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1. Introduction and summary. Two vertices of a polyhedron are
called neighbors of order ¥ when they have a face of dimension %, and
none of lower dimension, in common. K(P) denotes the maximum value of
k for a given polyhedron P. For the convex hull (polyhedron) P, of all
permutations of % elements (represented by square matrices of order n and
interpreted as points in n’-space) it was shown [1 and 2] that K(P)=
[/2] (that is, the largest integer not exceeding n/2), which is rather
small as compared with dim P,=(n—1)>. For the convex hull @, of all
cyclic permutations of = elements that leave no element fixed, H.
Kuhn performed computations showing that any two vertices of @; but
not any two vertices of @, are neighbors of order 1, which means that
K(Q;)=1 and K(Q)>1. The present note, dealing with general »,
proves, for n >8:

(1) K(Qn)=K(Pn)——1=g~—1 if n=dm+2

(2) K(Qn)zK(Pn)z[g—] i ot dm2
For n=1,2,---6, 7, K(Q,)=0,0,1,1,1, 2,2 respectively.

2. A permutation p of n numbered elements is customarily re-
presented by a matrix (p;;), where

1 when p sends 7 into j

Piy= ‘{ .
0 otherwise.

To the product of permutations then corresponds the product of the
associated matrices under ordinary matrix multiplication, and therefore
the same symbol will be used for a permutation and its matrix.

The following facts from [1] and [2] regarding neighbor relations
on P, will be used in the sequal:
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[n
@.1) K@En)-| 2]

2.2) p, and p, are neighbors of order & on P, if and only if
pr'p, 18 a product of % disjoint eycles (not counting cycles
of length 1)

2.3) If ¢,c, -++,c, are disjoint cycles and F is the face of
lowest dimension that contains the two vertices

p and p=pce, « -+ ¢,

then F has the 2° vertices

A

PC; C; v G 0<s

L s

k) .

3. If the vertices of a convex polyhedron @ are a subset of the
vertices of a convex polyhedron P, let two vertices ¢, ¢. of @ be neigh-
bors of order £ on P and £* on @:

k=k(q, ¢.; P), kK'=k*(a, &; Q).
Let
F=F(q, ¢.; P), F*=F*q, ¢; Q)

be the face of lowest dimension of P respectively @ that contains ¢,
and ¢,, so that

k=dim A(F"), Fk*=dim A(F*),

where A(F) and A(F™*) denote the ‘‘affine span’’ of ¥ and F™* respec-
tively, which is also obtained as the intersection of all hyperplanes that
support P respectively @ and contain ¢; and ¢, (with the understanding
that A is the entire space when such hyperplanes do not exist) ; then

3.1) F2F*,
hence
(3.2) A(F) 2 A(F™) ,

and therefore

(3.3) k> k.

Proof of (3.1). The line segment joining ¢, and ¢ goes through
the interior of F* (otherwise ¢, and ¢, would have a face of lower
dimension in common). Therefore any hyperplane through ¢, and ¢,
necessarily contains interior points of F'*.



NEIGHBOR RELATIONS 469

Further, the vertices of €, hence in particular those of I'™, are
also vertices of P. Therefore any hyperplane that supports P supports

Above establishes that any hyperplane H that supports P and con-
tains ¢, and ¢, necessarily contains F'*, since it supports F'* and contains
points interior to F'*. Therefore

AF)2F*,
which, in conjunction with
P>QDF*,
implies
F*<= PN AWF).

This completes the proof of (3.1), since the right hand side of the last

relation equals F'.
A somewhat sharper form of (3.1) may be noted as

LEMMA 1. The vertices of F* are among the vertices of F.

The proof is immediate from (3.1) and the fact that the vertices of
F* are vertices of P, and a vertex of P contained in F' is vertex of

F.
From (8.3) it follows that max &* < max k, that is

(3.4) K(Q) = K(P)

4. At this point it is convenient to first establish some auxiliary
faets. p, ¢, ¢ denote permutations of n elements, for fixed n.

