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CONSTRUCTION OF THE LATTICE OF COMPLEMENTED

IDEALS WITHIN THE UNIT GROUP

J. ELDON WHITESITT

In his book " Linear algebra and protective geometry " [1, pp. 203-
227], R. Baer shows that in the ring of endomorphisms of a linear
manifold, (F, A), except where the characteristic of F is 2, the pro-
jective geometry of the subspaces of the linear manifold is determined
entirely within the multiplicative group of units in the ring. G. Ehrlich
[2], using similar methods showed that the structure of a continuous
geometry is determined within the unit group of the associated regular
ring. The purpose of this paper is to show that a unified treatment
may be given.

We will assume throughout that the ring R has an identity element
which we denote by 1. We will say that a right ideal A in R is a
complemented right ideal if there exists a right ideal A such that R
=A@ A where ® indicates direct sum. We refer to such an ideal by
the abbreviation C. R. I.

If K is any ring with identity, we denote the unit group of K by
U(K). Where K is R, this will be shortened to just U. For any set
S of elements in R, we let Z(S) denote the center of S, that is, the
set of all those elements of S which commute with every element in S.

We assume the ring R satisfies the following postulates:
1. The mapping r->r + r for every element reR is an auto-

morphism of the additive group of R onto R. [1, p. 203; 2, p. 9]
This postulate requires a little more than that the characteristic of

R is different from 2. We will denote r + r by 2r and the inverse image

of r by —r .
Li

2. If A and B are C. R. I.'s then A Γ\ B and A \J B are C. R. L's.
[1, pp. 178, 179; 2, p. 6]

3. If e is a nonzero idempotent in R and if k is any element of R,
then either eRk=0 or kRe=0 implies that k=0. [1, p. 198; 2, p. 16]

4. If e is an idempotent element of R, then Z(U(eRe))<LZ(eRe). [1,
p. 201; 2, p. 14]

5. Z(R) contains no nonzero divisors of zero. [1, p. 202; 2, p. 7]
An element of ueR is termed an involution if u2=l. An element

seR which is the product of two distinct involutions and satisfies the
property that (s — lf=0 is said to be of class two. Section 1 deals with
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elements of class two, showing that they may be characterized within
the unit group.

If a is any element of R, we define J+(α) to be the set of all xeR
satisfying ax=x, and J~(a) to be the set of all yeR satisfying ay=—y.
Then if A is a C. R. I. we define Δ(A)+ to be the set of all involutions
u such that A=J+(u) and Δ{A)" to be the set of all involutions v such
that A=J-(v). Either of these sets is called a Δ-set. In §2, Δ-sets
are characterized within the unit group, making use of the results of
§ 1. It is shown that a one-to-one correspondence exists between the
set of all C. R. I.'s and the set of all pairs [Δ(A)+, Δ(A)~] of all J-sets,
called Δ-systems.

Finally, it is shown in § 3 that the set of C. R. I.'s forms an ir-
reducible, complemented modular lattice and that the ordering in the
lattice is determined by the ordering of the z/-systems, and conversely.

1. Elements of class two. It will be necessary to show that ele-
ments of class two can be characterized completely within the multiplicative
group of units in the ring. First we list without proof some well-
known properties of idempotent elements and the ideals they generate
(complemented ideals) in the ring R. These results hold for arbitrary
rings with 1. The proof of 1.1 is given in [4, p. 708].

PROPOSITION 1.1. (a) An element e in R is idempotent if and
only if (1 — e) is idempotent.

(b) If e is idempotent, eR is the set of elements x in R for which
ex=x. Note that this implies that y is in (l — e)R if and only if ey=0.

(c) // e and f are idempotents such that eR=fR, and (l — e)R
=(1-/)B, then e=f.

(d) iϋ=A θ B for right ideals A and B if and only if there exists
an idempotent e such that eR=A and (l — e)R=B.

The following result, useful for testing the equality of complement-
ed right ideals, holds for arbitrary rings with 1. It is given in [3, p.
13].

PROPOSITION 1.2. If e and f are idempotents, then eR=fR if and
only if f=e-\-ex{l — e) for some xeR.

The following result, given in Ehrlich [2, pp. 9, 10] relates the set
of all involutions to the set of all idempotents.

PROPOSITION 1.3. (a) Themappings u-> (u±ϊ) = e and e~>2e — 1
Li

=u are one-to-one inverse mappings between the set of all involutions u
and the set of all idempotents e in R.
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(b) Similarly the mappings v -+ -(l — v)=f and / - > —2f + l=v

are one-to-one inverse mappings between these sets.
(c) For the involution u=2e — l, J+(u) = eR and J~(u)={l — e)R.
It will be necessary to know that there exist ' ' enough '' involu-

tions, or equivalently, idempotents.

LEMMA 1.4. If A=eR=J+(u) for an idempotent e and involution
u=2e—l, and if 0 <^A<^R, then there exists an idempotent fφe such
that A=fR, or equivalently, there exists an involution vφu such that
A=J+(v).

Proof. Since 0<[eR < Λ , neither e nor 1 — e is zero. By Postulate
3 there is an xeR such that ex(l—e)φθ. Let f = e + ex(l — e)Φ e.
Then / is an idempotent and eR=fR=A. Equivalently, v=2f — l is
an involution such that uφv and A=J+(v).

