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Introduction and Summary. Let {X;} i=1,2, --- be a sequence of
independent and identically distributed integral valued random variables
such that 1 is the absolute value of the greatest common divisor of all
values of a for which P(X,=x)>0. Define

S,= X, .
i=1

Chung and Fuchs [5] showed that if z is any integer, S,=z infinitely
often or finitely often with probability 1 according as EX,=0 or %0,
provided that E|X;|< . Let 0<EX;< >, and A denote a set of
integers containing an infinite number of positive integers. It will be
shown that any such set 4 will be visited infinitely often with proba-
bility 1 by the sequence {S,} n=1,2, ---. Conditions are given so that
similar results hold for the case where X, has a continuous distribution
and the set 4 is a Lebesgue measurable set whose intersection with
the positive real numbers has infinite Lebesgue measure.

A Theorem about Markov Chains. Let {Z,}, n=0,1, --- denote a
Markov chain with stationary transition probabilities where each Z, takes
on values in an abstract state space X. The distribution of Z,is given
but arbitrary. Let £ denote the space of all possible sample sequences
w, P the probability measure over 2 and P (-|-) the conditional proba-
bility. The following theorem appears in [4].

THEOREM 1. Let A be any event in X. A sufficient condition that

(1) P(Z,e A infinitely often)=1
%8
(2) 12;' P(Z,e A for some n|Z,=z)>>0.

Since [4] is not readily accessible, we shall prove the theorem here.

Proof.* We have with probability 1 that for j >N
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(3) P(Z,e A for some n>N|Z,=zy, -++ , Z;=2,)
>P(Z,e A for some n>j|Zy=2,, -+, Z;=2))
=P(Z,e A for some n|Z;=z,)

using the Markovian and stationarity properties. As j— co the left
member of (3) approaches with probability 1 the characteristic function
by of the event

By={Z,e A for some n=>N}

(see Doob [8, p. 332]). The right member of (3) is bounded below by
a positive number on account of (2). Hence by=1 with probability 1;
that is, P(By)=1. This being true for all N we have

Hlim By)=lim P(By)=1.

But lim By is the event that Z,e A infinitely often. This proves the

N>
theorem.

If X has only a denumerable number of states and if all the states
belong to the same class (that is, for every pair of states ¢ and j there
exists integers 7, and n, such that P(Z, =j|Z,=)P(Z,=1i|Z,=5)>0) it
can be easily seen that (2) is both a necessary and sufficient condition
for (1). In fact, the probability in (2) must be 1 for all states z.?

Sums of lattice random variables. Let {X;} i=1, 2, --- be a sequence
of independent and identically distributed integral valued random vari-
ables such that 1 is the absolute value of the greatest common divisor
of all values of z for which P(X,=x)>0. Consider the sequence
{S,} »=0,1, ---, where we set S;,=0 with probability 1 and

Sn=So+ ﬁ: .Xrb .
i=1

The sequence {S,} is then a Markov chain with stationary transition
probabilities and a denumerable state space. Because the transition
probabilities are stationary, we shall simply write

P(S,.n=1|S,=5)=P(S,=1|S,=5)
even though S,=0 with probability 1.

We now state as lemmas some known results to be used below.

LEMMA 1. Let {Z,} n=0,1, -« be a Markov chain with a denumerable
state space. If S P(Zy=j|Zy=i)<co for all i and j, then
n=1

3 We are indebted to J. Wolfowitz for this remark.
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S\ P(Z,=j| Z,=1)
(4) P(Z,=j for somz n|Z,=i)= "' _ .
1+ >\ P(Z,=7jlZ,=))

n=1

When EX,=p >0, a result of Chung and Fuchs [5] implies that
(5) S5 P(Su=j1So=i) < o

for all 2 and j. Therefore, on replacing Z, by S, in (4) and noting
that P(S,=j|S,=7)=P(S,=0|S,=0) we have

. S PS.=iIS=i)
(4") P(S,=j for some n]SO=z)_ AL
1+ 3}

P(S,=0|S,= O)

Lemma 1 is a special case of a relation given by Doeblin [7] (see Chung
[3]). However, we shall sketch a direet proof.

Proof. We define P(Z,=j|Z,=j)=1. Then we have

(6)  PZ,=jlZy=i)= 3 P(Zu—j, Z#] for
1< < m| Z=0)P(Z, =] | Zn=))
— S P(Z,=j, ZAf tor 1<o < m|Zy=i)P(Zy-n—j| Zy=j)

m=1

On summing over n in (6) and interchanging summations on the right
we get

(7) LP(Zn~le—’&)—EP(Z =4, Z,7%7 for

n=1

1<r<m)1+ Z P(Z,=j|Z,=3]))

=P(Z,=j for some 92)(1+ZP(Z,,~31Z——9))

n=1

the relation (4).
LEMMA 2. If EX,=p >0, then

(8) llmLP(S—ﬂlSo v) =20, p_ oo

Jroe n= 14

=0, p=+ oo,

Lemma 2 is due to Chung and Wolfowitz [6]. We now prove the
following.
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THEOREM 2. (i) If 0<<EX,=p< oo and A 18 any set contwining an
mnfinite number of positive integers, then S,e€ A infinitely often with pro-
bability 1.

(i) If EX,=+ o, then there exists a set A containing an infinite
number of positive integers such that S,e A only finitely often with pro-
bability 1.

Proof of (i). Since 0< p< oo, by (8) there exists a constant ¢>0,
independent of 4, and an integer J(z) such that for all 5> J(¢)

(9) 3 P(S,=i1S0=)>c.
Therefore by (4") and (5)

(10) P(S,=j for some nISO='é)>i—§jé, ) J>J(1)

where c’=§j P(S,=0]8,=0)<c . Since A contains infinitely many posi-
n=1

tive integers, it always contains an integer greater than J(7) for every
3. Therefore (2) holds and part (i) of Theorem 2 follows from Theorem
1.

