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In this note we prove the following.

THEOREM. FEvery space with separated uniform structure can be
embedded as a closed subset of o separated convex linear space.

Every metric space con be isometrically embedded as a closed subset
of & normed linear space.

These statements follow at once from the theorem of § 3. Such an
embedding is known for any complete metric space; and it is also known
that any metric space is isometric which a relatively closed subset of
a convex subset of a Banach space.

We also describe an embedding of an arbitrary T space as a closed
subset of a special homogeneous space.

1. Preliminaries.

(A) A semi-metric on a set X is a real non-negative function p on
X x X such that p(z, )=0, o(x, y)=p(y, x), and p(z, y) <p(x, 2)+ e, ¥)
for all z,y, ze X. A semi-metric is a metric if and only if p(x, y)=0
implies x=yv.

A collection of semi-metries (p,)ec. On X indexed by a set A defines
a uniform structure (and a topology) on X, generated by sets U,,=
{(z, ¥): pfa, y)<a}, where a>0 and e A. Conversely, every uniform
structure can be defined by a family of semi-metrics; see Bourbaki [1].
We will say that the uniform structure is separated if for every pair
xz, ye X there is a p, such that p,(z, ¥)540.

(B) If X is a real linear space, a semi-norm on X is a real non-
negative function s on X such that s(iz)=|2|s(z) and s(x+y)<s(x)+s(y)
for all z, ye X and for all real numbers i. A semi-norm is a norm if
and only if s(x)=0 implies z=0.

A collection of semi-norms (s,),es on X indexed by a set A defines
a (locally) convex topology (and a uniform structure) compatible with
the algebraic operations in X. Conversely, every convex topology can
be described by a family of semi-norms; see Bourbaki [2]. We will say
that the convex topology is separated if for every x40 in X there is
an s, such that s,(x)=%0.

(C) REMARK. Let X and X’ be two sets with uniform structures
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given by the semi-metrics (0u)ucs and (p.).c. indexed by the same set
A. If ¢: X—- X 1is a one-one correspondence such that for all ac 4
we have p(z, y)=p(d(*), ¢(y)), then ¢ preserves the uniform structure
and topology.

2. The space of molecules.

(A) A molecule of a set X is a real-valued function m on X which
is zero except (perhaps) at a finite number of points x,, -, z, of X

k
and which satisfies 3 m(x;)=0. Setting 21,=m(z;), we will represent
i=1
m as a linear combination m=73 Lz, with 3, 2,=0. The totality of
4 2
molecules forms a real linear space M(X) with algebraic operations de-
fined pointwise.

(B) Suppose that X has a uniform structure defined by the semi-
metrics (0.)scs. Then for each ae A we define the semi-norms s, on
M(X) by

(1) sum)=inf {115 pulysr 2))}

the infimum being taken over all representations of m=3}lx;, as
m=73, p(y,—2,); the condition 3} 2,=0 insures that such representations
J [3

of m do exist.
It follows from the definition (1) that for all =, ye X and for any
aecA,

( 2) sw(x——y)gpw(x, y) .

In fact, it is easily seen that s, is the largest semi-norm on M(X)
satisfying (2); that is, given any such semi-norm s, we have s(m)<s,(m)
for all m e M(X).

(C) Let us fix a “base point” x,e X. We then note that the set of all
elements of the form x—x, with z,7~=xe X forms a base for the linear
space M(X). Also, any linear functional F' on M(X) defines a real
function f on X by

(3) fle)=Fa—x) ;

conversely, any real function f on X such that f(x,)=0 defines a linear
functional F' on M(X) by F(m)=>31,f(x;), and the relation (3) holds.

With that identification of functionals, we have the following.

PROPOSITION. The linear functionals F on M(X) which are con-
tinuous in the topology of the semi-norms (Sy)ec. correspond to those real
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functions f on X vanishing at x, arnd satisfying

(4) Lf @) —f(y) | = Kp, y)

for some constant K and semi-norm p,, both depending on f. If X is a
metric space them the continuous linear functionals correspond to the
Lipschitz functions on X vanishing ot x,.

Note that the functions f are uniformly continuous on X.

Proof. The functional F' is continuous on M(X) if and only if it is
bounded (by some K) for some semi-norm s,; thus if F' is continuous and
defines f as in (3), |f(2)—S (W) |=|F(x—y)| < Ksuz—y)< Kpuz, y) by (2).
Conversely, if f is a function such that f(x,)=0 and which satisfies (4)
for some K and p,, then for any me M(X) and ¢>0 we can choose a
representation m= 72, p,(y,—2,) such that Zj L5 palyys 2)) < 8u(m)+e. Then

J

Frm =51 W) —F IS K 211 0uts 2) S Klsd(m) +e] .