LEMMA 1.5. // J+(u)=J+(v)=J+(w) for involutions u, v, to, then
uvw=u — v + w, and (uv — lf=0.

Proof. Let A=J+(u)=J+(v)=J+(ιv). Then UΛ-1, v + 1, and
are in A. Hence

u — v + w=u — (v -f 1) + (w +1)=u — u (v -f 1) + u(w -h 1)

Now uvu=2u—v and hence (uvf=2uv — 1, or (uvf — 2uv-}-l = 0, that
is, (uv — iy2=0. This completes the proof.

In 1.1 we have seen that principal right ideals generated by
idempotents are complemented, and it is necessary to know that certain
other ideals are also complemented. In particular,

LEMMA 1.6. If fR=eR for idempotents e, / , then (f — e)R is a
C.R.I.

Proof. We note that fe=e, ef = f and f=e + ez(l — e) for some
zeR. We will show that {f-e)R=eRf\\{l-e)R\J{l-f)K]. Clearly
(f-e)R<eR since f-e=ez(l-e), and (f-e)R ^ [(l-e)Λ U (1-/)B],
since for any xeR, (f — e)x=(l — e)xJr(l — f)( — x). Now suppose yeeR
f\[(l-e)R{J(l-f)R], then 2/=β2/ = (l-e)τ 1 + (l-/)r2> and (l-e)y = 0
==(l-β)r1 + (l-e)(l-/)r2 = (l-β)r14-(l-β)r2. But then y={l-e)rι

+ (l-/)ra = (l-e)r1 + (l-e)ra + (/-e)(-r2) = (/-e)(-r2) and is in
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(f-e)R. This shows eR Γ\ [(l-e)R \J (l-f)R] <: (f-e)R, and hence
equality holds. By Postulate 2, (f — e)R is a C . R . I . This completes

the proof.

PROPOSITION 1.7. // u and v are involutions, then J+(uv)=J+(vu)

= [J + (u) Γ\ J + (v)] Θ [J-(u) Γ\ J~(v)l

Proof. Assume x is any element in J+(uv). This is equivalent to
uvx=x, or vx=ux, or x=vιcx. Hence J+{uv)=J'v{vu). Further x may
be written x=x+ + xΰ where x£ e J + (u) and xz e J~(u). Then ux=xZ
— x~ and x + ux=2x£. Similarly, x=x£ + χ-, where x£eJ + (v) and x~
eJ~(v), and x + vx=2x^. Hence Xu=x£ and x~=x;. That is, x is in
J{)J{)\\J[J{J{)-\

That \J+{u) Γ\ J+(v)] \J \J-{u) Γ\ J~(v)]<LJ+(uv) is clear and the sum
is direct since J+(u) Γ\J-(u) = 0. This completes the proof.

We note that by Postulate 2, the above proposition also gives that
J+(ιιv) is a C. R. I. Next we show that an element of class two may
be written in a special form.

LEMMA 1.8. // the element s = u'vf for involutions nf and v satisfies
(s —1)2=0, then there exist involutions u and v such that s=uv, and

Proof, (s —1)2 = 0 implies t h a t s(s — 1) — (s —1) = 0 and hence t h a t

s-leJ+(s). Hence (s-l)R<LJ+(s), and J+(s) is a C . R . I , by the pre-

ceding proposition. Now let u be any involution such that (s — ΐ).R
^LJ+(u) <LJ+(s). This is possible, since J+(s) is a C.R.I, and will serve
for J+(u). If v=us, v=-u(s — l) + u=s — l±u, since s — leJ+(u).

since u-hl e J+(s) <I J+(u). That is, v is an involution. Clearly J+(u)
<LJ+(v). Assume that xeJ+(v), so that x=vx=(s — l + u)x. That is,
(s — l)x=(l — u)x. But (l — u)xeJ-(u), while (s — l)xe J+(u), and hence
(l — u)x=0 for every xeJ+(v). That is, J+(v)<LJ+(u), and we have
proved that equality holds. This completes the proof.

The following lemma, and the classification of elements of class
two given in Theorem 1 are due to Israel Halperin. We define C(s)f

the centralizer of an element se R, to be the set of all elements te U
such that ts=st. Then we let C2(s) = C(C(s)) be the set of all elements
in U which commute with every element in C(s).

LEMMA 1.9. If s=l + n=uv, ivhere n2=0 and u and v are involu-
tions , then nR=eR for some idempotent e, and for any such e, if 16 C2(s)
and te=ety then tx=xt for every xeU.
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Proof. By 1.8 we may assume J+(u)=J+(v)=iR for some idempotent
i. Then u=2[iJrix(l — i)] — 1 and v=2[i-hiy(l—i)'] — l for some x, yeR.
Then by direct computation, uv = l + iz(l—i), where z=2(y — x). Hence
n=s — l=ίz(l — i)=j — i for the idempotents j=i-hiz(l — i) and i, and %ii!
is a C. R. I. by 1.6. Let nR=eR for the idempotent e. Then nR=eR
<LiR implies ie = e, (1 — i)(l — e) == (1 — i), en = n, en(l — e) = n(l — e)

=iz(l — ί)(l — e)=n, and W£=0.