LemMma 2. If
Ciy Cay ooy Cry Craty =%y Cs
is a set of s disjoint cycles, and
C=CCy "+ Cry C'=Cpi1Crsy*** Cs
then
(4.1) ¢ +c’'=I+c¢”
Proof. Obvious (note that a eycle of less than n elements is still

represented as an n by n matrix, with 1’s along the main diagonal for
fixed elements).
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LEMMA 8. Under the assumptions of Lemma 1, let
4.2) q, g¢, g¢”, gc'c’=q
be vertices of a polyhedron R. Then

a hyperplane H through q and q that
supports R contains gc’ and qc”,

and consequently

F(q, q; R) contains q¢’ and gc” (obviously
as vertices).

This lemma will be used in the particular case where R=Q, or P,.
Proof of Lemma 3. Using parentheses to denote the inner product,

let H, given by (%, z)=«, contain ¢ and ¢ but not contain ¢¢’ (say);
that is

*h, =G, D=a, (h, g¢)=a+p, BF#O0.
By (4.1) and (4.2)
qc’+qc’'=q+7q,
hence
(, q¢)=(h, ¢+ q—qc')=2a—(a+p)=a—4,

so that H separates qc¢’ from g¢’’ and therefore does not support R.

LEMmMA 4. If

k:[’;] 9 <k

q=(12-+-n)
=0, i+k) (=1,2,---k),
then the product of ¢ with 2s distinet ¢;,
Qi i, * Gy,

is an m-cycle.

Proof. Since the ¢; are disjoint, they commute, and may be ar-
ranged in such manner that

'51 <7:z <"’ <'izs;
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then
(1+ - +n)(@, 6y +E) (s G +K) o+« (agmry Togmr +F)(Bsy o5 +K)
=Lty d+k+1, oocdytk, G+, ooty Gt b+ L o itk G 1
SRR SN SRS Y 2 8 TRERTSE Y A A WEEE
LR AR o R I A . b PEERISE /A PE o PREEY PP VR VB 5 PERE
SRR A AN A A L . YRR O I

It is easily verified above relation also holds, with proper changes, for
2,=1 and for 2s=Fk, 2k=n.
In similar straightforward fashion one easily proves:

LEMMA 5. If q is an n-cycle and d 18 a 3-cycle, then qd is an n-
cycle if and only if the elements of d occur in q in the same cyclic
order as in d.

LEMMA 6. If q is an m-cycle and the 2-cycle (ij)=%=(km), then
q(i5)(km) is an m-cycle if and only if the pair <, j separates the pair k,
m in q.

5. The case n=4m, n=4m+1; m > 2.
(5.1) K(Q,)=K(P,) (n=4m, 4m+1; m = 2)

Proof. Because of (3.4), it is sufficient to show that K(Q,) = K(P,) ;
this will be achieved by showing that for a particular pair of vertices

7 7

(5.2) Ho T Q=] 2 =K@

Now let 2m=Fk, so that » = 2k, choose
q=(12---n)
(5.3) es=(1, 1+k) (t=1,2---k)
g=qcc,* * *c=qc,

and denote by ¢’ the product of an even number (including 0 and k) of
the ¢;, by ¢’ the product of the remaining ¢, (whose number is also
even, since % is even):

G 28

¢'=c,c. ¢ 0L2s<k)
(5.4) {

c'c’=0cCyCr=C0C.
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(It should be noted that the now following proof of k*(¢, ¢; Q.) =
k does not depend on the special assumption n=4m, 4m+1 and k=2m,
but rather holds in general for any pair «, &, where k is even and n >

2k ; this fact will be used in §9).

