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ZERO-DIMENSIONAL COMPACT GROUPS
OF HOMEOMORPHISMS

R.D. ANDERSON

1. Introduction. All spaces and topological groups referred to in
this paper will be compact and metric. All topological groups will ad-
ditionally be zero-dimensional, that is, either finite or homeomorphic to
a Cantor set. As general references we cite Zippin [6] and Montgomery
and Zippin [4]. Several of our definitions are similar to those in [6].

A topological tramsformation group of a topological space is an as-
sociation of a topological group G and a topological space E in the sense
that each element g of G and point z of E determine a unique point
of E. If this point be called 2/, we write gr=2’. The association is
subject to the following conditions: ‘

(1) if e denotes the identity of G, ex==x for all ze E,

(2) g(g'x)=(99')x, 9, 9'€G, xe E, and

(8) gz is continuous simultaneously in ¢ and x.

Each element of G may, under the association, be regarded as a
homeomorphism of E onto itself.

The topological transformation group G is said to be effective if for
each g€ G not the identity, there is an z,€ E for which gz, 7~ «, and
is said to be strongly effective (or fized-point-free) if for each ge G not
the identity and for each zeE, grstx. We shall use the symbol
Tyg(G, E) to denote a particular association of G with E such that G is
an effective topological transformation group of E. Thus by T¢(G, E)
we mean a particular group of homeomorphisms of E onto itself, the
group being isomorphic to and identified with G. 1f Tg¢(G, E) is strong-
ly effective we write T9S(G, E).

For ze E, G(x) will denote the set of all images of # under G and
will be called the orbit of x under G. Similarly for X CE, G(X) will
denote the set of images of X under . The individual orbits may be
regarded as the ‘‘ points’ of a space, the orbit space, O[T9(G, E)] of
To(G, E). O[Tyg(G, E)] is a continuous decomposition of Z.

The main purpose of this paper is to prove the following theorems:

THEOREM 1. Let G be any compact zero-dimensional topological
group. Let M be the universal curve. Then there exists a TgS(G, M)

Received May 11, 1956. Presented to the American Mathematical Society August 1956,
and in part, December 1954. The research leading to this paper was supported in part by
National Science Foundation Grant G 1013.

1 The universal curve is a particular one-dimensional locally connected continuum. Its
description and a characterization of it are given in § 3.
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798 R.D. ANDERSON

such that O[T9S(G, M)] is homeomorphic to M.

THEOREM 2. Let G be any infinite compact zero-dimensional topologi-
cal group. Let M be the universal curve. Then there exists a TgS(G, M)
such that O[TgS(G, M)] is a regular curve.

Theorem 1 asserts that the universal curve is also universal in the
sense that every compact zero-dimensional group can operate on it in a
fixed-point-free fashion. It is well known and is easy to prove—see
Example 1—that the Cantor set also has this property.

The following two theorems are corollaries of some of the methods
used in the proofs of theorems 1 and 2. In particular, the argument
of §5 gives the essential structure of an argument for Theorem 3.
Theorem 4 is a corollary of Theorem 3.

THEOREM 3. Let G be any finite group. Then there exists in E° a
3-manifold M with connected boundary such that T9S(G, M) exists.

THEOREM 4. Let G be any finite group. Then there exists in E° a
2-manifold K (without boundary) such that TgS(G, K) ewxists.

Any zero-dimensional compact group G can be expressed as the in-
verse (or projective) limit (simultaneously in both a topological and a
group sense) of a sequence {G;} of finite groups under a sequence {m;}
of homomorphisms with, for each 4, =; carrying G,.,; onto G, (see §§ 2.5~
2.7 of [4]). The group G is said to be p-adic if, for each ¢, G, can be
taken as a cyclic group with, for each 7, =, not an isomorphism. If G
is a p-adic group and sequences {G;} and {=,} exist such that, for each
2, m, is two-to-one then G is called the dyadic group.

AGREEMENT 1. We shall assume henceforth that G is a particular
compact zero-dimensional topological group.

AGREEMENT 2. We shall assume that sequences {G;} and {m;} with
respect to which G is an inverse limit are given and to avoid subdivision
of the enmsuing arguments into cases we shall further assume that G is
wnfinite and that, for no ¢, 18 m, an somorphism.

It will be clear that the argument we give for Theorem 1 actually
includes the essentials of the argument for the case of G finite.
e rAilé)igallly connected continuum is said to be a regular curve provided every point
of it has arbitrarily small neighborhoods with finite boundaries or, equivalently, provided
every pair of points of it can be separated by a finite point set,
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NoOTATION. Let e be the identity of G and, for each ¢, let ¢ be
the identity of G,. For each ¢, let n(G;) be the number of elements in
G;.

REMARKS. At the heart of the theory of topological transforma-
tion groups is the open question as to whether any infinite compact
zero-dimensional group can operate effectively on a Euclidean manifold
E. In studying such a question it is natural to consider the ‘‘ nice’’
spaces on which such a group can operate and to consider the charac-
teristics of the group operation®. Zippin [6] has observed that the
known examples of even the dyadic group D effective on locally con-
nected continua involve a type of ‘‘ branching ’’ about subsets on which
D is not strongly effective, and, in fact, usually a type of ‘‘ branching ’’
about points or sets which have periodic orbits under G (see Example
2). Thus our theorems and arguments contribute to the knowledge of
the ways zero-dimensional infinite compact groups can operate on locally
connected continua. In this connection, we also note in Example 3
that any p-adic group can be strongly effective on the infinite dimen-
sional compact torus.

We mention the following questions: For E a continuum and G
infinite, is it possible for T9S(G, E) to be such that the dimension of
O[TgS(G, E)] exceeds the dimension of E? If such is possible, can E
be one-dimensional ?, locally connected ?, the universal curve ?, locally
Euclidean? What are conditions on E for which dim(O[T9¢S(G, E)])
must be < dim E?

In the classic example of Kolmogoroff [3], G (not made explicit by
him) operated effectively but not strongly effectively on a one-dimen-
sional locally connected continuum E, and O[Ty(G, E)] was two-
dimensional. The more recent example by Keldys [2] of a light open
mapping of a one-dimensional continuum onto a square also involved a
“ branching >’ type operation.

2. Examples. In this section we wish to give three examples of
topological transformation groups. Of these A and B, at least, are

3 Smith, in [5[, states ‘‘ There exist, however, nearly periodic transformations which
are not periodic. In all known examples the space M under transformation is of a highly
irregular local structure which suggests the problem referred to above: Can there exist
a non-periodic nearly periodic transformation 7' operating in M if M is fairly regular in
its local structure, for example, locally Euclidean.” If G is a p-adic group, if T9gS(G, M)
exists, and if g€ G with g +# ¢, then g as a homeomorphism of M is a non-periodic nearly
periodic transformation. As the universal curve is homogeneous, it is, in a sense, fairly
regular in its local structure and thus our Theorems 1 and 2 contribute to this question of
Smith.
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well known.

A. The group G can operate on itself as follows: for each ¢, he G
with %~ thought of as a point of a space, gh=h’ where A’ is the group-
theoretic gh. With this definition G is transitive on itself. For each 54,
h’ € G there is one (and only one) element ge G for which gh=h'.

If, contrary to our Agreement 2, G is finite then G can operate on
itself in this same way and also G can operate on a Cantor set C as
follows: let H be a collection of disjoint open and closed subsets of C
such that' H*=C and H admits a one-to-one transformation ¢ onto G.
For some he H and any g€ G let p, be a homeomorphism of % onto
¢~Y(ge(h)) with p, the identity on k. For any point pe C, there exists
a ¢’ e G such that p;'(p)eh. Define gp to be p,.(07'(p)) where g''=gg’.
The technique which we use here is similar to one we shall use for
Lemma 2 later in the argument for Theorems 1 and 2.

B. In this example we show that G can operate on a locally con-
nected continuum in the plane, in fact, on a tree, the particular tree,
however, depending on G. Let I be the unit interval 0 <a <1, y=0.
Let K, be a collection on x(G,) disjoint subintervals of I formed by
choosing every other element of a subdivision of [ into 2n(G;)—1 equal
subintervals. Inductively, for each ¢ > 1, let K, be a collection of n(G;)
disjoint subintervals of I formed by choosing every other one of a sub-
n(Gy)

division of each interval of K,_; into 2( ( )
U -1

>—- 1 equal subintervals.

Then N\.KF is a Cantor set C which may, in the obvious way, be
identified with G.

For each 4, let Q, be a set of n(G,) points on y=2"* such that for
each element k of K,, Q, contains a point ¢(k) whose x-coordinate is the
z-coordinate of the midpoint of . Let @, be the point (%, 1). Let ¢
be U Q;+ N Ki +for each ¢ >0, the sum of all intervals with endpoints

iz0 =1
one in @, and the other in @,., which project parallel to the y-axis into
K¥. Then G may be considered as operating effectively but not strongly
effectively on ¢ such that the ‘ branchings’’ of the operation of G on
t oecur at the points of \U @, and such that each point p of ¢—C has

1Z0
a finite orbit under G consisting of those points of ¢t on the horizontal
line through p. In developing G we may consider that, for each 4, G,
permutes the elements of K, consistent with =,_; and G,_; permuting
the elements of K,_,.

C. Let G be a p-adic group and hence let, for each ¢, G; be cyclic.

+ If H is a collection of point sets, H* denotes the sum of the elements of H.
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Let E be the infinite dimensional compact torus J;xJ,x --- where, for
each 4, J; may be thought of as the circle of radius 2-* and center at
(0, 0). Then T¢S(G, E) exists. For each 4, let ¢, be the group of
order n, of rotations of J, and let T9(G,, E) be the cyclic group of order
n; on E defined coordinatewise as ¢, for s <+ and as the identity for
4 >4. Then T¢S(G, E) may be defined coordinatewise as ¢, on J,, for
each 1.

3. Definitions and the universal curve. Let N be the set of points
in E° for which 0 <2 <1, 0 <y <1, 0<2<1. For w=x, y, z and
i=1, 2, --- let D,(w) be the set of all open intervals on the w-axis of
length 3-* whose endpoints have w-coordinates which are positive ra-
tional numbers less than 1, the expression for each such rational num-
ber having 3! as a denominator when in lowest terms. The length of
Di(w), for any <, is 1. Let M be the set of all points (x, y, 2) of N
for which, for no 4, do two or more of the points (x, 0, 0), (0, y, 0),
and (0, 0, 2) belong to the set Dj(x)+ Di(y)+ Di(z). The set M is call-
ed the universal curve.

It is not hard to verify that M is a locally connected one-dimen-
sional continuum with no local separating points. M is called *‘the
universal curve’’ as every one-dimensional continuum can be imbedded
in it.

We need several further definitions before characterizing the univer-
sal curve. We use a special case of the characterization given in [1]
with resultant simpler definitions than those of [1].

If H and H' are collections of point sets, H is said to be a refine-
ment of H' if each element of H is a subset of an element of H' and
each element of H’ contains an element of H. A collection H of point
sets is said to be one-dimensional provided no three elements of H
intersect.

A collection H of point sets is said to be simple provided that (1)
H is finite, and H* is connected, (2) each element of H is a (closed) 8-
cell, and (3) if two elements of H intersect their intersection is a 2-
cell on the bounding 2-sphere of each such element.

Let H and H' be simple collections with H a refinement of H'.
Let 2 be an element of H' and let Z be the collection of those elements
of H in % which intersect elements of H not in 4. Then H 1is said to
interlace h provided that for any subdivision of Z into disjoint sets Z;
and Z, with Z,4+ Z,=Z there exist non-null connected sums of elements
of H in A, namely X; and X, with X, D> ZF, X, D> Z¥f, and X; and X,
having no element of H in common. H is said to wnteriace H' if H
interlaces each element of H'.