Now e=nh' for some h'e R. Set &=(1 — e)/z/e, g=hn, f=l — β — g.
Then nh=n(l — e)h'e=nh'e=e, gn=0, ng=en=n, h=(l — e)he, h2=0,
hg=0, g2=g, ge=eg=0, fi=f9 ne=nf~fn=gn=O, and β, / , # are
orthogonal idempotents satisfying l = e + / + 0.

Further, ^^=0 is equivalent to gx=0. Clearly nx=0 implies gx=hnx
= 0. gx=0 imples x=(e-hf)x, hence nx=n(e + f)x=n(l — g)x=0.

Also xn=0 is equivalent to xe=0, since eR=nR.
Now let a? be an arbitrary element in U. We show xt=tx for any

£ in C2(s) for which te=et by showing £ commutes with each term in
the expansion of x=(e + f + g)x(e + f + g).

Since fn=nf==0 and 2/-leC7, 2 / - 1 is in C(n)=C(s) and hence
tf=ft. Then also tg=gt. s~1=n — l, so seU, and hence seC(s), and
ts=st, tn=nt.

Using the relations given above between e, f, g, n, we have:

l-hβ#/has inverse 1 — exf and is in C(s), hence texf=exft.
1 + exg has inverse l — ea# and is in C(s), hence texg=exgt.
1+fxg has inverse 1—fxg and is in C(s), hence tfxg=fxgt.
l±exenha,s inverse 1 — exen and is in C(s), hence texen=exent, that is,

(texe — exet)n=0, since tn=nt. But this is equivalent to (texe — exet)e=0
and hence texe=exet.

1+fxen has inverse 1—fxen and is in C(s), hence tfxen=fxent
and tfxe=fxet.

\-\-nxn has inverse 1 — fxen and is in C(s), hence tnxn=nxnt9 that
is, n(tx — xt)n=0. But m/=0 is equivalent to gy=Q, zn=0 is equivalent
to £e=0, hence tgxe=gxet.

1-hnxf has inverse 1 — wa?/ and is in C(s), hence ίnxf=nxft and
tgxf=gxft.

1-hnxg has inverse 1 — nxg and is in C(s), hence tnxg=nxgt and

Finally, if fyfeU(fRf) with inverse fzfe/Rf, then
has inverse e + fzf + g in i? and is in C(s), hence tfyf=fyft and
(ftf)(fvf) = (fyf)(ftf) and ftf=tf has r 1/ as inverse in /i?/.
Hence ftfeZ(U(fRf))^Z(fRf) by Postulate 4, and tfxf=fxft for
xeU. This completes the proof.

The following theorem gives necessary and sufficient conditions that
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an element which is the product of two involutions be of class two. It
will be noted that these conditions are entirely multiplicative in nature.

THEOREM 1. If s=ιιv for distinct involutions u, v, neither of which
is±l, then s is of class 2 if and only if

1. For some re U> and involution τv, ive have

wsw=s~ι,

rsr~1=s2 ,

C(w)<LC(r), and

2. s3 φ 1 or for every s'=u'v' satisfying 1, s / 3=l.

Proof. Assume s=uv=n + l, n2 = 0, nφO. Then as in 1.9, nR=eR
for an idempotent e, and n=en, ne=Q. Let r=1 + e, w = 2e — l. Then
r- 1 =l-e/2, w2=l, and wsw=(2e~l)(l + n)(2e-l) = l-n==s-\ Further,
we have that rsr~1=(l + e)(l + n)(l — el2) = l + 2n=l-h2n + rit==s*. If yw
=wy, then ye=eyf and yr=ry, that is, C(w)<LC(r). Finally, if teC2(s)
Γ\C(w), then te=et, and by 1.9, teZ(U). (Note that t~λ exists since,
for example, C(w) <i U). Hence we have established 1. We note that
s3=l-f3rc, but 3eZ(R), nφO, and hence s 3 =l implies 3=0.

Now assume s=uv satisfies 1, 2. Let ί=s4-s"1. Then w(s + s~λ)
=s~1 + s, that is, wt=tw. C(ιυ)<LC(r) implies that tr=rt and tvr=rw
since well and hence weC(w). Hence t=rtr~1=rsr~1 + rs-ιr'1=s2

-]-rwsιvr~1==sλ-\-ws1w=sLjrWswwsiD==sljr (s"1)2=s24-2 + s~2— 2 = (s-f-s~])2 —2

= £2-2. That is, ?-t-2=0. Hence ί-'= "'̂  (ί-1) and t is in £7", and

in
Now if yeC(s), yt=ty, andteC2(t). But then teZ(U) and by

Postulate 4, teZ(R). Then (£ +1) and (ί-2) are in Z(R). Hence ί 2-ί
- 2 = 0 = ( ί + l)(ί-2) implies by Postulate 5 that ί = - l or ί=2.

Suppose t=s-\-s-1= —1. Then s2 + s + l = 0. Multiplication by s — 1
gives s3 —1 = 0, s 3 =l, which contradicts 2 unless each s=ιιrv' satisfying
1 has the property s / 3 =l. In this case, we show the existence of an
element of class 2. Since uφ±l, 0 <^J+(ιή <^R, and there exists an
involution u! φu such that J+(u)=J+{u') by 1.4. Now by 1.5, ^ ' = l-fm
is of class 2, hence satisfies 1, by the first part of this proof. Hence
3=0 and - 1 = 2.

Then in any case t=2=s-hs~\ hence s2 — 2s4-l = (s —1)2=0. That
is, s is of class 2 as was to be shown.