The g¢’ are vertices of @, (by Lemma 4) and therefore (by Lemma

3) they are also vertices of F*=F(q, G; @,).
To verify (5.2), that is

dim A(F™*) > &,
consider the following subset of &+ 1 vertices of F™:
(5.5) G=qCe1=q, GE=(qCCs, *** G=qC:Cx) Txr1=qc=7 .
The ¢, of (5.5) are linearly independent.
Proof. Assume
(5.6) g+ 3% 1g,0.
Successive application of (4.1) to
C=01Cy"* *Cy
yields
(6.7) c=cle,+ 0+ —(E—2)],
and (5.6) becomes
qefe,+ e +op—(k—2)I]+ é 2;q¢:¢;=0
that is
ged hes— (k—2)I + z(; +2)e,]=0
or, equivalently, since ¢ and ¢, are nonsingular matrices
(5.8) 26— 2e—2)I + :zz(ziﬂ)ci:o
Since the ¢; are disjoint cycles (5.8) implies
A=0; 2, +2=0 (i=2, ---k); W(k—2)=0

which, in conjunction with k42 (following from m =>2),
implies

further
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This verifies that the £+1 ¢, of (5.5) are linearly independent, so that
the dimension of their linear span is £-+1, and therefore the dimension
of their affine span equal to k. This completes the proof of (5.2) and
hence of (5.1)

6. The case n=4m, n=4m+1; m=1. Removing the restriction m
=2 in (5.1) leaves the cases n=4 and n=>5 still to be considered
(6.1) EQ)=1 (n=4,5)

Proof. Since, by (3.4) and (2.1), K(Q,) <2, one only has to show
that K(Q,) = 2.

Assume there were two vertices ¢ and ¢ of @, such that
kg, @; Qu)=2.
Then, by (3.4), (3.3) and (2.1)
k(g, §; Pn=2,

which by (2.2) implies that ¢~'g is a product of two disjoint cycles, say
¢, Gy, 80 that g=qcec,.

Since ¢ and ¢ are cycles of the same length (namely ), ce, is
necessarily an even permutation, so that ¢, and ¢, are both of length 2.

Now let F’ be the lowest dimensional face of P, containing ¢ and
G- Then, by (2.3), F' has the 4 vertices

q, 4, q¢1, qC; .

of which the last two are not n-cycles and therefore not vertices of
F*. Hence, by Lemma 1, F'* has only the two vertices ¢ and ¢, which
implies k*=1 in contradiction to the assumption that ¥*=2. This com-
pletes the proof of (6.1).

7. The case n=4m+3; m*%1.
(7.1) K(Q,)=K(P,) (n=4m+3, m=+£1),
including m=0.

Proof. Because of (3.4) it is again sufficient to point out two
vertices, ¢, q, of @,, such that

(7.2) k*(q, 7; Q)= K(P,)=2m+1.

For k=2m, let ¢, ¢, ¢, ¢/, ¢’ be defined as in (5.83) and (5.4), let
d=Q2k+1, 2k+2, 2k+3), and qg=qcd,
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By Lemmas 4 and 5 the ¢g¢' and g¢'d are vertices of @, for all ¢
of (5.4), and by Lemma 3 they are also vertices of F*(q, G; @,). To
prove that

dim A(F*) >2m +1,

it is shown that the dimension of the linear span of F* is >2m+2=
k+2, in verifying that the k+2 vertices of F™*

(7.3) B=0=qC:C1, (;=qC\Cs, * * *, @Gx=0C:Cxy Tr+1=0d, rr2=q=qcd

are linearly independent.
Assume

k+2

(7-4) Z Ziqizo
i=1

or, equivalently, substituting for ¢, their expressions from (7.3), omitt-
ing the non singular common factor gc,, and writing g, for ...,

(7.5) é 2:C; + e d 4+ p0,6y - e, d=0 .
Application of (4.1) yields for the left hand side of (7.5)
zzc + e+ d—I)+ ple, + - o+ +p+d—(k—DI],
so that (7.4) is equivalent to
(T6) (et S (ot me+ ()~ + (o= Dpu][=0

Since the ¢; and d are disjoint cycles, (7.6) implies
21 +ﬂ1=0
A+ p=0 (1=2,8,--- k)
(7.71)
i —{—;12:0
M +(k—1),llz=O

The last two relations of (7.7) imply (because of the assumption m
=1, hence k%42, k—15£1)

plz)uz:() ’
which in conjunction with the first two relations of (7.7) implies
2,=0 (1=1, 2, --- k),

so that all coefficients of (7.4) vanish; this proves that the ¢, of (7.4)
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are linearly independent, and completes the proof of (7.2) and hence
(7.1).