Proof of (ii). If p=+ oo, then from (8) there exists an increasing
subsequence {¢,} of positive integers such that

1) 5 S PE, =i, Si=0)=3, 3\ P8, =i, S,=0) L eo.

Let A={¢;}. Now (11) is the expected number of »n such that S, e A.
Since this expectation is finite it follows that the number of n such
that S, e A is finite with probability 1. This completes the proof of the
theorem.

Random variables with continuous distribution functions. Consider
now a sequence {X,} ¢=1,2, --- of independent, identically distributed
random variables possessing a common density function f(r). Again

let {S,} n=0,1, --- denote the cumulative sums Sn=SU+iXi where
=1

S,=0 with probability 1. Our previous remark pertaining to the
notation P(---|S;=x) applies here also. Suppose EX;,=pg>0. Then a

result of Chung and Fuchs [5] implies that H(x)ziP(Sngx)<oo for
n=1

all z. Since H(x) is non-decreasing, H'(x) exists everywhere except
on a set N, of Lebesque measure zero. Let
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h(x)=H'(x) c€ N,
=1, say, zeN,z=0
=0 zeN,z<0

We shall say that f(x) satisfies condition I if there exist constants
K, and K, such that

(12) 0< K, < lim he) < Tim h(a) < K, < oo
and if
13) lim A(z)=0

L—>— 00

The behavior of A(x) for large |x| has been investigated in various
papers on renewal theory. Smith [10], for example, has shown that if
f@)=0 for <70, f(x)—0 as |x|— o and f(x)eL,,; for some 6 >0, then

z->o00

lim h(z)=1 1< oo
/l

=0, p=+co

More recently, Smith* has shown that the condition that f(x)=0 for
2<_0 may be dropped, and furthermore (13) holds. We now prove the
following.

LEMMA 8. If EX,=p< o, f(x) satisfies condition I, A is any
Lebesgue measurable set of positive real numbers having infinite measure,
then
(14) inf P(S,e A for some n|S,=x)>0.

—oolgoo

Proof. For every z, let A, be a measurable subset of 4 with
0<e,<m(4,)< e,< o and such that for a given number L, all points
in 4, exceed 2 by at least L,. Such a set exists since m(4)=w. For
any ¢ >0 it follows from (12) that there exists an L,=L,(c) such that

(15) 0(1-e)Kie, < gl P(S, € A,|Sy=a) (1 +e)K.0; <o .

Let A, be any measurable set with m(4,)< ¢, and such that for a given
L, all points in A, are exceeded by = by at least L,. By (18)° there
exists an L,=L,(¢) such that

(16) >, (S, € AL |Sy=x) <& .
n=1
o ;aninrqunication by letter.
5 Added in proof: Condition (13) can be dropped; (16) follows from the fact that
lim H(x)=0 whether (13) holds or not.

2> — 00
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Let L=max (L,,L,). For a given yed,letd,=A.Nly—L, y+L1),
A=A, N[y+L, =) and 4, =4, N(—,y—L).
Then from (15) and (16)
17) glP(SneAz!SO:y)ziP(Sne AL|S,=v)
+ZP(S e A2,|S,= y)+2P(S € A,|S,=y)
gE_]IP(—L<SH<L|S0=0)+chz(1+e)+s.

The first term on the right of (17) is finite by the result of Chung and
Fuchs [5]. Therefore, since (17) is true for all ye A, we have

(18) sup 33 (S, € A,|Sy=p) <erl

Let FP(B)=P(S,eB, S, ¢ A, for 1<v'<v|S;=x) where B is any
measurable subset of A,. Define P(S;e 4,|S;=y)=1 if ye 4, and =0
otherwise. Then we have

P edls—o=- 3 5[ S Als—pFr@)
-3, 5 rs.c als—prray
=] Srs.cals—proa
< 3P4 sup 3 HS, € AlS—)

< P(S,e A, for some n|S,=x)(1+cs) .

This being true for all N the lemma follows on account of (15).
We now state the following.

THEOREM 3. (i) If 0<{EX,=p< oo, Condition I is satisfied, and
A is any Lebesgue measurable subset of the positive real numbers, then
S, € A infinitely often or finitely often with probability 1 according as
m(A)=co or <o .

(il) If p=oo, then there ewxists ¢ measurable subset A of the positive
real numbers with m(A)=oco such that S,€ A for only finitely many n
with probability 1.

Proof of (i). If m(A)=oo, the result follows from Theorem 1 and
Lemma 8. If m(4)< o it follows from (15) that 3 P(S,e4)< co.

n=1
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Since that is the expected number of n such that S,e A, the assertion
follows immediately.

Proof of (ii). A result due to Blackwell [1] asserts that for any
fixed d>0.

hmZP(y< S, <L y+d)=0.

Yoo np=1
Using this result the rest of the proof is similar to that of part (ii)
Theorem 2.

Unsolved problems. Let {X,} be a sequence of independent and
identically distributed »-dimensional random vectors, S,= iXi,B be
i=1

any Borel set in the #»-dimensional Euclidean space R". It has been
recently proved by Hewitt and Savage [9] (in the lattice case also by
Blackwell [2]) that the probability that S, e B infinitely often is neces-
sarily either 0 or 1. It would be of interest to determine for which
sets the probability is 0, and for which the probability is 1. Our results
give a criterion for this dichotomy in certain cases in R', namely in
the lattice case where EX; exists and is finite (Theorem 2) and in the
continuous ease under more restrictive conditions (Theorem 3).
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