Finally, suppose s=uv=l + n, where ^ 2 =0, nφO, s 3 =l. Then 3=0
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and if s'=u'v satisfies 1, by the preceding proof £' —2=s'-f s'-1 —2=0,
s'1 — 2s '-fl=0, and (s' —l)2=0. Hence s'3=l + 3n=l, which completes
the proof.

The cases where u=v, or one or both of u, v are 1 or —1 may be
treated separately and the preceding theorem is easily seen to be true
for each case. In these cases, s cannot be of class 2, and one or more
of (1), (2) fails to hold in each case. These cases are not of interest,
so the proofs are omitted.

2. Cosets of involutions* Having finished the characterization of
elements of class two, we proceed with the discussion of the sets of
involutions defined in the introduction, which we call J-sets. There
are several simple properties which are apparent from the definition.
We note that Δ(A)~ = — Δ(A)+. If we define the normalizer of Δ(A)+,
NΔ(A)+ to be the set of all involutions v such that vΔ(AYv<L Δ(A)+,
then NΔ(A)+=NΔ(A)~. We denote either of the latter by NΔ(A). If
AφO, then Δ(A)+ and Δ(A)" have no elements in common. Further,
if A and B are two C. R. I. such that Δ(A)+ and Δ(B)+ contain a com-
mon element, then A=B. It is clear that every involution u is in ex-
actly one Δ-set, Δ[J+(u)Y=Δ\J-(u)]~. Finally we note that any J-set is
completely determined by any one of its elements.

Let φ denote an arbitrary set of involutions. If φ satisfies certain
properties (in particular if φ is a Δ-set) it will be shown that φ is a
coset of involutions modulo the abelian subgroup φ1 in u. This proper-
ty is the justification for the term " coset of involutions " which heads
this section.

PROPOSITION 2.1. // the nonempty set φ of involutions satisfies the
property that for every triple of involutions u, v, w in φ, wvu=uvίv is
in φ, then φ2 is an abelian subgroup of U and φ is a coset of involutions
modulo φ2, and conversely. Moreover, wgw=g~1 for every w in φ, and
every g in φ2.

If in addition, every element sφl of φ2 is of class two, then every
pair g, h, of elements in φ2 satisfies the condition (g — l)(h — l)=0.

Proof. The first part of the proposition is quickly verified using
the fact that if g=uveφ2, then g~1=vu.

Now assume that g and h are any two elements of φ2. Then (g — I)2

= 0 , or g2=2g — 1. Similarly, h2=2h — l. But gh=hgeφ2 and hence
0 = (flrΛ — I) 2 = (2g - l)(2h - 1) - 2gh 4- 1 = Agh - 2h - 2g + 1 -2gh + l

=2(g — l)(h—l), and hence (g — l)(h — l) = 0, completing the proof.

The following Lemma, and its use in Theorem 2 are due to Israel
Halperin,
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LEMMA 2.2. Let e be a fixed idempotent and let θ range over all
involutions which commute with e. Suppose x arbitrary, but fixed. Then
the principal right ideals (θx)R have a least C. R. I. containing them and
this C.R.I, is 0, eR, (l-e)R, or R.

Proof. Let u=2e — 1. For each θ, θu is an involution commuting
with e. Hence the set (θx)R include all the {θux)R. Since (θx)R \J
(θ(2e-l)x)R = (θex + θ(l-e)x)R\J (θex-θ(l~e)x)R=(θex)R \J (θ(l-e)x)R,
we need only prove that the (θex)R have a least containing C. R. I. which
is 0 or eR, and that the (θ(l — e)x)R have a least containing C.R.I,
which is 0 or (1 —e)R. By symmetry, we need only prove the first.

Now (θex)R<LeR for all θ. If eR is not the least containing C.R.I.,
(all θexR) <I fR <C eR for some idempotent / . Use efe in place of /
so we can assume fe=ef=f Φ e. Then for every p R , g=f -^(e — ftyf
is an idempotent which commutes with e and satisfies eg=g, fg=f.
Then 2g — l is a possible θ and so (2g — l)ex=e(2g — l)xe fR so that
e(2g — l)x=fe(2g — l)x. That is, (2g — e)x=fx. But 1 is also a possible
θ, so ex=fex=fx. Hence 2gx=2fx for all y. That is, 2(e — f)yfx
=0, and hence (e — f)yfx=0 for all yeR. Since e—f is a nonzero
idempotent, by Postulate 3, fx=0. Hence ex=fx=Q, and (θex)R=0
for all θ. That is, we have shown that either eR or 0 is a least con-
taining C. R. I.

The next step is to characterize zί-sets within the unit group. It
will be noted that in Theorem 2 all conditions are multiplicative in
nature, using the results of Theorem 1.

THEOREM 2. A nonvoid set of involutions φ is a Δ-set if and only
if φ is a maximal family of involutions satisfying

(a) // u, v, w are in φ, then uvιv=wvu is in φ.
(b) // u, v are in φ, then there exists a unique w e φ such that

wuw=v.
(c) An involution u' is in Nφ if and only if there exists an involu-

tion u eφ such that uuf=u'u.
(d) Every sφl in φ2 is of class 2.
Further, if φ is a Δ-set containing more than one involution, φ

uniquely determines a C. R. I., A=J+(φ2). If φ contains exactly one in-
volution, then this involution is 1 or —1, in both of which cases φ2 con-
eists of 1 only and J+(φ2)=R, though A may be 0 or R.