Since that is true for all ¢>0, we have F(m)< Ks,(m), whence F is
continuous on M(X).
Relation (2) is, in fact, always an equality:

PROPOSITION. For any x, ye X and ac A we have
(5) su(T—y)=puz, ¥) .

Proof. The function f(z)=p.(z, ¥) clearly satisfies f(y)=0 and also

(4) with K=1; let F' be the corresponding linear functional with ,

replaced by y. Given any representation of the molecule x—y= > 1,(y,—z,),
7

we have puz, y)=f(x)=F(x—y)= Z ¢, F(y,—z;), whence puJz, y)<
Z Lo loalys, 9)—palz; WIS > L5 (Oai(yjy z;). Taking the infimum over
all such representations of x—y, we have p,(z, y) <s,(x—y), proving (5).

The following two statements (and their converses) are easy con-
sequences of (5).

PROFPOSITION. If the uniform structure on X s sepdarated, then so0
s the induced convex topology on M(X).

If the uniform structure on X is given by a single metric (or is
metrizable), then the induced convex topology on M(X) is normed (is
normable).

(D) REMARK. There are many interesting variants of the semi-norms

(1). For instance, suppose we let M(X) denote the linear space of all
m=73} Aa;, with no additional conditions on the 4;; then by choosing a
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base point x,€ X we can define the semi-norm 5, corresponding to the
semi-metric p, by

( 6 ) gw(m)zlnf{; [UL{ Pw('wm xu)+ Z]‘ [:uj l pa’«(?/jr zj)} ’

the infimum being taken over all representations of m as a sum m=m,
+m,, where mthukwk and m,= Zp](y, z;). It can be shown that

for all «€ A the semi-norm (6) is equal to the semi-norm (1) on the
subspace M(X) of M(X).

Semi-norms related to those of type (6) have been studied (in quite
a different connection) by H. Whitney; see [4, p. 249].

3. Embedding a uniform space. Take a base point z,€ X, and
then define the transformation ¢: X — M(X) by ¢(z)=x—xz,. Then ¢ is
clearly one-one, and by (5) we have s (p(z))=p(x, z,).

THEOREM. The transformation ¢ is o uniformly bi-continuous homeo-
morphism of X into M(X). If the uwiform structure of X if separated,
then ¢ maps X onto a closed subset of M(X).

If X is a metric space, then ¢ is an isometric map of X onto o
closed subset of M(X).

Proof. As we have remarked in §1C, such a ¢ is a uniformly
continuous homeomorphism and an isometry if X is metric.

Supposing that the uniform structure of X is separated, we will
now show that ¢(X) is closed in M(X). Given me M(X) not belonging
to ¢(X), we will construct a neighborhood of m not meeting ¢(X).
Suppose first of all that m has the form A(y—x); since m ¢ $(X), we
have y%z, 140.

In case zs£4a,, there is a semi-metric p and a constant a¢ >0 such
that p(y, 2)=>a, o(z, 2)=>a; in fact, p can be defined as the sum of two
suitably chosen semi-metrics of the separating family (0,)ses. Let s, be
the semi-norm defined by (1) using p. Set f(x)=max{a—p(x, ), 0}, and
let F' be the corresponding continuous linear functional as in §2C; we
note that |F(n)|<s,(n) for all ne M(X). Then for any m,—x—2, in
#(X), we have

F(my—m)=f (@)= (@) -2 f @)+ {2 f(@=Ff(@)+]|a,

whence s(my,—m)=>11] a.

In case z=wu, we have i7%1 since m¢ $(X). As before, take a
semi-metric p such that p(y, x;)>>2a. Then for any m,=z—a, in H(X),
either p(z, x)>a or p(x, y)>a. In the former event define f(z)=
max {a—p(2, %,), 0} ; then s,(m,—m) = |F(my—m)|=||1]—1la. In the latter
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event define f(z)=max{a—p(z, y), 0}; then s,(m,—m)=>=]|41]|.
Thus in any case s,(m,—m) exceeds some positive constant inde-
pendent of my; thus if m=I(y—2)¢ #(X), then m has a neighborhood

k
not meeting ¢(X). In general, let m=73 4,2, with £>>2; we can suppose

i=1
that the @, are distinct and that |2,|=6>0 for all 7. As usual, take
a semi-norm p on X such that p(xz;, ;)=>2¢ for some ¢ >0 and for all
pairs 4, § with i%4j. Now suppose m'=3] Ay is a molecule with less

J
than k points. Then there is an ¢ such that p(z, ;)=>¢ for all j. Let
f@)=max{c—p(x, x;), 0}. Then s (m—m')=|F(m)—F(m')|=|F(m)|=bc.
Thus if m’ satisfies s,(m—m’)< be, then m" has at least as many points
as m. Since every element of ¢(X) has the form z—z, it follows that

k
we can construct a neighborhood of m=73 1,2, which does not intersect
2

[

¢(X). The proof of the theorem is now complete.