A sequence {F}} is said to be a i-defining sequence of a continuum
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M provided

(1) for each 4, F; is a simple one-dimensional collection covering M,

(2) for each 4, F,,, is a refinement of F,

B) M =M. F'¥

4y for any e >> 0 there exists a number » such that m(F,) e,

(6) for each 4, F,,, is interlaced in F,;, and

(6) if two elements of F); intersect then each contains two elements
of F,., intersecting elements of F,,, in the other but neither contains
any element of F)., intersecting two elements of F, distinct from the
one containing it.

A non-degenerate continuum for which there exists a A-defining
sequence is called a C-set.

The following theorem is proved in [1]:

THEOREM. Each C-set is homeomorphic to the universal curve.

NorarioNn. If E, is a finite collection of closed point sets and
Ty(G,, EF) or TgS(G;,, EF) is such that for ~e E,, and any geG,;, gh is
an element of E; then we will write Tg(G, EF, E;,) or TgS(G,, Ef, E,)
respectively. If {E,} is a J-defining sequence and T¢S(G,;, E¥, E;) and
T9S(Gis1, By, Eisy) exist, then TgS(Givy, EF., E;.) is said to refine
TgS(G,, EF¥, E;) provided that for any geG,,;, and any zeE,,, if 2
denotes the element of E; containing z, =;(g)x’ contains gzx.

AGREEMENT 3. In what follows we shall make many constructions in
E? using 3-cells and homeomorphisms. FEvery 3-cell used is to be poly-
hedral and every homeomorphism defined over finite sums of 3-cells is
to be piecewise-linear, that is, is to carry polyhedra into polyhedra. We
interpret this understanding to apply also to appropriate subsets (2-cells)
and homeomorphism over these subsets, such being used in the construc-
tions and lemmas. All constructions are to be in EP,

4, Statements of lemmas and proof that the lemmas imply Theorems
1 and 2.

LEMMA 1. Let n be any positive integer. Let K and K’ be elements
of a simple one-dimensional collection of 3-cells in E*. Let D and D' be
collections of n disjoint 2-cells on the boundaries of K and K’ respec-
tiwely. Let ¢ be a homeomorphism of D* onto D'* preserving orientation
on the elements of D and D’ relative respectively to K and K' as embed-

5 If H is a finite collection of point sets, m(H) denotes the mesh of H, that is, the
L.u.b. of the diameters of H.
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ded in E°. Then there exists an orientation-preserving® homeomorphism
¢ of K onto K' such that for each point pe D*, J(p)=¢(p).

Proof. This lemma is geometrically obvious and is well known.

LEMMA 2. Let, for any i, X, -++, Xu,> be a set X of disjoint con-
tinua all homeomorphic to each other. For each j, 1 <j<n(G;), let 7,
be a homeomorphism of X, onto X, with u, the identity on X,. Let p,
be a one-to-one transformation of X onto G, with p,X,=g, for each j.
Then TgS(G,, X*, X) exists with gx defined as follows:

for zeX, gu=n.75'c where gp=99%-

Proof of Lemma 2. This lemma is almost obvious and is well
known. We state it separately to simplify the argument for Lemmas
3, 3’ and 3. To prove the lemma it is sufficient to note that

95,(9,2)=(9,9;)x for zewx, and g,, 9,€G,
95.495,2) =95, 0i ') =010 i 1 i =70 i@

where g, is g,,9x and g, is g9,9». Therefore g, is (9,9,)9: as was to
be shown.

LeEMMA 3. There exists a continuum M and o I-defining sequence
{FW} of M such that for each i, TgS(G,, F¥, F;) ewxists with TgS(G;..,
Fii, Fi) refining TgS(G, F'¥, F;) and for each element f of F;, Gi(f)
consists of w(G;) disjoint elements of F.

LeEMMA 3’. The same as Lemma 3 with the added condition that
there exist a 2-defining sequence {H,} and a sequence {p;} such that

(1) for each , p; is a mapping of FF onto HF with for feF,,
r(f) e H; and p;, a homeomorphism over f,

(2) for any ge Gy and we F¥, p(x)=p9x), and

() for each i, feF, and FeF,u, pf)D i) if and only if

fOF.

LEMMA 8. The same as Lemma 3 with the added condition that
there exists a sequence {H;} of simple collections and a sequence {py}
such that

¢ Qrientation-preserving with respect to embedding in E3.



804 R.D. ANDERSON

1) for each 1, p; is an n(G,)-to-one mapping of F¥ onto HF with
for feF;, p(f)e H, and p; a homeomorphism over f,

(2) for any ge G, and we F¥, p(x)=p(gx)

(8) for each i, feF, and feFi i, pdf)D plf) if and only if
Sof

(4) for each h, W' € H; for which h-h' exists, H,,, contains exactly
one element in h intersecting an element of H,,, in h, and

(B5) for any ¢ >0 there exists an n such that m(H,) < e.

Before proving Lemmas 3, 3’ and 8’ in §§5 and 6 we wish to
note that Lemma 3 implies a weaker form of Theorem 1 to the effect
that T9S(G, M) exists, that Lemma 8’ implies the full strength of
Theorem 1, and that Lemma 3’ implies Theorem 2.

Clearly, from the characterization of the universal curve cited in
83, N Fi=M is a universal curve. Let geG. Then g is defined by a
unique sequence {g,} with, for each ¢, g,€ G, and =,9,.,—¢9;. For any
point pe M, gp is defined as 9./, where {f;} is a sequence such that
for each 4, fie Fy, f; D fis, and pef,. But gp must be unique for
m(F;) — 0 and if {f;} is another such sequence then, for each 4, g,f:
intersects g¢,f;.

That such definition of the association of G and M satisfies the
conditions of the definition of topological transformation group is straigt-
forward. First, ex=« for all ze M as, for each ¢, ¢, leaves all elements
of F, fixed. Second, as for each 7, g, ¢’ € G, and fe F;, 9(¢’/)=(99")f,
it follows that g(¢’z)=(gg’)x for g, g€ G and wxe E. Third gx is con-
tinuous simultaneously in g and . Let ¢’ > ¢ in G and let 2’ > in
M. We wish to show that ¢z’ > vz in M. Let ¢>0. Let k be an
integer such that (1) m(F,) <e, (2) for all ¢ >k, ' is in an element
of F, containing wx, and (8) for all j >k, mugl,,=mxgx+: Where gi., and
gy+: are the elements of G,,, of the sequences {gi{} and {g,} defining
¢’ and g respectively. Then for all j >k, ¢’2’ is at a distance of less
than ¢ from gxr as was to be shown.

We have now established that Lemma 8 imphes the weak form of
Theorem 1 and it remains to show that Lemmas 3’ and 8’/ establish
additionally that O[T¢S(G, M)] is, in the first case, a universal curve
and, in the second, a regular curve.

We wish to show next that H=\,H; is homeomorphic to O[Tg¢S(G,
M)} with {H;} and T9S(G, M) as in either Lemma 38’ or Lemma 3'.
For any ze H, let {#,} be a sequence such that, for each %, 2, D Ay,
h,€ H;, and xeh, But then there exists a sequence {f;} such that,
for each ¢, ;D fiw, J: € Fi, and p(fi)=h,. For xe H, let v(x)=G(N\.S3)
for such a sequences {f;}. For any other such sequence {f:}, G(N.f?)
is G(NJS3). As m(H;) >0, m(F,) -0, and for hk, h;€ H, h, intersects
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h; if and only if and only if for any f; e F;, with u(f,)=h; there exists
an f; with g(f7)=~h; and f; intersecting f;, then it follows that v is
one-to-one onto. A standard argument shows the continuity of v. Hence
v is the desired homeomorphism of H onto O[TgS(G, M)].

Finally for Theorem 1 we note that by the condition that {H,} is
a J-defining sequence in Lemma 38’ it follows that H is a universal
curve.

For Theorem 2 by Condition (4) of Lemma 3’ we note that if pe H
and %, denotes the sum of all elements of H, containing p then for any
%, H-k, has only a finite number of points on its boundary with respect
to H. Hence H is a regular curve.

5. The first step of the proof of Lemmas 3, 3’ and 3'’. The de-
monstration of the existence of suitable F; and T¢S(G, F'¥, F)) is ap-
plicable to each of the Lemmas 3, 3’ and 3’ and thus only one argu-
ment need be given.

DEFINITION. Let S denote a set of % disjoint 3-cells. A ecollection
R is said to be an wn-developed collection about S provided (1) R is a
simple one-dimensional collection, (2) R contains S as a sub-collection,

(8) R—S contains Sn(@ elements, (4) for each pair of elements s, and

s, of S there exist exactly n simple chains of elements of R—S each
consisting of 3 links and each having one end link intersecting s, and
the other intersecting s,, and (5) no link of any such 3-link chain inter-
sects more than two elements of R distinet from itself.

Let S; be a set of n(G;) disjoint 3-cells and let R, be an n(G,)-
developed collection about S;. Let R, be the desired set F.

For s, s’ €S, let B(s, s’) be the set of chains of R,—S; which join
s and s’. Let 1 be a one-to-one transformation of S, onto G, and for
s, s’e€ S, let g, be a one-to-one transformation of B(s, s’) onto G..

In defining Tg(G,, Fy¥, F.) which we shall show to be strongly
effective and hence T'¢S(G,, F;, F.) we impose consecutively the follow-
ing conditions:

(A) For any se S, and ge G, gs=21-'gis.

(B) For any ge(Gy, s, s’eS;, and f a link of an element b; of
B(s, s'), gf is that link of g} .(glg; +(b,)]) which intersects gs, intersects
gs’ or intersects neither gs nor gs’ according as f intersects, s, intersects
s’ or intersects neither s nor s’.

With these conditions being satisfied, G, acts in a strongly effective
way on the finite set F, as we show. (A) implies that G, thus acts on
S, by permuting the elements of S, among themselves, for seS;, and
s’ €S, there is a unique ge G, for which gs=s' and if s=¢, g=¢,. For
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fe =8, ef=f by (B). For g, ¢'eG, and feb,e B(s, s’), g(¢’f) must
be (gg')f for

9075009 [, (0) 1= 9br= 2557 53 0 cors 9L 071 050 (B5)]
= s, 005 (L9 s, Abs)]) =B

and consistent with this, ¢(¢’f) and (gg’)f are each determined solely
by the orders on b, and b; and on b, respectively relative to s and
s’ and ¢'s and g¢’s’ on the one hand and (g9g')s and (gg’)s’ on the
other. It is easy to see that such operation is not only strongly ef-
fective but if f, /' e F', with for some ge G,, gf=J’ then f and f’ do
not intersect the same element of F.

Furthermore, it follows directly from the construction that if f,
S’ e F, intersect then for any ge G,, gf and gf’ intersect.

With this information in mind we proceed to define Tg(G,, FY, F).
Let C, be the set of all 2-cells which are the intersections of elements
of F,. Then we may think of &, acting on C, consistent with G, acting
on F', that is, for ce C,, ¢ is f-f7 for some f, f'ekF,, and for geG,,
ge is gf-gf’. But G, structures C, into orbits. From Lemma 2 by
considering these orbits one at a time we may define T¢S(G,, CF, C)
such that gc is gc as defined above and such that ¢ is a homeomorphism
of ¢ onto ge which is oriented to be consistent with some orientation
preserving homeomorphism of f+f’ onto gf-+gf’ carrying f onto gf and
f7 onto gf’. That the orientation property of this latter statement is
true follows from a consideration like that of the proof of Lemma 2.
The orientation property may be made valid directly for the homeomor-
phisms from an element ¢ to the elements in its orbit but any other
homeomorphism between elements of such orbit is composed from these
and for any f, f’, f/' € F, with f’ intersecting f’’ there is at most one
g€ G, for which gf=/" or f’’.