Proof. Assume φ=A(A)+, where A is a C. R. I. (The proof is similar
if φ=Δ(A)~.) By 1.5, if u, v, and w are in φ, uvw^wvu and hence
uvw is an involution. If A=eR for an idempotent e, then by 1.2, 1.3,
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we have that ~(u + l)=e-i-ex(l — e), (v-hl)=e + ey(l — e), (w + l)=e
£t LΛ LU

— e) for some %, yy z in R. By direct computation, uvw=2\eJr
e(x — y-\-z)(l — e)] — 1, and hence by 1.2 and 1.3 again, J+(uvw)=A.

To establish (b), suppose that u and v are in φ=Δ(A)+. Let

w=—(u + v), so that
Δ

w2= — (u2 -{-uvΛ-vuΛ- v2) = - (2 4- uvuu 4- vu) = - (2 4- (&m 4- )̂&)
4 4 4

4 4

using 1.5. So w is an involution, and clearly A<^J+(w). Now if e, / ,
and # are the idempotents corresponding to u, v, and w as in 1.3 (a),

then J+(w)=gR=~(w+ l)R=1-(e + f)R, and since eR=fR, we have
^J ^

J+(w) <ίeR=J+(ιι). Hence equality holds and weφ. Now using 1.5
again, it is readily verified that wuw=v. To show uniqueness, assume
wf is any involution in φ such that w'uw'=v. Then w'uwf=wuw, and
by 1.5, 2w' — u=2w—u, or w'=w.

To show t h a t (c) holds, assume uf e Λ^φ, and let v be any involution

in φ. Then u'vu' e φ by definition of iVφ. By (b), there exists ueφ

such that ^'ra'=uvu=2u — v. Hence v=2u'uu' — u'vu' == 2u'uur — 2u-hv.
That is, 2ufuu=2uf or ufu=uuf. For the converse, assume u'u=wι' for
some ^ in φ, and involution &\ We need to show that for every veφ,
uvu' 6 φ. We note the equivalence of the following conditions: y
6 J+{u'vu')\ uvu/y=y; vu'y=u'y; uyeJ+(v)=J+(u); uu'y=ufy; u'uu'y=y; uy
=y; yeJ+(u). Hence u'vu'eφ, and ur e Nφ.

(d) is simply the second part of 1.5, and hence (a), (b), (c), (d)
hold for an arbitrary z/-set.

Now assume φ is a nonvoid maximal family of involutions satisfy-
ing (a), (b), (c), (d). If φ consists of 1 only, then φ=d(R)+. If φ
consists of —1 only, then φ=A{R)-. In either case φ2 consists of 1
only and J+(φ2)=R. Next we will show that φ<LΔ(AY or φ<LΔ(A)-f

where A is a C. R. I. Then the maximality of φ and the definition of
J-set will imply equality.

If φ consists of exactly one involution u, then φ ̂ LΔ(J+(u))+ so we
may assume φ contains two distinct involutions. Consider any xeR,
such that ux=vx for a fixed u in φ and all v in φ. Form the set of
all θx with θ ranging over all involutions commuting with u, or equiva-

lently with e=--- (^4-1). Then the (θx)R have a least containing C.R.L

by 2.2 which is 0, eR, (l-e)B, or R. But as shown in 2.2, the set of
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{θx)R include the set of all (θux)R, and hence if y ranges over all x
such that ux = vx for all veφ, then the set of all (Oy)R also have a
least containing C.R.I, which is 0, eR, (l — e)R, or R.

Now we show that the set of elements in the (θy)R, that is, the
set B consisting of all θx, where θ is any involution commuting with
u, and x satisfies ux=vx for all v in φ, is identical with the set C con-
sisting of all x such that ux=vx for all veφ. Clearly C<LB, since
we may take 0 = 1 . But for any 0 such that uθ=θu and x such that
ux=vx for all veφ, we have v(θx) = θθvθx=θw'x, for some w' in φ,
and continuing, v(θx)=θιιx=ιt(θx) so that to is a possible sc. That is
u(θx)=v(0x) for all v e φ . Thus B=C.

Now if we show that A, the least containing C. R. I. containing C
is neither 0 nor R, then A=eR or A = ( l —e)iZ. That is, A=J+(u) or
-4=β7"(M). But C is clearly independent of u, hence .A=e/+(v) or A=e/"(v)
for each veφ.

Let M and v be any two distinct involutions in φ, w an arbitrary
involution in φ. Then uvφl and (iro — l)(z«; —1)=0 by 2.1. Hence
(u—w)(uv — l) = 0. That is, x=uv — 1 7^ 0 is an element such that wa^wα
for all weφ. Hence BφQ, and i ^ O .

Now if # satisfies ux=vx, 11Φ v> then x e J+(uv). That is, C <L J+(uv).
But J+(uv)Φ R or wy(l) = l, and %=v, a contradiction. Hence we have
proved that for every veφ, A=J+(v) or A=J~(v).

