)=D(e^. Repeat

the argument applied to fx and ^ we can find the desired e.z=e'2Λ-eί',

(Since l — eι^>h2g>z and h2g z , ^ can be taken inside l — eλ . So is β 7,

therefore ^ = 0 ) . A simple induction yields ( ! ;).

Let β = L U B w ^ . We wish to prove that e=e + M is the LUB of en.

Or, equivalently, fe=0 if fen=0 for all n. Choose representatives / ,

fif fij * of / so that fnem==0 for all m<Ln. Consider efe. We have

efeΞΞΞefnfe~gnfnfe~=gnfeΞΞΞgnefe (mod M)

where gn==e — e1— ••• — en . Imbed e/β in a maximal commutative self-
ad joint subalgebra C and apply [2, Lemma 2.1] which states (in C):
given ε^>0 there exists a projection h, which is a multiple of efe, such
that \\efe~hefe\\<Cε efe is in M if all such h's are.

h=efey^=gnefeyΞ~gnh (mod M) .

Hence h=hgnh (mod Λf) and T(h)==T(hgnh) (mod ΛfΠ^) But T ( % »
= T(gnhgn)<±T(gn) and Γ(#w) can be made arbitrarily small when n is
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large enough. Hence T(h)^0 (mod Mf\Z) and heM. This completes
the proof.

THEOREM 2. AIM is a finite AW*-factor.

Proof. To show that AIM is an ^.TF^-algebra we need to verify
two things: (1) every set of mutually orthogonal projections has a LUB
and (2) any maximal commutative self-adjoint subalgebra is generated
by its projections. (1) is the context of Lemma 4. (2) is equivalent to
that every element of A\M has a left and a right projection, or the
left (right) annihilator of every element is a principal left (right) ideal
generated by a projection. This last can be easily verified following the
argument used in [2, Lemmas 2.1, 2.2, and Theorem 2.3]. As AIM is
simple it must be factorial. It remains to prove the ίinitness. This

will be the case if we show that D(e)=D(f) if e~f, since D is non-
zero on non-zero projections. This is a consequence of the following
lemma, a special case of [4, Proposition 2] if A is a ίF*-algebra.

LEMMA 5. Suppose ~e~~f. Then there exists equivalent projections

e, f representing e, f respectively.

Proof. Let x*x=e and xx*=f. Let x, ev and /, respectively be

the representative of x, e and / . Then

et=x*xΞΞΞeιx
γxeι = eιx*{xx:*)xeiΞΞeιx*fιxe1 =Ξ(exx*f x)(f xxeλ) ,

and

Let e be the left projection of eιx^ίf1 and / the right projection of
βι%*fι - e and / are the desired projections, for

and, similarly, / = .Λ .

REMARK. If an AW*-factor always possesses a trace, then any
AIF^algebra of type Ih will admit a trace, for T{x + y) - T(x)- T(y)
takes the value 0 at every maximal ideal of Z.
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