But now Lemma 1 and Lemma 2 applied to the various orbits of
the elements of F, under G, assert the existence of T¢S(G,, FY, F)) as
we set out to show. Clearly there exists an /, as in Lemmas 3’ and
3’ such that we may map F7¥ onto HF as in the Lemma.

6. The inductive step of the proofs of Lemmas 3, 3/, and 3"
To complete the proofs of Lemmas 3, 3/, and 3’/ it now suffices to
define and establish the existence of F, and TyS(G;, £, Fy), i >1,
given F, and TyS(G, F'¥, F,) defined as above and F'; and TyS(G,, F'y,
F)), 1< j <14, defined by the inductive procedure to be given. We
seek to do this so that applicable parts of Lemma 3 are satisfied. Then
we shall note variations on the argument to yield Lemmas 3’ and 3’'.

The construction we give will be similar in many ways to that of
the preceding section. We shall require that m(F;) < 27'.
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Let C,_, denote the collection of intersections of the various elements
of F;_, with each other. Each element of C;_, is a 2-cell. Let ceC;_,
and let f(¢) and f’(c) be the two elements of F,_; for which c=f(c)-f’(c).
Let Si(e, f(c)) and Sy(c, f'(c)) be collections of exactly h’-z—(g")— disjoint 3-

t-1
cells in f(c) and f’(c) respectively such that

(1) each element of S,(¢, f(c)) intersects exactly one element of
Si(c, f’(¢)) and that in a 2-cell in ¢,

(2) each element of Si(e, f(¢)) or Si(c, f'(c)) intersects B(f(c))] or
B(f'(c)) respectively in a 2-cell and such 2-cell is in S(c, f'(c)) or
Si(e, f(c)) respectively, and

(3) there exist Ry(c, f(c)) and R;(c, f’(c)) which are n(G,)-developed
collections about S;(c, f(¢)) and S;(c, f'(¢)) respectively such that (a)
[Ri(e, fle)—Sie, fe)]* CTSfe)—B(f(c)) and [Rie, f'(c))—Sile, f'(e)]*
C f(e)—=B(f'(c)) and (b) m[R(c, f(c))]<e and m[Ri(c, f'(c))] e.

As it is possible to define such sets S;(c, f(¢c)), Ri(c, f(c)), Si(e, f'(c))
and Ry(c, f'(c)) for all ce C;,_, such that for ¢’ #%¢, Rf(c, flc))+ R¥(c,
Sf’(c)) does not intersect Ri¥(c’, f(¢’))+ R¥(c’, f'(c¢’)), we consider such a
collection of sets to exist, each ce C,_;, being identified with just two
elements R;(c, f(c)) and R(c, f'(c)).

For fe F;_; let R(f) and Si(f) be the union of all such sets Rc,
f) and Si(c, f) respectively for ce C;_; and ¢ Cf. Thus S,(f), for ex-
ample, is a particular collection of disjoint 3-cells in f.

DEFINITION. Let S denote a set of n disjoint 3-cells. A collec-
tion R is said to be an (n, m)-weakly developed collection about S provid-
ed (1) R is a simple one-dimensional collection, (2) R contains S as a

subcollection, (3) R—S contains m(Z) elements, and (4) for each pair

of elements s, and s, there is a simple chain of m elements of R—S
having one end link intersecting s, and the other intersecting s, such
that no link of any such chain intersects more than two elements of R
distinet from itself.

Let n(S;(f)) be the number of elements of S;(f). For some fixed
integer m and any fe F;_, let Q(f) be an (n(S,(f)), m)-weakly developed
collection about S;(f) such that (1) each element of Q,(f)—S,(f) Cf
—B(f), (2) no element of Q,(f)—S;(f) intersects any element of R,(f)
—Si(f), and (3) m(Q(f)) <27

Let L,(f) be that subset of Q,(f) consisting of S;(f) and all links
of all chains of the development of Q,(f) between elements of S;(f)
not both in any one set S;(c, f) for ¢ce C;_; and ¢ C f.

Let Si=f€ﬁu Si(f), Ri:fev R(f) and Li:jey Li(f).

7 By B(:fn') is meant the boundary of f.



808 R.D. ANDERSON

The set F'; is defined as the set of all elements in one or more of S,
R,, and L,.

Next we shall define G, acting on F, in a strongly effective man-
ner such that

(a) for fe F,, and ge G, f and gf do not intersect the same element
of F,

(b) if f, f' € F; for which f-f’ exists then for each geG,, gf-gf’
exists, and

(c) for feF, feF,, with fOf and for any ge G, gf Cm-(9)f.

Let D;_, be the collection of all sets G,_i(c) for ce C,_,. Each ele-
ment of D, ; consists of n(G;_;) 2-cells. For de D,_;, let f(d) and f'(d)
be the two sets each of which is an element of F,_, containing an
element of d plus the sum of its images under G,_,. Let S(f(d)) and
S(f’(d)) be the collection of those elements of S, which (1) intersect
d* and (2) lie in f(d) and f'(d) respectively. Then S(f(d)) and S(f'(d))
each consist of %(G,;) disjoint 3-cells.

For deD;_, let 2,4 and A, be one-to-one transformations of
S(f(d)) and S(f'(d)) respectively onto G, such that

(1) for se S(f(d)) and s" € S(f’(d)), s intersects s’ if and only if
Ara(8) 18 25 (s’) and

(2) for geG,;,, seS(f(d)) and feF,., for which s Cf, =,_(9)f
D Aarglsa(s)-

Each element of S, belongs to exactly one set S(f(d)) or S(f’'(d))
and thus S, is structured by these sets. We may now define Tg9S(G,,
S;) as follows: for ge G; and se S(f(d)), gs IS Aingis(s)-

Next, for any s, s’ €S; for which s, s’e€S(f)d)) for some de D,
and for which for some fe F,_;, s+s" Cf, let B(s, s’) denote the set
of 3-element chains from s to s’ of the definition of R, and let y,, be
a one-to-one transformation of B(s, s’) onto G,.

Then we may define 79S(G,, R;). For seR; and se S, and for any
ge G, gs is gs as defined in T¢S(G;, S;). For any geG; and s, s'e S,
for which B(s, s’) is defined as above and for any # a link of an ele-
ment b of B(s, s'), go is that link of w5l (9[#s+(b)]) which intersects
gs, intersects gs’ or intersects neither gs nor g¢gs’ according as f inter-
sects s, intersects s’ or intersects neither s nor s’.

Next we define T¢S(G,;, L,). For selL, and se S, and for any
ge @G, gs is gs as defined in T¢S(G;, S;). For s, s'eS;, feF;_,, with
s+s8 O f and s and s’ not both elements of any set S(e, f(c)), there
is a simple chain A(s, s’) of exactly m elements of L,(f)—S;(f) with
P(s, s') having one end element intersecting s and the other s’. For
each link x of f(s, s’) let, for g€ G,, gx be that link of f(gs, gs’) which

is the same number of links removed from gs as is z from s.
The definition of T¢(G,, F,) is now complete and it may easily be
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verified that conditions (a)-(c) above are satisfied.

Let C; be the set of all intersections of pairs of elements of F,.
Let TgS(G,, C;) be defined as follows: for ce C,, ¢ is a 2-cell which is
the intersection of some two elements f, f’ € F;; for ge G,, gcis gf-gf’.
Then as in § 5 employing Lemma 2, we may define T¢S(G,, C%, C;) so
that gc is ge as defined immediately above and ¢ preserves orientation
on ¢ and gec relative to the orientations on (f, f’) and (gf, gf’) re-
spectively.

Finally employing Lemmas 1 and 2 we may define T9S(G;, F'{, F})
consistent with T9S(G,, F,) and T9S(G,, C¥, C;) so that with this in-
ductive definition, Lemma 3 is satisfied. In this connection we note
that under T9S(G,, F,), for fe F,, G,(f) consists of n(G,) disjoint 3-cells
so that Lemma 2 is applicable.

To modify the argument given so as to prove Lemma 3’/ we must
introduce some extra conditions. The sets H;, 1<j<+—1 exist
as in the Lemma. Then when we define S; we also define a set
S;,(H) where for A, A’ € H;,_, with % intersecting A’ exactly one 3-cell is
introduced in S;(H) in each of % and %4’ intersecting the other. In de-
fining R, we also define a set R,(H) where R;(H)— S,(H) consists of exactly
3.n(G,)-N elements with N the number of elements in Sy(H) and with
for each element s of S,(#) there being n(G,) 3-link simple chains in
R,(H)—S;(H), both end links of each such chain intersecting s. We may
additionally require that m(R;(H)) < 2% Then for each pair of elements
of S;(H) in the same element of H,, we introduce a simple chain of
3-cells joining them, the simple chain having m links with  being so
chosen that m(H,) <2°% This imposes an extra condition on the ‘‘ m ”’
of the preceding argument. It is now straightforward to see that the
sequences of Lemma 3’/ can be asserted to exist.

Finally to prove Lemma 38’ we need one extra device. For each ¢
e C,_;, we choose not one but two pairs of sets [Si(c, f(c)), Si(e, flc))]
and [S;(e, f(¢)), Si(e, f(c))] such that we may introduce two pairs of
sets [R;(c, f(¢c), Ri(c, f'(c))] and [Ri(c, f(c)), Ri(c, f(c))] similar to the
one pair we introduced before with additionally Ri(c, f(c))+ Ri(c, f'(c))
and R;*(c, f(c))+ R:;*(¢, f'(¢)) not intersecting each other. Finally for
any fe F,., we may define S,(f) in the similar fashion to that used be-
fore but with S,(f) here containing twice as many elements as the cor-
responding set in the preceding argument. Then we may form the set
Q.(f) as an (n(S,(f)), m)-weakly developed collection about S,(f) and
proceed as before using extra conditions analogous to those of the argu-
ment sketched for Lemma 3/,

It is clear that under such conditions {H;} and {z;} can be defined
so that {H,} will be a A-defining sequence.

Thus Lemma 3’ is proved and our argument for Theorems 1 and 2
is completed,
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HOLOMORPHIC FUNCTIONALS AND COMPLEX
CONVEXITY IN BANACH SPACES

H. J. BREMERMANN

1. Introduction. The present paper extends some basic theorems
of the theory of several complex variables to Banach spaces. Results
which are new even for finite dimension are also obtained. Considerable
use is made of methods developed in “ Complex Convexity ” (Bremermann
[8]), however, many modifications are necessary to adapt them to infinite
dimension.

A complex valued funectional is Gateauzr holomorphic (or in short G-
holomorphic) in a domain D of a complex Banach space B, if it is single
valued and its restriction to an arbitrary analytic plane {z|z=2z+ la}
(ze D, ac B,, 2 a complex parameter) is a holomorphic function of 1 in
the intersection of the plane with D. The space of n complex variables
C™ can be considered as a Banach space, and for C” the above definition
is equivalent to the usual definition of a holomorphic function of several
complex variables. In an infinite dimensional Banach space the Giteaux
holomorphic functions are not necessarily locally bounded, while in a
finite dimensional space the local boundedness is a consequence of holo-
morphy. Therefore another notion of holomorphy, also coinciding with
the notion of holomorphy in finite dimensional spaces, is possible: A
function is Fréchet holomorphic in a domain D if it is Gateaux holo-
morphic and locally bounded (compare Hille [11] and Soeder [17]). The
theories of both types of holomorphic functions have been studied, the
latter more than the former. Both theories are considerably less de-
veloped than the theory of finitely many variables. This may be partly
due to the fact that the infinite dimensional spaces are not locally com-
pact, in fact, if a space is locally compact, then it is finite dimensional
(see Hille [11]).