Assume A=J+(u)=J-(v) for some u, veφ. Choose xφQ in A.
1 / 1 Y2

Then ux=x, vx=—x, —(u + v)x=0, and l — (u + v))x=0. But by 2.1,

— l) = θ, that is, uv + vu=2. Hence -(^ + -2;) is an involution
Li

and ί—(κ + v)) x=xφ 0, a contradiction. Hence A=J*(w) for all weφ,

or i4.=J-(w?) for all weφ. That is, φ ^ ^ ( A ) + or φ<IΛ(A)- and the
assumption of maximality implies equality.

Now J+(φ2)=Γ\J+(uv) for all pairs uv in φ2, or equivalently, J+(φ2)
is the set of all x such that uvx=x for every u, v in φ, or equivalent-
ly, the set of all x such that ux=vx for all u, veφ. Hence J+(ψ~)
= C<:A. Since A=J+(u) for all ^ e φ or A=J-(tι) for ^ e φ , A<^J+(φ2).

Hence if φ contains more than one involution, a C. R. L, A, is uniquely
determined by φ by the relation J+(φ?)=A, and φ=zf(^4)+ or φ =

To complete the proof, we need only show that a nonvoid zf-set
φ, has the desired property of maximality. Assume Φ^Lφ', and that
φ' is a maximal family of involutions satisfying (a), (b), (c), (d). Then
by the second part of this proof, φ' is a zί-set which contains an ele-
ment in common with the //-set φ. By definition of zί-set, φ = φf which
completes the proof of Theorem 2.



THE LATTICE OF COMPLEMENTED IDEALS 789

We have actually shown a little more than required in the proof of
Theorem 2. We restate part of these results in the following form.

THEOREM 3. Mapping A onto Δ{A), and mapping [</>, —φ] onto
J+(Φ2) constitute reciprocal and therefore one-to-one correspondences
between the set of all nonzero complemented right ideals of the ring
R and the set of all J-systems in the unit group of R.

3 The lattice of complemented right ideals• We have shown in
the preceding sections that the complemented right ideals can be mapp-
ed in a one-to-one fashion upon the set of /i-systems within the unit
group. It remains to show that the set of C. R. I.'s form an irreduci-
ble, complemented, modular lattice and that the order relation in the
lattice can be determined by an order relation among the z/-systems,
and conversely.

First, we state, without proof, a result given by Baer [1, p. 203]
which depends only on Postulate 1.

LEMMA 3.1. The following properties of an involution u and an ele-
ment ae U are equivalent,

(1) au=ua
(2) aJ+(u) <: J+(u), and aJ~(u) <; J-(ιή.

If A and B are C. R. I.'s such that A<:B, then any C.R.I., C,
satisfying B=A@C is called a relative complement of A in B. The
existence of relative complements is guaranteed by the following pro-
position.

PROPOSITION 3.2. If fR<LeR and e, f are idempotents, then there
exist idempotents i and j such that eR=iR ®jR, fR=iR, ij=ji=O,
ie=ei=i, je=ej=j, and e=i-

Proof. Since f e eR, ef=f and efe=fe. Let i=fe. Then i is
an idempotent which also generates fR. That is, iR=fR.

Let j=e — i. Then j is an idempotent in eR and %R \J jR=eR. The
relations ie=ei=i, je=ej=j, and ij==ji=O are clear. We need only
show the sum iR\J jR is direct. Since ij=fe(e — fe)=fe — fe=Of for
any xeiR Γ\jR we have x=ίx=ijx=0. Hence the sum is direct which
completes the proof.

We say a complemented lattice is irreducible if the zero and unit
of the lattice (0 and R) are the only elements with unique complements.
A stronger result can be shown, namely that relative complementation
is also not unique except in trivial cases, but this will not be necessary.
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THEOREM 4. The complemented right ideals of R form an irreduci-
ble, complemented, modular lattice.

Proof. That the set is a complemented modular lattice follows im-
mediately from the definitions, Postulate 2, Proposition 1.1, and the
fact that the modular law holds in the set of all right ideals and hence
holds in the lattice. The lattice join is of course the ideal sum, \J,
and lattice meet is set theoretic intersection, f\.

That the lattice is irreducible follows immediately from 1.4. If 0
<CeR<iR, there exists fφe such that eR=fR. Hence (l — e)R and
(1 — f)R are distinct complements of eR, by 1.1 (c).

The following lemma assures us of the existence of a particular
type of complement.

LEMMA 3.3. If R=A® B @C, where A, B, C are C. R. I.'s, and

By C are nonzero, then there exists a complement, B> of B such that

A^B but C^B.

Proof. It is an immediate consequence of 1.1 that there exist
mutually orthogonal idempotents i, j , k, such that A=iR, B=jR, C
=kR. By Postulate 3, there exists an xeR such that jxkφO. Let y
=x(l—i). Then jyk=jxkφθ. Also jyi=jx(l — i) = 0.

Let j'=j+jy(l-j). Then jR=jfR, j'i=ji+jy(l-j)i=jyί=Q, and
jrk=jk+jy(l—j)k=jykφ0. Hence k is not in (1— j')R but i is in

(l-j')R. Hence for fi=(l-j')β we have A^B and C^B, which
completes the proof.

LEMMA 3.4. // A and B are CR.I.'s, then the following are
equivalent:

(1) A ^ B or B <: A
(2) Δ(A) <: NA{B)
(3) Δ{B)<,NΔ{A)
In (2) and (3), A{A) is understood to mean the set of all involutions

in either Δ(A)+ or in Δ(A)~.