8. The case #n="7 (excepted in § 7).
8.1) K(Q)=K(P,)—1=2

Proof. By (3.4) and (2.1)
K@Q)<3.

To see that equality cannot hold, let ¢=(12.--7).
Because of (2.1) and (8.3), only such ¢ must be considered where

k(q, q; P)=3.
By (2.2) the last relation is only possible for
a:qclczd y

where ¢, ¢, d are disjoing cycles.

For ¢ to be a 7-cycle it is necessary (not sufficient) that cic,d be
even, that is, that two of them, say ¢, and ¢,, be transpositions and d
a 3 cycle.

For the same reason, among the 8 vertices of F'(q, 7; P;) determined
by (2.3), at most 4 are T7-cycles, namely

(8.2) G=¢, &=q66;, ¢;=qd, ¢, =q=qced ,

so that, by Lemma 1, F™*(q, g; @;) has at most the 4 vertices (8.2).
However, application of (4.1) yields

@+ @=ql +ecd)=q(l+ece,+d—D)=q,+q,
which is a relation
2 4e,=0 with X 1,=0,
therefore
dim A(F*) < 2.
It has thus been established that
K@)=2.
To complete the proof of (8.1), choose
(8.3) q=@12---7), =(13), ¢,=(24), d=(567).

Then each ¢, of (8,2) is a T-cycle (by Lemmas 4 and 5) and a
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vertex of F*(q,q; Q) (by Lemma 3.) The last 3 of these ¢, are
linearly independent. This establishes, for this particular face F™,

dim A(F*)=2,
and completes the proof of (8.1).
9. The case n=4m+2.
(9.1) K(Q,)=K(P)—1=2m  (n=4m+?2).
The proof is achieved in showing
(9.2) K(@,) =< K(Py)—1=2m
(9.3) K@) = K(P,)—1=2m .

To verify (9.2), assume K(Q,) > K(P,)—1, which, by (3.4) and (2.1),
implies K(Q,)=K(P,)=2m+1.
Then there must be a pair of vertices ¢ and ¢ on @, such that

k*(q, q; Q)=2m+1,
and hence, by (3.3) and (2.1),
kg, q; P)=2m+1,
which, by (2.2) implies
7=QC0;" * *Cony1

where the ¢; are disjoint cycles, and therefore necessarily transpositions,
because of n=2(2m+1). Then however, the product of the ¢, is an
odd permutation, and ¢ cannot be an n-cycle if ¢ is one. This proves

(9.2).

To verify (9.3), consider first the case m >2. Setting 2m=F~k, the
construction from (5.8) through the end of §5 proves the existence of
q, G with k%, ¢; @Q.)=Fk, which implies K(Q,) > k.

For m==1, that is, =6, choose

g=(12---6), d,=(123), d,=(456), g=qd.d, .
Then, by Lemma 5, the 4 points
4, ¢, qd,, ¢=qd,d,
are 6-cycles, and therefore, by Lemma 8, vertices of
F*q,7; Q) -

This implies dim A(F*) > 2 (since not more than two vertices can be on
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a line), that is,

kg, a; @)=2.

Finally (if one wants to split hairs) for m=0, that is, n=2, (9.8)
amounts to asserting the existence of at least one 2-cycle; for ¢=q¢=
(12), F*(q, ¢; Q.)=q, k*=0, hence K(Q,)>0. This completes the proof
of (9.1).

The relations (5.1), (6.1), (7.1), (8.1), and (9.1) constitute the state-
ment at the end of § 1.
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