In the present paper the theory of Gateaux holomorphic functionals
is studied exclusively. As a tool are used plurisubharmonic functionals
(as defined by Oka [14] and [15], Lelong [12] and Thorin [19]) and a
functional d%"(z) which is the distance of the point 2 from the boundary
of the domain D measured in the norm N. A notion of holomorphic
continuation is defined and a “basic lemma” on the simultaneous continu-
ation of G-holomorphic functionals is proved (3.1).! A consequence of

Received April 26, 1956. This research was supported by the United States Air Force,
through the Office of Scientific Recearch of the Air Research and Development Command.

! The lemma in its present form is new also for finite dimension and permits to con-
struct the envelope of an arbitrary domain in the C® explicitely. This will be carried
out in a further paper.
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this lemma is the fact that there exist domains, as in finite dimension,
such that all G-holomorphic functions can be continued G-holomorphically
into a larger domain. Those domains for which a G-holomorphic func-
tion exists that is not continuable, are called domains of holomorphy.
From the continuation lemma follows that the domains of holomorphy
have the property that the functional —log d%’(z) is plurisubharmonic in
D, and a theorem is proved which for finite dimension is known as
“Kontinuitdtssatz.” The property of the funectional —log d%(z) to be
plurisubharmonic is invariant with respect to all norms N that generate
equivalent topologies. The domains for which —log d$7(z) is plurisubhar-
monic are called pseudo-convex, and some of their properties are studied.
A domain D in a complex Banach space B, is pseudo-convex if and only
if its intersection with every (complex) two-dimensional linear submani-
fold of B is pseudo-convex.

The notion of pseudo-convexity bears some formal relationship to
the ordinary convexity in real spaces, this is established by showing :
A domain D in a real Banach B, is convex if and only if —log d¥"(x)
is a convex functional in D. Finally tube domains are studied, that is
domains of the form {z|xed,, vy arbitrary}, where 2 is the real part and
y the imaginary part of ¢, and d, a domain in the real Banach space of
the real parts. It is shown that for this particular class of domains the
two notions coincide: A tube domain is pseudo-convex if and only if it
is convex,

For simplicity’s sake the present considerations are limited to com-
plex valued functionals but can be extended without difficulty to vector
valued functions. Also generalizations to spaces more general than
Banach spaces (for instance locally convex spaces) are possible.

2. Holomorphic, plurisubharmonic and distance functionals.

2.1. We will consider in this paper Banach spaces where the field
of scalars is either the field of real numbers or the field of complex
numbers. Accordingly we speak of real and complex Banach spaces and
write B, and B, respectively. By z we will denote exclusively elements
of complex B-spaces and by « elements of real B-spaces.

2.2. The norm that is defined in a Banach space B provides it in
a natural way with a topology (strong topology). As neighborhoods of
a point ae B we define the pointsets {b||{b—al||<e}. A region is an
open set; a domain is an open and connected set.

2.3. DEFINITION. Let 1 be a complex parameter. A complex valued
functional f(z), defined in a domain D of a complex Banach space B, is
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Gateaux holomorphic in D (or in short G-holomorphic) if f(z) is single-
valued in D and if f(z,+4a) is holomorphic in 1 at the point 1=0 for
all z,eD and ae B. In other words f(z) is required to be a holomorphic
function of the one complex variable 1 on the intersection of any two-
dimensional analytic plane {z|z=z,+4a} with the domain D. Obviously
a function is G-holomorphic in D if and only if it is single-valued and
G-holomorphic in a neighborhood of each point of D (locally holomorphic).
This definition is equivalent to the requirement that the Gateaux dif-
ferential exists everywhere in D and that f(2) is single-valued in D.
We do not require that f(z) be locally bounded or similar conditions.
(Compare Hille [11], p. 71 and p. 81).

2.4, DEFINITION. A real-valued functional V(z) defined in a domain
D of a complex Banach space B, is quasi-plurisubharmonic in D if
V(z,+ 2a) is quasi-subharmonic in 2 at the point A=0 for all z,e D and
ae B,. V(z) is plurisubharmonic if V(z) is quasi-plurisubharmonic and
upper-semicontinuous in D, (Cf. Thorin [19], p. 16) V() is upper-
semicontinuous at the point z, if for every ¢>>0 there exists a 4, such
that V(2)— Vi(z,) <e for |jz—zl||<d. (For the definition of quasi-pluri-
subharmonic see T. Radé [16]. Cf. also P. Lelong [12]). What we call
quasi-plurisubharmonic functions Lelong denotes as functions of class M.
The plurisubharmonic functions have also been introduced by K. Oka
[14] and [15] under the name pseudo-convex functions. Oka admits the
constant, — o, Lelong excludes it. For our applications it is more con-
venient to admit —oo as a plurisubharmonic functional.)

2.5. We now have to define the notion of holomorphic continuation.
In one and several variables this is being done by means of power series
developments. However, power series are somewhat inconvenient here.
Therefore we will define as holomorphic continuation a funection that is
holomorphic in a larger domain and coincides with the given function in
the given domain. However, already in one variable the “larger do-
mains” may be no longer schlicht but concrete complex manifolds with
no branch points as interior points. We have to take care of this situ-
ation and therefore define the following.

2.6. D is a domain over the space B, if D is a topological space
carrying a mapping ¢, which maps D into B,, such that ¢, is locally a
homeomorphism,

We call ¢, the projection mapping of D and ¢,(E), where E is 3
set in D, the projection of E.

Domains over a space B, are special complex analytic manifolds of
infinite dimension. (For general complex analytic manifolds of infinite
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dimension, cf. J. Eells [10].)

2.7. D is a continuation of a domain D, over B, if there exists a
subset D, of D and a homeomorphism % of D, onto D, such that ¢p(P)=
¢,(P) for every P in D,.

We can then identify D, and D,. In particular if D, is a domain
wn B,—we will also say schlicht domain—then D is a continuation of D,

if there exists a subset ﬁOCD such that goD(ljo) is a homeomorphism
onto D,.

2.8. A functional f is G-holomorphic in a domain D over a complex
Banach space B, if f is G-holomorphic in a neighborhood of each point
in D. And it is G-holomorphic in a neighborhood U, if it is G-holomorphic
in the homeomorphic image ¢,U; which is an open set in B, where the
notion of G-holomorphy is defined (2.8).

2.9. Let f(2) be a G-holomorphic functional in a domain D C B.
Then g(2) is a G-holomorphic continuation of f(z) if g(2) is G-holomorphic
in a continuation D, of D and coincides with f(z) in D.

2.10. Uniqueness of the G-holomorphic continuation. Let D be a
domain over B,. Let D* be a subdomain. Let f(z2) and g(z) be G-
holomorphic funectionals in D, let f(z) =g¢(z) in D*, then we have f(z)=
9(z) throughout D.

Proof. Let S be the set of points such that f(z) and g¢(2) coincide.
Then we have D* C S CD. Let S* be the largest open set contained
in S. Suppose S*=£D. Then there exists a boundary point z, of S* which
is an interior point of D. Let U be the homeomorphic image of a neigh-
borhood of 2, in the B,. In particular we can choose U as a sphere.
In this sphere we have a point 2, such that in a neighborhood of z, we
have f(2)=g(z) and a point z, such that f(z,)~9(z). Then we connect
2z, and z, by an analytic plane which cuts U in a circle. Restricting
f(z) and g(2) to the analytic plane we obtain a contradiction to the
identity theorem of holomorphic functions in one variable.

2.11. A domain H for which a functional f(z) exists that is G-
holomorphic in H and does not possess a (G-holomorphic continuation into
a proper continuation of H we call a domain of holomorphy.

2.12. The distance function. Let D be a domain ¢n B, then we
associate with every point of D the value
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dg”(@)=suprs {Z| [ —2l| <r} D,

in other words d%(z) is the distance of the point z from the boundary
of D measured in the norm N.

If D is different from the whole space B, then D has at least one
finite boundary point, and then obviously di(z) is finite in D, If D is
the whole space B,, then d§’ == =,

2.13. If D is different from the whole space, then d3°(z) is continu-
ous with respect to the topology generated by the norm N,

The poof is the same as in the finite case which is carried out in
Bremermann [8].

2.14. DEFINITION. Besides the distance function d¥°(z) we will
consider the distance function
d&R)=sup r 3 {#'|z'=2z+1a, |la|lly=1, [ <r} D,

in other words di"}(?) is the radius of the largest circle with center at
z on the analytic plane {z'|2’=z+la} that is contained in D, that is the
distance of z from the boundary of {#'|z’=z+4ia} N D.

From the definitions it follows immediately the relation

d$(z)= inf {d{3(2)} .
where ¢ varies through all elements of B with norm 1.

2.15. The function d§73(2) is lower semicontinuous with respect to
the topology generated by the norm N.

If D is the whole space, then d§"3(z) will be ==c. However, even
if D is not the whole space, di"}(z) can be infinite for certain directions,
though not for all directions.

(1) Let d&3(z)=c, be finite. Then for every ¢>0 the point set

{zlz=2,+1a, N < ei—e}

is compact in D. Hence there exists for every ¢ >0 a § such that for
llz,—2ll<d the point set

{zlz==z,+1a, |} <Le;—¢}
is contained in D. Hence for |z,—zl||< 6 we have
dip() > 6—e, or
dad(z) —da3 (=) e .

Hence d(z) is lower semicontinuous at z, with respect to the norm N.
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(2) Let d¥(z)=oco. Then for arbitrary large M the point set
{rle=241a, < M}

is compact in D. Hence there exists a & such that for |[z,—=z)]|<(d the
point set

{zlz=2,+ 2a, (A M}
is contained in D. Hence
dMz)>M for |lz—=zll<9d.

That means that also in this case d$¥)(z) is lower semicontinuous at the
point 2, with respect to the norm N.

2.16. By a similar argument it follows that di¥}(z) is for fixed 2
lower semicontinuous with respect to variable direction a.

3. Simultaneous holomorphic continuation.

3.1. FUNDAMENTAL LEMMA. Let D be a domain in a complex Bo-
nach space. Let S be a simply commected domain on an analytic plane
{zlz=2,+b}. Let T be the boundary of S and let S\UT CD. Let X()
be a function holomorphic in the image of S in the A-parameter plane—
in the following we will simply say holomorphic in S—and let X(2) 70
in S\UT and |X(2)| continuous in S\JT.

Let

IX(2) Sz + 2b) = m > 0 for 2eT.

Then any functional that is G-holomorphic in D can be continued
G-holomorphically into all points

C={zle=2+b+7a, 2 SUT, |«|<<m XD},

(r a complex parameter).

The idea of the proof is the following. We consider the subspace
{zlz=2+2b+ra} and an arbitrary functional f(z). The restriction of f
to the intersection of D with this subspace is a holomorphic function in
1 and r. For fixed 2 we can develop f(z+4b+ra) into an ordinary
power series of powers of r. From the maximum principle we derive
that this series converges in the pointset C. Thus we have continued
f into C. However it has to be checked that the continuation is not
only a continuation of f as a holomorphic function of the one variable
r but as a G-holomorphic function in B,.

This is not trivial. Functions of two complex variables are known
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which can be continued as functions of one variable beyond the domain
where they are holomorphic in both variables. (Cf. Behnke-Thullen [3].)

In order to show that f(z) is holomorphic in an arbitrary point P
of C it is sufficient to show that f(z) can be defined in a neighborhood
of P such that the restriction of f(z) to an arbitrary analytic plane
{z|z=P+ oc} through P is holomorphic. We do this by including in the
proof an arbitrary direction ¢ from the beginning.

Proof. Let f(z) be an arbitrary functional G-holomorphic in D. We
consider the subspace {z|z=z+ W+ra+0c} where s is a complex para-
meter and ¢ an arbitrary direction with |je}l=1. The restriction of f(z)
to the subspace is a holomorphic function of the three complex variables
4, 7, o (no matter if @, b, ¢ are linearly independent or not.).