Proof. First we assume A<^B. Let u be any involution in Δ(A) +

and e= —(M + 1) SO that A=eR. If B=fR for the idempotent /, choose

g=f + fe(l-f)=f + e(l-f) since A<^B. Then B=gR and ge=e. But

eg=ef + e(l — f) = e. That is, eg=ge and uv=vu where ^ = 2 ^ — 1 is an

involution in Δ(B)+. By Theorem 2 (c), ueN Δ(B) and hence

NΔ(B).
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Next, let v be any involution in Δ(B)+, and f=--(v + l) so that

B=fR. By 3.2 there exists an idempotent e such that A=eR and ef
=fe=e. Hence if u=2e — 1, uv=vu where ue Δ(A)+. By Theorem 2
(c), veNΔ(A) and hence Δ(By <LNΔ(A). The case for B^A is clear
by symmetry, and if we note that Δ(A)"= — Δ(A)+, and Δ(B)~== — Δ(B)+,
we have shown that (1) implies (2) and (3).

Next we assume A<£B and B^ζA, and will show (2) and (3) fail
to hold. There exist nonzero C. R. I.'s A! and B' such that A=(A f\ B)
@Af a n d δ = ( A Π δ ) θ 5 / by 3.2. Then A\J B = (A Γ\ B) ® A' ® Bf.
To show that this sum is direct we note that if xeB' (~\ [(A Γ\ B)\J Af]
then x e B' and xe{Af\B)\J A'=A f\{B\j A') by the modular law.
That is, xeB' Γ\(A f\Z?)=O. Interchanging A' and £ ' in this argu-
ment completes the proof that the sum is direct.

But A \J B is a C. R. I. by Postulate 2 and hence there exists a
C. R. I. V such that R=(A Γ\ B)® Af θ Br θ V. Further, by 3.3 there

exists a complement Af of Af such that {A Γ\B)®V<LAf but Bf ^A\
Now choose idempotents /̂ , i, j" such that 4̂. p\ S = /̂ i2, 4 ' φ δ ' θ F

=(l-λ)JB; Λ'=ίB, A ^ ί l - ^ β B'^ijB, and (A f\ S) φ Ar Φ V=(l-j)R.
Then we note the following consequences of this choice:

(a) ij φ 0 since J $ (l-i)R.
(b) jί=ih=hi=hj=jh=O since ίe{l—j)R, etc.

Now &-fi is an idempotent which generates A, and w=2(h-hi) — l
is an involution such that A=J+(w). We show that wj$B. Otherwise,
since h+j generates B, (h+j)wj=wj, or equivalently, (h+j)[2(h + i) — ϊ]j
= [2(h + i) — ΐ]j. Using (b) this reduces to —j=2ij—j and hence ij=0
which contradicts (a). Hence wj$B.

We have found an involution w e Δ(A)+ such that wB <£ B, or equi-
valently wJ+(u)^ζJ+(u) for any ueΔ(B)+. By 3.1, vniφuw for any
ueΔ(B)+, and hence by Theorem 2 (c), Δ(A) ̂ L NΔ(B). Exchanging A
and JB in the above argument shows Δ(B)^NΔ(A). This completes the
proof of the equivalence of (1), (2), and (3).

LEMMA 3.5. // e, / , g are mutually orthogonal idempotents where
e, g are nonzero and such that R=eR@ fR® gR, then an element sell
has the property (s — 1)R <LeR<L(e-h f)R <I J+(s) if and only if s — l=exg
for some x in R.

Proof. Assume an element seU has the property that (s—1)R
<LeR and (e + f)R<L J+(s). If we let w = s - l , the condition (e-hf)R
<LJ+(s) is equivalent to n(e-hf)R=0. Hence n(e-\-f)=0, and n=n(l)
=n(e-hf + g)=ng. Further, nR<LeR implies n=en. Hence n=en=eng
as required.
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Now assume (s — l)=exg for some xe R. Clearly (s — 1)R <̂  eR.
Let y beany element in(e + f)R. Then (s — l)y=(s — l)(e + f)y=exg(e-hf)y
=0. Hence sy=y, and yeJ+(s). This completes the proof.

COROLLARY 3.6. If e, f, g are as in 3.5, then there exists an ele-
ment sφl in U such that s=uv for involutions u and v satisfying J+(u)
=J+(v) and such that (s-l)R<L eR <: (e + f)R<L J+(s).

Proof. By Postulate 3, there exists an xeR such that
Then s=l + exgφl, and by 3.5 (s-l)R <LeR<L(e + f)R<L J+(s).

Next, exg = 2el j xg = 2 (1 — g) e ( ) xg, since eg = 0 . Hence

exg=2[(l-g) + (l-g)(1 ex)g-(l-g)] = 2(h-k), where k=l-g and h

are idempotents generating the same ideal, eR® fR. If u=2h — l, and
v=2k — 1, then u and v are involutions such that J+(u)=J+(v) and
hence m—1=^(^ + 1) — v —1=^ + 1 — v — l=u — v. Now exg=2(h — k)=u—v
=vu — l. Then s=l + exg=vu as required.

LEMMA 3.7. Leέ A, 5, α^d X be C. R. I.'s.