4. Embedding topological spaces.

(A) M. Shimrat [3] has shown that every topological space X can
be embedded in a homogeneous space X* (a space X* is homogeneous
if for every two points z, ye X* there is a homeomorphism A of X*
into itself such that A(x)=y); furthermore, if X is 7T, then so is X*
and the image of X is closed in X*. In the following theorem we
shall show that any T, space X can be embedded as a closed subset of
a T, space X* such that for any two points &, y€ X* there is a homeo-
morphism of period two interchanging the points.

However, Shimrat manages to prove that if X has stronger separa-
tion properties (for example, X is Hausdorff, regular, normal), then X*
has these same properties. No such conclusion can be drawn for our
X*. Shimrat also produces a variant construction embedding a metric
space X as a closed set in a metrically homogeneous space X*; his X*
(as he points out) is not necessarily locally connected, whereas our em-
bedding space X*=M(X) in § 3 is (being a normed linear space).

(B) For any set X let X* denote the Boolean ring of all finite
subsets m of X; the void set is denoted by 0, and m+mn is the sym-
metric difference of m and n (whence {x} + {x}=0).

We have a natural one-one transformation ¢: X— X* defined by
(@)= {a} .

THEOREM. Let X be a T, space. Then we can define a topology on
X* for which the additive translations are homesmorphism, and ¢ maps
X homeomorphically onto a closed subset of X*.
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We do not assert that X* is a topological group under addition.
We will show that the transformation X*xX*— X* defined by (m, n)
—m+n is continuous in each varizhle separately, not that it is simul-
taneously continuous.

Proof. For every open cover . of X we define (/) as the collec-
tion of those sets me X* whose points can be listed x, 2, =+, Tus_1s Topy
where the ‘‘partners” a,;,.,, @, always lie in one element V,e /.
Then O0e (), and if « is a common refinement of the open covers
77, w5, we have () C( 4 YN ().

We take the sets m+( /) as a fundamental system of neighborhoods
of me X*, and will show that for any open cover ~ and any me( /)
there is an open cover  such that ne () implies m+ne(/ ). It
will follow

1) that these neighborhoods define a unique topology on X*, and

2) that translation by m is a homeomorphism.

We construct 7 as follows: For each Ve 7, let V, denote the
set of points of V not in m; for each x;cm/\V such that its partner
is also in V, we define U,=V,\J {z;}. Thus each U, is defined by
removing a finite number of points from V, and since points of X are
closed, it follows that U, is open. We define the open cover " of X
as the collection of all possible such U, constructed from all Ve /.

Now take any n={y,, %, =+, Yop-1, Yop} € (77 ), where y,;_,, 1,; always
belong to some Ue(); let us suppose all the y’s are distinct. We
will arrange m+n into a set of partners which share elements of /7,
thus showing that m+ne (7). If y,.1, w,e U; e 27, then at most one
of them belongs to #, and that one (if any) must be z;; we then pair
the other y with the partner of =z, forming a pair not appearing in
m+n. If neither y belongs to m, we can make them partners of each
other. Elements of m not affected by these transactions shall remain
partners. That completes the arrangement of m+n.

To show that this topology on X* is itself 7', take any m =740, and
let /" be the set of complements of the sets m+ {x}, where x varies
over m. Then /" is an open cover of X, and ( /) is a neighborhood
of 0 in X* which does not contain 1.

We will now prove that the map (z)={x; is a homeomorphism of
X onto X*. Given ze X and a neighborhood ( ») of [z}, we know
there is an open set V such that xe Ve /7; then for any y& V we have
{y} ={x} +( ), proving that ¢ is continuous. On the other hand, given
{z} € X* and a neighborhood V of =, take the open cover 7 ={V, X
+{z}}. Then for any {y} e {z}+( /), we have ysV since z, yeX
+ {x} is impossible; that is, the mapping ¢~' is continucus.

Finally we will show that ¢(X) is closed in X*. Take any s with
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more than one element, and as above let ¥~ be the set of complements
of the sets m+ {«}, where x varies over the elements of m. Then
m-+( 7)) does not intersect ¢(X), for if {x} +me(¥"), then « has a
partner y in m; that is impossible, for no two elements of m lie in
the same Ve &". The proof of the theorem is now complete.
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