For 2eT we have by assumption that [X(2)|d$3(z,+1b) =m, and
because X(2)%~0 on T we have

da'o(z,+ 4b) = |X()[ ™ for 2eT.

Obviously there exists for every e >0 a sufficiently small 6 > 0 such
that the set

C*={zlz=2+ W +r1a+oc, [t| < (m—e)| XD, 2eT, lo| <o}

is contained in D for arbitrary ¢ with ||c||=1. The set C* is compact
in the subspace {z|z==z,+ b+ ra+asc}, therefore the restriction of f to
it is bounded (according to a well known theorem of % complex variables
which was first proved by F. Hartogs (compare Carathéodory [9])). Let
the bound be M. (M depends upon ¢, of course.)

We now develop the restriction of f in a power series in 7 and o.

[+ +ra+oc)= >, -

wv=0 plyl ilaui ol

< ”Lawf(z0+zb+m+rrc)/ o
T=0=0

For 1eT, [0|<d and [7] < (m—e)|X(2)|* the point z,+ 1b+7a+ac belongs
to C* where f is holomorphic and its modulus smaller than 2. Hence
we obtain by Cauchy’s formula for 1€ T the inequality

1 0"f(a+ b+ ratac) < M
— olm—e) X))

A Sh. A T

- P‘o'y
P 97400”

By multiplying with [X(2)|~* we obtain for 1eT:

. M
O = e

1 " f(z+b+ra+oc) o
plvl or*0s” oo

The left hand side is for o=r=0 the modulus of a holomorphic function
of 2 and takes its maximum with respect to S\J T on T. Therefore the
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imequality is valid not only for 2e T but for Ae S\UT. Hence the series
converges uniformly in every compact subset of the set

C** ={2le=2+ b +1a+ac, 26 SUT, |c|< (m—e) X7, lo]< 8} .

The limit function of the series is a continuation of f(z,+ 1b+ra+sc)
into the set C**,

Letting ¢ vary though all directions, that is, through all elements
of B, such that llc]|=1 and letting ¢ tend to zero we define f(2) in a
full neighborhood (in the B,) of each point of the set

C={2lz=2++zc, 2 SU T, |c|]<mXQ)|"} .

We have to make sure that this definition of f(2) is consistent, that
at the same point not two different values are defined !
If a, b, ¢, and ¢, are linearly independent, then

=2+ A b+ 1.a+ 0.6, 7 2,=2y+ L,b+ 1,0 + 03,

for all triples
(4 71, 01) F~ (A2, Ty o) .

Therefore no contradictory values can be defined.
Suppose now that @, b, ¢, and ¢, are linearly dependent: c,=aa+
ab+ae,. Then A=A+ oa,, i=r+oa,, and o,=050, imply z=2,. Let

[+ b+ratoc)=fi(4 r, 0) and f(z++za+oc)=rf(2, 7, 0) .
Then in a neighborhood of (0, 0, 0) we have
ﬂ(l-{-ﬂaz, T+0a1, asd) Eﬂ(l) Ty 0) .

This functional equation persists wherever both functions are holomorphic
(in 4, 7, ). Hence no contradictory values of f(z) are defined at the
same point.

Finally we observe that f is by construction G-holomorphic in a
neighborhood (of the B,) of each point of C. We observe further that
C is simply connected. Hence f is single-valued in C. Hence the
lemma is proved.

3.2. Let the conditions of 8.1 be satisfied except that we replace
di¥3(z) by d¥°(z). Let
1X(2)|dF(z) =m >0 for 1eT.

Then any functional that is G-holomorphic in D can be continued
G-holomorphically into all points
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C={2) |lz+ —2|| < m|X(D)|"}, 2e SUT} .

This follows immediately from the Fundamental Lemma 3.1. For if
IX()dF(2) =m for 1eT, then in particular |X()|dS3()=m for 1eT
for every a. Hence by Lemma 3.1 f(2) is G-holomorphically continued
into all sets

{zle=z++7a, 2e SUT, |o|<[X()|},

and the union of all these sets is C. We observe further that C is
simply connected and therefore the continuation single valued.

3.8. How is the continuation of a functional f, G-holomorphic in
D, into a set C as described in 3.2 compatible with values already de-
fined in D?

If the intersection of D and C is connected, then f is single-valued.
Now let D\ C not be connected. Then there is one component C, of

DN C containing S\JT. f is a continuation from C, which can furnish
function elements different from the ones already defined in the other
components.

We therefore proceed as one does in one and finitely many variables.

We pass to “domains over the space.” We consider C as the projection
of a set C* under a mapping ¢, being a homeomorphism of C* onto
C. We identify C'D and (?5‘=</J’1C~’0, while we consider the other com-

ponents of D N C and their images in C* as different points.

In a further paper we will study the iteration of this process and
we will show that in the limit we obtain the simultaneous continuation
of all functionals that are holomorphic in D into “the pseudo-convex
envelope” of D,

3.4. If D is a domain of holomorphy, then the sets C and C belong
to D. Therefore in this case no question of single-valuedness arises and
we can admit S to be an arbitrary domain, not necessarily simply con-
nected.

3.5. COROLLARY. Let D be a (schlicht) domain of holomorphy. Let
S be an arbitrary domain on an analytic surface {zlz=2z+b}, T the
boundary. Then

inf |X(D)lda"3(2)= Inf |X(D)1dG75(z)

and
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inf [X()|dSV(z)=1inf | X(D)|d(2) .
T Su7r
Let
m=1inf | X(D)|d¥)(z,+ D) .
po

Now if D is a domain of holomorphy, then the set C defined in 3.1
belongs to D. Hence

dil(z+ b)) = m|X(2)|™
for e S\UT. Hence
XDz + 2b) == m

for 2e S\UT from which the first equality follows immediately. The
second equality follows analogously from Lemma 3.2.

3.6. THEOREM. Let D be a holomorphy, then the functionals
—log d$¥)(z) and —log d%(z) are plurisubharmonic in D.

Proof. Suppose —log d7’(z) would not be plurisubharmonic in D.
Now —log di¥’(z) is continuous. Thus there would exist an analytic
plane {z|z=z,+b} on which it would not be subharmonic. That means
there would exist a (small) circle and a harmonic function %~ being a
majorant on the boundary of the circle but not inside.

We choose the representation of the analytic plane such that z, is
the center of the circle. 2(2) is harmonic in the open circle |4|< p and
continuous in [A]<Cp and for |i|=p we have

—log di (2,4 2b) < h(2) .
On the other hand there exists a 4, with [4]|<p such that

—log d%(z,+ 2.0) > h(2) .
Let A%(2) be a conjugate harmonic function of %(2), then

@I (2 4+ 2b) 2> 1 for |A=p
and

e AP F NG (20 + AD) < 1 for 4.

This is a contradiction to 3.5 with T={|2|=p}, S={l1l<p} and X(})=
elc(/\)+2‘/1,"{)\).

Hence —logd}’(z) is plurisubharmonic. The proof for —log dg'(2)
is analogous. The only difference is that —logdi")(2) is upper-semi-
continuous instead of continuous.
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4. The Kontinuititssatz. We will derive now a theorem which in
the theory of finitely many variables is known as “ Kontinuitdtssatz.”
The term “Kontinuitétssatz” was introduced by Behnke-Thullen [3]; we
will use this term because translating it as ‘“theorem of continuity”
might be misleading.

41. Let D be a domain of holomorphy. Let {S,} be a family of
bounded domains on one dimensional analytic planes and {T.,} their
boundaries. Let S,=1m S, and Toy=1m7T,. Then S,, T, D for every
v and Ty C D wmply S, CD.

Proof. Applying 3.5 with X(2)=1 we obtain

inf d9(z)==1inf d%"(z) .
s,ur, 7,

Now d§’(z) is a continuous functional in D. Then also Siggv d$"(z)
and inf d$’(z) are continuous. Therefore the above equality holds also
in the limit,

Hence

inf d3"’(z)= inf d3"(2) .

SDU 7’0 TD
Now, because 7, is compact and in D, we have

inf d3"(z) >0
To

and therefore inf d%"’(z) >0, which means
SOUT()

S, D .

4.2. The Kontinuitdtssatz can be expressed also in the following
way :

Let {S,} be a family of bounded domains on one dimensional analytic
planes. Let S;=1im S, and Ty=1m T,. Let f(z) be a functional holo-
morphic on T,. If then f(2) is singular at least at one point of Sy, then
there exists a v, such that for v >y, the domain S, contains at least one
singularty of f(z).

5. Pseudo-convex domains. For finite dimensional domains the
property of the functional —log d%’(z) to be plurisubharmonic is invariant
with respect to the norm (Bremermann [8]). In this section we will
extend this result to the infinite dimensional case. As in finite dimension
we denote the domains for which the functionals —log d%°(z) are pluri-
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subharmonic as pseudo-convex.

Thus the domains of holomorphy are psewdo-convex. For finite dimen-
sion the converse is true: The pseudo-convex domains are domains of
holomorphy. This is very deep result due to K. Oka. (K. Oka [14] and
[15]). Compare also F. Norgent [13] and H. J. Bremermann [7].) Most
of the techniques applied to obtain this result cannot be generalized to
infinite dimension (for instance the Weil-Bergmann integral formula
[Weil [20], Bergmann [4], [5]] ete.). Nevertheless the pseudo-convexity
may be characteristic for domains of holomorphy in the infinite dimen-
sional case also.

5.1. Let D be a domain such that for a certain norm N the func-
tional —log d¥3(z) is plurisubharmonic in D for every a.

Then the intersection D* with any finite dimensional linear submani-
fold L of B is a pseudo-convex region.

Proof. Let the linear submanifold L be L= {zlz=2y+1b,+ -+ +1,b,}.
Let B*= {z|lz=7b,+ -+ +7,b,}. The restriction of the norm N to the
subspace B* is a norm N* in B*. For every a € B* the restriction of
d)(z) to D*=L N\ D is equal to d3'3(z) by definition.

The restriction of any plurisubharmonic functional in D to D* is a
plurisubharmonic function in D*, as one sees immediately from the defi-
nition of the plurisubharmonic functions.

Hence —log d{";(z) is a plurisubharmonic function for every ae B*.
Hence (the finite dimensional) D* is pseudo-convex according to a result
by Bremermann [8].

REMARK. The intersection D /\ L is not necessarily connected, but
just an open set, that is, a region.

5.2. Let D be a domain such that the intersection D* of D with
any two dimensional linear submanifold L of B 1is pseudo-convex, then
—log d{¥¥)(z) is plurisubharmonic in D for every a and for any nmorm N,
whach generates a topology which is equivalent to the topology with respect
to which D is defined.

Proof. For finite dimensional Banach spaces it has been proved in
Bremermann [8] that if D* is a pseudo-convex region then —log d¢;2 is
plurisubharmonic in D* for any norm N*. Now if N is an arbitrary
norm, then its restriction N* to a finite dimensional subspace B* is a
norm in B*. Hence —log d®;(z) is plurisubharmonic in D* for ae B*
for every two dimensional subspace B*, hence the restriction of
—log d¥°(2) to any D* is plurisubharmonic, hence —logdy3(z) is pluri-
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subharmonic in D.
5.1 and 5.2 combined yield :

5.3. COROLLARY. The property of the functionals —log d$¥3(2) to be
plurisubharmonic for a domain D is invariant with respect to all norms
that generate equivalent topologies.

5.4. DEFINITION. The domains which have the property that the
functionals —log d)(2) are plurisubharmonic for all a we call pseudo-
convezx.

5.5. COROLLARY. The domains of holomorphy are pseudo-convex.

5.6. With this definition we can express 5.1 and 5.2 also in the
following way.

A domain D is pseudo-convex if and only if the intersection D with
any finite dimensional linear submanifold is a pseudo-convex region.