(a) 0=A Γ\ By or R^A \J B if and only if Δ{A)2 f\ Δ(Bf=l.
(b) 0 < A [\ B ̂  X < A \J B <R if and only if 1 < Δ{Af Γ\ Δ(BY

^ Δ{X)\

Proof. First we prove the following: If se U, and A is a C.R.I,
then s=uv for involutions u and v such that J+(u)=J+(v) is equivalent
to J+(s) is a C. R. I. and (s — Ϊ)R<LA<L J+(s). To prove this, assume
s=uv, where J+(u)=J+(v)=A=eR for the idempotent e. J*(s) is a
C. R. I. by 1.7. Also, as in the first paragraph of the proof of 1.9,
s — I=e2(l — e) for some zeR. If the e, f, g of 3.5 are replaced by e,
0, 1 — e respectively, then 3.5 gives (s — l)R<LeR<LJ+(s). Conversely,
assume J+(s)=gR for idempotent # and (s — l)i2 <I A <I J+(s). s —1 6 J+(s)
implies (s —1)2=0. Now as in 1.8, and % and v exist such that s=uv
and J+(^)=J+(t0 = ̂ 4. This completes the proof of the statement, and
as an immediate consequence we have,

(*) s is in [Δ(Af f\ Δ(Bf] if and only if s=uv for involutions u, v,
(s-l)R<sAΓ\B, and A\J B^J+(s).

To establish (a) of the lemma, assume first A Γ\ 5 = 0 . By (%),
(s-l)/2=0 for every se Δ(Af f\ Δ(Bf and hence s = l . Next lί A\J B
=R, then by (*), J+(s)=R for every se A(Af f\ Δ(Bf, and hence s = l .

Suppose z/(̂ 4)2 Π ̂ (^)2==1> and assume by way of contradiction that
0 <C A Γ\B, and A{J B < J?. There exist mutually orthogonal idempo-
tents β, /, and 0 such that Af\B=eR, (e + f)R=A\J B, and R=eR
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Φ fR Θ gR. Since e and g are nonzero, by 3.6 there exists an s=uv
φl for involutions u and v such that (s — l)R<LAf\B and A \J B
<LJ+(s). By (*), s is in A(Af f\ Δ(Bf, which is a contradiction. Hence
either A Γ\ B=0, or A \J B=R, which completes the proof of (a).

Now assume 0<AΓ\B<LX<,A\JB<R. By (a), 1 <A{Af (\Δ(B)\
Let s be any element of Δ(A)2 f\ Δ(B)\ Then by (*), (s-l)R<^A Γ\ B,
and A\J B<^ J+(s). Hence (s-l)R<I X<:j+(s). By the first statement
of this proof, s e Δ(Xf.

Conversely, assume 1 < Δ(A)2 f\ Δ(Ef <L A{X)\ By (a), 0 < A f\ B
and A \J B <^R. Let e, f, g be chosen as in the proof of (a) and we
will complete the proof in two steps by indirect arguments.

Suppose first that A f\B^X. Let X'=X Γ\ A Γ\ B and denote by
C the relative complement of Xr in A [\ B. Then C Π I = O , and Cφ 0.
By 3.2, orthogonal idempotents i and j exist such that C=iR, X'=jR
and i+j=e. Then i, (j + f), g are mutually orthogonal and i, g are
nonzero. By 3.6 there exists an sf=ufvf φl for involutions ur, vf such
that 0 7 ^ ( s / - l ) β ^ i i 2 ^ ( l + i + /)i2^J + (s / ). By (*), s' e Δ(Af f\ Δ(B)\
But (s' — 1)R^X since ϊR (\ X=0. Hence s'$Δ(X)\ a contradiction,
and hence A Γ\B<:X.

Next assume X^ζ A\J B. Since gx=0 is equivalent to xe(l — g)R
=A\J B, there exists ^ e l such that gx' φθ. By Postulate 3 there
is an element yeR such that eygx'φO. By 3.5, sf = l-\-eyg satisfies
the conditions (sJ -1)R <^A Γ\ B and A\J B<LJ+(s'). By 3.6 and (*),
s' 6 [Δ(AY Γ\ Δ(B)2]. But X^J+(sf) since x' e X and sx'^α;' +eygx' φ x'.
By 1.8. sr $ Δ{X)\ a contradiction. Hence X<LA\J B, which completes
the proof.

If A, B, and X are C. R. I.'s, we say X is between A and B if
A<:X<;i?, or 2 ? < ; X < : A Betweenness of C. R. I.'s is characterized
within the unit group by the following theorem.

THEOREM 5. // A, B and X are C. R. I.'s in R, then A and B are
both different from 0 and R and X is between A and B if and only if

(a) Δ(A)<LNΔ(B), or equivalently Δ(B)<^NΔ(A).
(b) l

Proof. Suppose first that neither A nor B is 0 or R and X is
between A and B. We may assume 0 <CA<LX<^B < i2 . Then 3.4
and 3.7 give conditions (a) and (b).

Conversely, assume (a) and (b) hold, (a) implies by 3.4 that A<^B
o r ΰ ^ A Suppose A<^B. Then by (b) of 3.7 we h a v e O < A < : X
<LB<R. If ΰ ^ 4 we have a similar result. This completes the
proof.

Theorems 1, 2, 3, 5 show that the lattice of C. R. I.'s can be con-
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structed within the unit group of the ring and that the order relation
in the lattice is completely determined by the order relations among
the structures Δ(A) and NΔ(A) in the unit group, and conversely.
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