The same is true if we replace “finite dimensional” by “two dimen-
stonal.”

5.7. We now replace the functionals —log d}(z) by —log d$"(2) and
show : D is pseudo-convex if and if —log d3’(z) is plurisubharmonic for
arbitrary norms N with equivalent topology.

Let D* be as in 5.1. If —logd$(z) is plurisubharmonic, then its
restriction to D* is plurisubharmonic. In general, however, we cannot
say that this restriction is equal to —log d%™(2).

Let the finite dimensional submanifold be

{rle=2"+1by+ - +1,0,} .
Then we take the upper envelope of
{—log d3"(2), log |r1|, - - log |z,]} .

This is a plurisubharmonic function that becomes infinite everwhere at
the boundary of D*. Hence the finite dimensional region D* is pseudo-
convex according to Bremermann [8]. Hence D is pseudo-convex ac-
cording to 5.6.

On the other hand if D is pseudo-convex, then

—log diY(2)

is plurisubharmonic for every a by definition. Now we have
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—log d5"(z)=sup {—log di"}(2)} .
a

In particular this relation holds also on every analytic plane. On analytie
planes —log d"’(z) is thus the upper envelope of subharmonic functions,
and thus according to Radd [16], subharmonic. Hence -—logd$(z) is
plurisubharmonic in D.

5.8. A domain D is pseudo-convex if there exists & plurisubharmonic
Junctional V(z) such that the closure of

{z|V(x) <M, ze D}

s contained in D for arbitrary large M. If D is bounded, then the con-
verse 18 true.

Proof. If there exists such a V(z), then we restrict V(z) to finite
dimensional subspaces and obtain by the analog theorem from the finite
dimensional case (Bremermann [8] that all D* are pseudo-convex, hence
D is pseudo-convex.

On the other hand, if D is pseudo-convex, then —log $”(z) is pluri-
subharmonic and will tend to infinity at any finite boundary point of D.

5.9. Let D be a pseudo-convex domain. Then the Kontinuititssatz
holds for D. (Compare 4.1).

Proof. If D is pseudo-convex, then —log d%(z) is plurisubharmonic
(5.7). Then the restriction of —log d%’(z) to a one dimensional analytie
plane is subharmonie. For subharmonic funetions the maximum principle
holds (Radé [16]). Hence we have

inf d§°(z)=inf d%"(z) for every v.
SVUT Ty

v

The rest of the proof follows as in 4.1,

5.10. Most theorems which hold for plurisubharmonic functions
and pseudo-convex domains in the finite dimensional case also hold in
the infinite dimensional case. (For instance: The intersection of two
pseudo-convex domains is ¢ pseudo-convexr region.) We have listed here
only some of the very basic facts. The reader will find it not difficult
to extend most of the theorems listed in Complex convexity (Bremermann
[8]) to the infinite dimensional case.

In [8] we have stressed the formal relationship between complex
convexity (by which notion we denote the plurisubharmonic functions and
the pseudo-convex domains jointly) to ordinary convexity.

In the following section we will show that the same relationship
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persists in the infinite dimensional case,

6. Elementary convexity and its relation to complex convexity.

6.1. A real valued function U(t) of one real variable ¢ is called
convex in an interval D of the real ¢-axis if and only if the following
condition holds for every closed subinterval D' C D:

If () is a linear function such that {(¢) > U(t) on the boundary of
D', then [(t) = U(t) holds also for ¢t C D'.

6.2. A real valued functional U(x) defined in a domain D of a real
Banach space B, is called conver if and only if its restriction to an
arbitrary straight line {x|x=x,+¢a} is a convex function of ¢ in {zlor=
z+ta}l N D.

REMARK. Formally these definitions are similar to the definitions of
subharmonic and plurisubharmonic functionals (compare Bremermann [8]).

6.3. A domain D in a real Banach space B, is convex if with any
two points #, and «, the connecting straight line segment {zlex=a+
Ha,—ax), 0 <t <1} is contained in D.

ReEMARK. This definition bears no formal relationship to the definition
of the pseudo-convex domains. We will establish this relationship—as
in the finite dimensional case (compare Bremermann [8])—by proving
that a domain D is convex if and only if —logd{’(z) is a convex func-
tional in D. The proof which we have given in {8] for finite dimension
does not apply for infinite dimension, therefore a different one is given
in the following. (Convexity in several complex variables has also been
studied from a different point of view by Behnke-Stein [2].)

6.4. Let D be a convexr domain. Let S be an interval on o straight
line {zlx=x,+1tb}, T the boundary of S. Let l(t) be a linear function of
t. Then we have for every a€ B, |al=1

inf d3(x, + tb)e" P = inf d (e, + th)e'™ .
T SuUT
Proof. In the following we consider the subspace generated by the
vectors @ and b. Let the parameter values belonging to the two points

of T be ¢, and ¢, (¢, <%, .
We observe that all the points

w=ay+ b+ 9dL 3y + 1b) - @



826 H. J. BREMERMANN

and
=+ b + 32, +£,0) -

belong to D for —1<#<(1 by definition of d{3(x). Now D is convex
by assumption. Hence all the points on the connecting straight line
segment connecting any two of these points belong to D. Now let
inf d(x,+ tb)e'®=m >0. Then
Vi

d(w+t0)e™1 >m and d(x,+E,b)e" > m .
Hence all the points on the straight line segment passing through

a(d)=z,+tb+Ime""Wa and x,(F)=axy+t:b+Ime " Pa

belong to D for —1 <& < 1.
Now the function me ™ is a convex function of ¢ for any linear

function I(¢). Hence the curve
2(t;, ¥)=x,+tb+Ime " ®q , L<t<t,

will lie for —1 <& <1 within the parallelogram through the four points
z,(1), z(—1), a(1), x(—1). Hence

A, + tb) = me™'® for t,<t<t¢,.
And therefore
A (@, +th)e ™ > m ;
and

inf d3¥)(x,+10)e'® > m .

SuT

6.5. Let D be a domain such that for an arbitrary linear function
I(t) and line segments s with boundary T we have

inf Q) (x)e"® = inf dP)(x)e® .
T sur
Then —log d$"}(x) 4s a convex function in D.

Proof. Suppose —logd{¥3(x) would not be convex. Then there
would exist a straight line {x|x=uw,+tb} and a segment S with boundary
T and a linear function /(¢), such that

U(t) = —log dg)(a,+ tb)
on T, but there would exist a ¢{,e S such that

() < —log d&'s(w,+¢b)
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This is equivalent to
1 < d3Y)(x, + th)e'™®
on T, and
1> dP (e +tb)e’ ™ .

Thus the minimum principle would be violated in contradiction to the
assumption, hence the functional —log d$)(x) is convex in D.

6.6. Summing up 6.4 and 6.5: If D is a convex domain, then for
an arbitrary norm N (generating an equivalent topology) and for every
a € B, with ||lall=1 the functional —log d"}(z) is convex in D.

6.7. If D s convex, then —log d(x) is convex in D for an arbitrary
norm N (with equivalent topology).

This is an immediate consequence of 6.6 because —log d%"(z) is the
upper envelope of the family {—log d™)(x)} and the upper envelope of
a locally upper bounded family of convex functionals is convex.

6.8. We now proceed to prove the converse of 6.7, and for this
purpose we show first :

Let D be a domain such that for one particular norm the functional
—log d?(x) @s convex. Then the following “ Kontinuititssatz” holds for
D:

Let {S,} be a family of straight line segment, T, their boundaries
and Sy=1mS,, Ty=lmT,. Then {S,}, T,}, T, CD implies S, D.

V=Y, VY,

The proof is analo;gous to the proof of 5.9 and 4.1.

6.9. If for a domain D the Kontinuititssatz 6.8 holds, then D s
convez.

We have to show: Let z,, x, be two arbitrary points in D. Then
we can connect them by a straight line segment.

Since D is a domain, we can connect ; and x, by a continuous arc x(¢).
Let 2(0)=x, and x(1)=x,. We connect x, with a(¢) by the straight line
segment. For small ¢ the point «(¢) is in a neighborhood of a; and
therefore the connecting line segment in D. Now, there cannot be a
first line segment {z,, 2(¢,)} such that for 0=t < ¢, the line segments
are in D, however {x, a(t,)} is not, because this would violate the
Kontinuitédtssatz. Hence the line segment connecting z;, and «, is in D,
hence D is convex.

6.10. Summing up the results of this section :
A domain D is convex if and only if
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(a) —logd@(x) is convex in D. This property is invariant with
respect to all topologically equivalent norms.

(b) —logd®)x) is convex in D for all ae B, with |la||=1. This
property, too, is invariant with respect to all topologically equivalent

norms.
(¢) The Kontinwitdtssatz 6.8 holds for D.

6.11. We add: D is convex if and only if the intersection of D
with any finite dimensional (two dimensional) linear submanifold of B,
is convex. This is obvious. We note further that most of the theorems
and analogies to complex convexity which for the finite dimensional case
are explicated in [8] are true for the infinite dimensional case also. The
reader will find it very easy to carry out the proofs himself.

7. Tube domains.

7.1. Let B, be a real Banach space. Then we can define a complex
Banach space by considering pairs of elements of B, :

B,={z, y} , xeB,, ye B, ,
and by defining for ecomplex scalars 1=o 4ir the multiplication
N, y)=(ox—r1Y, oy +a) .

As usual, we will write (x, y)=a+4y. If || |, is the norm defined in
B,, then one defines

W +ayll. =(lll? 4+ gl )7
and one easily checks that the axioms are satisfied.
7.2. DEFINITION. Let B, be a complex vector space and B, and

B, its “real” and “imaginary” components. Then a tube domain is a
domain that has the form

Ty={zlz=a+1y, ze X, ye B,} ,

where X is a domain in B, called the basis of Tr. (The notion of tube
domain was introduced in the finite dimensional case by Bochner-Martin

[6].)

7.3. Any functional f(z) holomorphic in a tube domain Ty is deter-
mined throughout Ty already by its values in the basis X of Tx.

Proof. Let us consider the analytic plane passing through the two
points
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z=x, and z,=z,+,, e X, Y, arbitrary.
The parameter representation is
z=2+ A (2,—2)=a, + i Y=+ Y, .
Its intersection with the B, is
2=xy+(F Dy, .

This is a straight line passing through z,. On the intersection of this
straight line with X the values of f(z) are prescribed. Then f(2) is
determined on the whole plane strip

{zle=wz+ Ay, P (w,+2y) € X}

by a classical theorem on functions of one complex variable.
The union of the analytic planes considered contains the whole tube
Ty, hence we conclude that f(z) is determined throughout 7.

7.4. An upper semi-continuous functional V(z) defined in a tube
domain Ty that does not depend upon the imaginary part of zis a pluri-
subharmonic functional in Ty if and only if its wrestriction to the basis
X is a convex functional in X.

Proof. Let V(z) be plurisubharmonic. Then V{(z) is subharmonic
on every analytic plane {z|z=#+ia}. Then the Laplacian

PV@tio)]

0201 oo

for every ae B, and zeT,. (Taken in the sense of L. Schwartz.)
Let A=0+4r and a=c+d. Then

2+ da=x,+ 1Y, +oc—td+i(rc+ od) .
Now if V(z) does not depend upon y, then
V(z,+ la)=V(xy+oc—rd) .
Hence

V(2 + Aa)

5 5
= ={ T 4+ T )V —
2161 - ( + ) (2 +oc—1d)

00 o7

o=7=0
For d=0 it follows that

GZV(xO - GC)

=0
0o° -

a=0
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and letting ¢=0 we obtain

0*V (w,—d)
or*

=>0.

7=0

This means however that V(z) is a convex function in X.
On the other hand, if V(x) is convex, then

6"V (w,+ac)
0a*

=0

>0 and QZZ@L:E‘Q

o=0 or

7=0
for every ¢, de B,, € X, and therefore

0" V(2o + 2a)

= =0
0104

A=0

for every ae B, and z,€ T,. Hence V() is subharmonic on every analytic
plane. V(2) is by assumption upper semi-continuous. Hence V(z) is
plurisubharmonie.

7.5. A tube domain Ty is pseudo-convex if and only if its basis X
%S conver.

COROLLARY. A tube domain is pseudo-convex if and only +f it 1s
convez.
Let Ty be pseudo-convex. Then —logd?)(z) is plurisubharmonic and

it does not depend upon the imaginary part y. Then norm N generates
a norm N’ in B, and the restriction of —log d(ﬁ;(z) to X is equal to
—log d¥(x). Hence -—logd{"’(x) is convex, hence the domain X is
convex by Theorem 6.10. And passing through the conclusions in the
reverse direction we conclude conversely if X is convex, then Ty is
pseudo-convex.

Obviously 7', is convex if and only if X is convex. Hence follows
the corollary.

7.6. It can be shown that all holomorphic functionals can be con-
tinued into the “pseudo-convex envelope.” In the case of our tube
domain 7'y the pseudo-convex envelope is that tube that has the convex
envelope of X as its base.

This, however, we will study in a further paper.
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MINIMIZING INTEGRALS IN CERTAIN CLASSES OF
MONOTONE FUNCTIONS

H. D. Brunk, G. M. EwiNng anD W. R. Utz

1. Introduction. This paper is concerned with the existence,
uniqueness and representation of minimizing functions. It includes
many results of [1] and [2]. Applications are discussed in [3].

The authors are indebted for various ideas to W. T. Reid with whom
Brunk and Ewing collaborated in a study [2] of a particular integral (1.4)
in the one-variable case. Also, the authors wish to acknowledge the
helpful suggestions of the referee.

Extension to # variables and to more general integrands is of inter-
est per se and is motivated by a variety of problems.

For example, let x (y) be the random variable, maximum dilution
(that is, unity minus concentration) of an insecticide I (J) which is lethal
to an insect from a given population. Then

p(x, ¥)=Pr {x >z or y>y}

is the probability of death for an insect similtaneously dosed with re-
spective dilutions z, y of I, J. Moreover

1.1 F(z, y)=1—p@, y)=Pr {x <z and y <y},

is the probability of survival and is a distribution function [5; pp. 78,
260]; hence p(x, ¥) is nonincreasing in each variable and for each point-

pair (z, v), (@, ¥),
(1.2) Lp=p', y')—po@, y)—p(@, ¥)+p, y) <0 .

For each of selected pairs (;, y;) let 4y, insects be dosed and let «,,
denote the fraction of the sample which is killed. The maximum likeli-
hood estimate P(z, y) of p(x, y) is that function, subject to the restric-
tions stated above, which maximizes the product

(1.3) I 02 (1 —py ) -5, Diy=0(%s, Y) -

Equivalently, P(x, y) minimizes the integral
(1.4) — [tec tog p+ (1~ ) log (1—p)1d,

in which ¢ describes the mass distribution consisting of masses 4p,, at

Received December 5, 1955, and in revised form March 22, 1956. This research was
supported by the United States Air Force, through the Office of Scientific Research of the
Air Research and Development Command.
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the respective points (w;, ¥,) and no mass elsewhere.

Other problems, for example, [3, p. 610] require only that the
function P(x, y¥) minimizing (1.4) be monotone in each variable and not
that it satisfy (1.2). As a further example of this type, suppose
that «(t), t=(¢', ---, t*), not necessarily monotone in any #, is a given
approximation to 6(¢) a function required to be monotone in each vari-
able. The least squares determination @(t) of 6(¢) minimizes the integral

S[em—a(t)]ldp(t) .

2. Formulation and preliminary lemmas. Given a fixed positive
integer n and the space R, with points t=(¢, - - -, t*), let # be a measure
defined on a Borel field <Z of subsets of R, which is totally finite, that
is, B,e &, p(R,) < o, and complete, that is, if A C F'e & and p(E)=0,
then Ae & and p(A)=0. The term measure will mean p-measure un-
less otherwise specified, measurable set will mean a set in <7, and
measurable function a p-measurable function. In particular g can be a
finite Lebesgue-Stieltjes measure.

Let I be a fixed nondegenerate interval of extended real numbers
which includes its endpoints a => — o, b<{ . Let F(u, v) be an extended
real-valued function for u, v € I subject to the following conditions.

(2.1) If «(t), 0(t) with ranges in I are both measurable then so is
Fla(z), 0()]1.

(2.2) For fixed « in I, either (i) Fl(u, v)=c0 for vs~u, with F(u, u) < o
or (ii) F'(u, v) is strictly decreasing (increasing) in v for a <v <u(u v <b)
and right (left) continuous in » for o< v <u(u <v<b). (See (5.3) to
(5.6) for examples.)

2.3) SF[a(t), a®ldut) > — o .

For fixed «(¢) and arbitrary 6(¢) with ranges in I and both measur-
able define

(2.4) J[0]=SF[a(t), O(E1d(E) .

Let M denote the class of all measurable functions 0(t) with ranges
in I such that J[#] exists finite or infinite and such that 6(¢) is non-
decreasing in each coordinate ¢ of ¢t. Define M* as M if n=1 and, for
n>1, let M* consist of those 6(¢) in M with the property that the
difference 40, defined as in (1.2) for each pair ¢!, ¢/, (with the other
variables fixed for each choice of 4, 5) shall be nonnegative in the com-
plement of the closure of the set on which 6(t)=co or 0(f)=—c. The



MINIMIZING INTEGRALS IN CERTAIN CLASSES OF MONOTONE FUNCTIONS 835

principal problems of this paper to minimize J in M and in M*.

The methods apply, with suitable small changes, to problems like
that of §1 in which (1.2) is required with < instead of > and in which
admissible functions are nonincreasing in the separate variables.

The relation ¢, <¢, means that ¢! <¢, ¢=1, ---, n while ¢, <, means
that 7! <t! for each 7. Given a point » consider intervals of the types
(t:¢t<w)and (t:t<w). A measurable set L which is a union of inter-
vals of the first and (or) second of these types is termed a lower layer.
A measurable set L is then a lower layer if and only if ve L and t<v»

imply te L. An wupper layer U is similarly defined. The complement
L of a lower layer L is an upper layer. If L is not void the common
boundary of L and L is called a monotone graph. Given a lower layer
L and an upper layer U the measurable set UL=L—U is termed a
tayer. For n=1, a layer is an interval of the reals which may be void,
degenerate or of positive length and, in the latter case, may include
either, neither, or both of its endpoints. The layer is the natural ex-
tension (for the purposes of this study) of the notion of interval. A
monotone graph is connected and is a layer but, for » > 1, a layer need
not be connected.

LeMMA 2.1, Let ¢ denote the union of all open sets of measure 0.
Then (7)=0 and given t¢ 7, every layer containing o neighborhood of
t has positive measure.

LEMMA 2.2. If 0(t) is measurable and wmonotone mondecredsing in
each wvariable t', then the set of points t, for which 0(t) is on a given
finite or infinite interval of the reals, is a layer.

The proofs of these lemmas are easy.

LEMMA 2.8. If 0(t) is monotone nondecreasing in each variable t',
the discontinuities of 0(t) lie on a countable set of monotone graphs.

This result is Theorem 7 in [4].
LEMMA 2.4. A monotone graph is of Lebesgue measure 0.

Proof. The metric density is less than unity at each point of a
monotone graph. Alternatively, observe that a line with direction num-
bers (1, ---,1) cuts a monotone graph in exactly one point and use
Fubini’s Theorem.

3. Existence theorems. Denote the respective infima of J in M,
M* by 71, v*
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Lemma 3.1. If 0(t), g=1, 2, ---, is a sequence in M™*, there exists
o subsequence 0;(t) of 0,(t) and 6(t)e M* such that lim 0}(t)=0(t) except
at most on two monotone graphs.

Theorem 3 of [4] establishes this result. The exceptional sets, de-
noted by A4 and Q, are respectively boundaries of layers on which
O(t)=— oo, oo.

LEMMA 3.2. If n=1, then any sequence in M=M%* contains a sub-
sequence converging everywhere on R, to a function 0(t) in M=DM%,

Proof. If n=1 each of the sets 4, Q is either void or consists of
a single point; hence the sequence 6;(¢) can be further refined to yield
convergence (possibly to c or — o) everywhere on R,.

THEOREM 3.1. EXISTENCE THEOREM FOR M*. There exists a func-
tion O(t) in M* such that J[O]=7*.

Proof. Attention is confined to the nontrivial case y*<(=. Let
0,t) be a sequence in M* such that lim J[0,]=7*. By Lemma 3.1 we
may suppose that 6,(¢) converges, for te R,—A\J 2, to O(t)e M*. Let
0. (¢)=lim inf 0,(¢), 0*(¢)=lim sup 0,(t). Extend O(¢) to A\J 2 by the defi-
nition,

=a(t), if 0,0¢)=alt)<0%1),
(3.1) O@)] =0.¢), if a(t)<0.1),
=0*t), if «a(t)>0%@¢).
Clearly O(t) is measurable. One varifies that O(¢) is in M*.

For fixed ¢, it follows from the definition of #(¢) and property (2.2)

of F that Fla(t), O@)] < Fla(t), v] for 0.(t) <v=<6*t). Since each

point of accumulation of the sequence 6,(f) lies in the interval [6.(¢),
0*(t)] we have

Fla(t), 0(t)] < lim inf F'[a(t), 0,t)] .
From Fatou’s Lemma [6, p. 113; 7, p. 167] it then follows that
J101={Flatt), 0®1du® < lim int [Fla), 0,00du) ;
hence J[@]=r*.

THEOREM 3.2. EXISTENCE THEOREM FOR M. If n=1 or 2 there
ewists a function O(t) in M such that J[O]=r7.

Proof. If n=1 the conclusion is contained in that of the preceding
theorem. For n=2, let 6,(¢{) be a sequence in M such that lim J[0,]=7.
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By Lemma 3.2 and the usual diagonalization process there exists a sub-
sequence converging at all points with at least one rational coordinate.

Define 8.(¢t), 0*(t) as in the proof of Theorem 8.2 noting that
0.()=0%t) if ¢* or ¢ is rational. From the density of these points in
R,, 0 .(t)=0%(t) at any point ¢ at which both functions are continuous;
hence by Lemma 2.8 everywhere except on a countable set of monotone
graphs. Define @(t) on the space R, as in (3.1).

If ¢, <¢t, ¢, the segment with endpoints ¢,, ¢, is cut by at least
one line on which ¢ is rational or on which ¢ is rational in a point %,.
One sees that

Ot) < 07(2) < 0%(0)=0.(1:) < 0,(£) < O(.) ;

hence that # is nondecreasing in ¢ and in ¢ and is in M. The
proof can be completed by following that of Theorem 3.1.

The point ¢, essential to the last proof need not exist for » > 2.

A function #(r), r on a finite or infinite interval will be termed a
monotone nondecreasing vector-function if ¢, > ¢, implies that t(z,) = (z).
If 6(¢) is nondecreasing in each variable ¢ and #(r) has the above pro-
perty, then 6[t(z)] is nondecreasing in the real variable r. Monotone
noninecreasing vector-functions are similar. The graph of a monotone
vector-function is a monotone graph in the sense of §2 only for certain
cases when n=1 or 2.

In the following theorem we suppose the class of measurable sets
is contained in the class of Lebesgue measurable subsets of R,. These
is then a Lebesgue decomposition [6, p. 134] of p; that is, g is the
sum of a measure « absolutely continuous with respect to Lebesgue
measure A and a measure o singular with respect to . Thus if A(E)=0,
then a(&£)=0 and there is a decomposition of R, into complementary

sets A, A such that A(4)=0 and o(4)=0.

THEOREM 3.3. EXISTENCE THEOREM FOR M. If p=a+o is the
Lebesgue decomposition of the given measure p, and if the mass in R,
described by the simgular part o all lies on the graphs of a counterable
set of monotone vector-functions, then there exists o function O(t) in M
such that J[@]=r.

This theorem applies in particular if o describes a discrete mass
distribution or if # is Lebesgue measure. The proof, along lines similar
to those followed in preceding theorems, is omitted.

4. Integrands generated by convex functions. The class of problems
for which we are able to give more complete results in this section is
more restricted than that of § 3. We are moreover primarily interested
in cases in which the minimum of J in M is finite. It is convenient
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to introduce .# to denote the subset of M consisting of those 6 in M
such that J[6]< . Results of this section are for the minimum pro-
blem in _# only.

Let I again denote a fixed nondegenerate interval of extended reals
which includes its endpoints ¢ >> — o and b << . Let T(z) be a con-
tinuous convex function of the real variable z on the interior I, of 1.
The derivative T'(z) exists except on a countable subset of I, and it
seems convenient to extend 7/(z) to I, by assigning it the value of the
left derivative at each point of I,, thereby making 7/(z) left-continuous
on I,. The extended real-valued function Fl(u, v) is defined as follows:

(4.1) F(u, v)=T(u)—Tw)—u—v)T"(v), u,vel,.

The right member of (4.1) has an obvious interpretation in terms of the
tangent to the graph of 7(z). Fl(u, v) is extended to IxI by the ad-
ditional definitions

(4.2) Fa, v)= ngll F(u, v) , ve(a, b),
F(b, v)= LI_I,? Fu, v), ve(a, b),
Fu, a)= 71}1321 F(u, v), we(a, b],
F(u, b)= %}1}{1 F(u, vy, uwela, d),

One verifies that, for u, ve i, ,

(4.3) P, v)=Sr (0T, it ou<w,
=-.S[ (—wdT@), it u>wv,
=0 if u=wv.

Essentially such functions F' generalizing the particular integrand
of [2] have been suggested independently by Reid.

Such functions F arise in connection with the applications (ef. ex-
amples in §1, also [3], where exp {—F'[g(x), 0]} is the density function,
with respect to a measure, of a random variable whose distribution be-
longs to the exponential family). F' as defined above is nonnegative,
and has properties (2.1) and (2.2) (except that F' need not be right-
continuous in v for a < v < u and F' is strictly monotone in » for v <<u
and for v—=>u only if T is strictly convex).

We again let ¢ denote the generic point in R,, let ¢ denote a totally
finite complete measure on the given Borel field <7, and let a(t) denote
a given integrable function with range in I such that T[a(t)] is inte-
grable, It follows that J[6]< « when 0(¢)=6,, 0, a constant in I,, so
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that 0(t)=06,e 7.
For a measurable subset 4 or R, we define

(4.4 J10; A1=| Fla®), 001,

(4.5) MA)~| a@du®iud), it #4)>0.

THEOREM 4.1. Let v be a finite signed measure on the class of
measurable subsets of R, , absolutely continuwous with respect to p. Then
there exist an upper layer P and a lower layer N such that

(i) »(PL)>0 for every lower layer L such that p(PL)>0;

(ii) u(Uﬁ)gO Jor every upper layer U ;
(iii) w(UN) <0 for every upper layer U such that (UN)>0;

(iv) o(NL)=>0 for every lower layer L.

Proof. The proof is an adaptation of that of the Hahn-Jordan de-
composition theorem [6, p. 121] and will simply be sketched here in
broad outline. Let .4~ denote the class (a class of sets having a non-
positive property) of lower layers L such that »(UL) <0 for every upper
layer U. Choose a sequence of lower layers in .4~ whose measures

approach A= sup #(L); one readily verifies that their union, P, is a
Le 4

maximal element of .#"; that is, P belongs to .4 and has measure 8.
Thus the lower layer P has the nonpositive property (ii). It is possible

that the void set is the only element of .47 in which event 15=¢. We
shall now show that P, the complement of P, has also the positive
property (i). Suppose the contrary. Then there is a lower layer 7> P
such that »(PT)< 0, while #(PT)>0, so that T'¢ /" (since P is max-

imal). Hence there is an upper layer U C P, U > T, such that wW(UT)>0.
One may then determine an expanding sequence (as in the proof in [6],
pp. 121-122, of the existence of a Hahn decomposition) U,, 4=1,2, ...,

of upper layers, contained in P and containing 7', whose limit, U*, has
a complement, U*, belonging to ./ while

AU U,-)=u(U,=U,_) >0, i=1,2,++-; U,=T.

From the maximality of P it follows that /A(Plj *)=0, whence »(PU*)=0.
On the other hand,

oo

HU*T)= > u(U;~U;-)) >0,

i=1
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so that +(PT) >0, a contradiction. Thus P does indeed have the posi-
tive property (i). The determination of a lower layer N, possibly void,
with the desired properties follows similarly on the introduction of a
class & of upper layers U such that »(UL) >0 for every lower layer L.
For each real z, define a lower layer N, and an upper layer P, as the
lower and upper layers N and P given by Theorem 4.1 corresponding
to the signed measure

u(A)=L[a<t)—x]dp(t) .

As a consequence of Theorem 4.1 applied to this signed measure, we
have for upper and lower layers U and L,

M(P,L) >« if wP,L) >0,
(4.6) M@UP,) <z if p(UP) >0,
M(UN,) <« if #UN,)>0,
M(N,L) =z if pN,L)>0,
LEMMA 4.1. If A is an index set and A,, A€ 4, is a family of

measurable subsets of R, such that (A, A,)=0 for Ass#2€ 4, then
H(A,)=0 except for at most a countable subset of A.

Proof. If the lemma is false then there is a positive number € and a
sequence of sets of the family {A,, 1€ 4}, each having measure greater
than €. It follows from the hypothesis

p(A\A,)=0 for Asoz£le 4

that the usual technique of replacing the sets of a sequence by mutually
disjoint sets while preserving their union yields a sequence of disjoint
sets each having measure greater than e, so that their union has in-
finite measure, contradicting the property of # of being totally finite.

COROLLARY 4.1. p(P,N,)=0 for every real z and p(N,P,)=0 for all
but a countable set of real numbers .

Proof. If w(P,N,)>>0, the first and third relations (4.6) yield the
contradiction 2 <x. It can be seen as follows that the second conclusion
is a consequence of Lemma 4.1. Since

N,P, N\ N,P,CN,P,,

it follows that when x <y and p(NyZSx) >0, then y < M(N,P,) <, which
is a contradiction. It follows that
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for xz=£y.

It is convenient to determine the wupper and lower layers P, and
N, so that

4.7) N,CP,CN, for <y (or P,ON,DP, for #<y),
(4.8) N,=\UN,, P=UP,.
y<z y>a

Let E denote the countable set consisting of reals » which are rational
or for which #(N,P,)>>0. It can be shown that

Ni= U (N,UPB), P:=\J N (N.NP),

Boyrl=z y>x B3rsy

have properties (4.7) and (4.8) and that relations (4.6) hold with N},
P¥ in place of N,, P,. We shall understand from here on that this
replacement has been made, but shall omit the asterisks.

Let us define #(¢) as the infimum of those x such that te P,.

LEMMA 4.2.
4.9) O@t) >« if and only if telP,.
(4.10) O@) <z if and only if teN,.
(4.11) Ot)=x if and only if te (N,P,) .
(4.12) O(t) = tsupxm .

Proof of (4.9). From its definition, 8(t) <wx if t¢ P,. If O()=w,>w,
then te P, for y < x,; hence te \>j P,=P,.
Y @x

Proof of (4.10). If téN,, then te P, for each y < x; hence
Ot)=infy>uw.
¢

4

If te N,—=\UN,, there exists y,< « such that te N, for y_—>1,; hence
yl@

teﬁy for y >, ; hence

O(t)= inf y <y, w .
&Py

Relation (4.11) follows from (4.9) and (4.10).
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Proof of (4.12). Set 0,(t)= supx. Arguments similar to the above
t¢ N,

show that 0,(t) satisfies (4.9), (4.10), (4.11); hence that 6(¢)= 6,(¢).
We remark that, for de _#,

Mit: 00)<z<0@)} <z, Mit: 0@)=2>0()} =2,

provided that the measures of these sets are positive. Each strict in-
equality between z and 6(¢) in these statements may be replaced by the
corresponding weak inequality.

LEMMA 4.8, If 0()e ., of E is a measurable set, if &, is @ sequence
of real numbers strictly decreasing to a (b, o Sequence strictly increasing
to b), if 0,(t)= max[0(¢), a,] (min[0(), b,]), then 0,(t)e Z, n=1,2, -,
and lim J[0,; E1=J[0; E].

Proof We recall that the function of ¢ assuming the constant value
@, is in .7, and that, as a function of v, F(u, v) is nondecreasing for
v >u and nonincreasing for v < u. Since

0(t) < 0,(2) < 0,(1)= max [0(t), a.] ,
we have

0 < Fla(t), 0.(t)] < max {F[a(t), ()], Fle(t), 0(O)]}
< max {F[a(?), 00)], Fla(t), a.]} .

The functions Fla(t), 0(t)], F[a(t), a,] are integrable; so then is the
function max {Fla(t), 8(t)], Fla(t), a,]}. Also

lim 0,(t)=0(t), lim F'la(?), 0,()]=F[a(t), 6Q)],
and by the dominated convergence theorem, limJ[6,; E]=J[0; E].

LEMMA 4.4. Given 0, 0" e /7, let
E={t: 0@)<0'(t)} and E@)={t: 0@t)y<z<0"(t)} .
Then

J[6"; E1-J[0'; E]=Sw) {e— MIEQ)I} pE@)1AT(2) -

Proof. Let a, and b,, n=1, 2, .-+, be sequences strictly decreasing
and increasing to the endpoints ¢ and b of I repectively. Set

0(t)= max [0'(t), @,] , and 0,(t)= min [07(?), b,.],
n=1,2,---. We have
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JU10; E1=J00,: E]= SE {Fla(t); 0, (O)]—Flat) ; 0.(8)]}dp

=S dpg [2—a(®)]dT' () .
5 Jp0,000)

For fixed n, set
A={(z,t): 0O =z<0"(), a,<z2<b,} .

Both z and «(t) are integrable over A with respect to the product
measure (d,xdT"’), so that Fubini’s Theorem permits a change in the
order of integration. We have that

I3 B1=J10,; Bl= | T | re-atds

A O

[, e-MEOIAEGRTC) .

Applying Lemma 4.3 and taking limits as n» — - we obtain the desired
conclusion,

THEOREM 4.2. 6(t) minimizes J in .

Proof. For 6(t) in _~, set
B,={t: 6() <0()} ,
B,={t: 0() > 0(t)} ,
B,={t: 0(t)=0(t)} .
Then
J[O]=XJ[O; B;]

and similarly for J[¢]. We have J[0; B,]—J[®; B,]=0. In Lemma 4.4
set O=0', §=0" so that E becomes B, and E(z) becomes that set
{t: @) <2< 0()}. From Lemma 4.2 (see remark preceding Lemma
4.8) it follows that M[E(2)] <z if p[E(2)]>0; hence from Lemma 4.4
that

(4.13) J0; B]—J[0; B]=0.
Now set #=6", 6=0' in Lemma 4.4 and then E=B, and
Ez)={t: 0(t) >z=0(t)} .

Again, from Lemma 4.2, M[E(z)] >z if p[E(2)] > 0; hence, from Lemma
4.4,
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(4.14) JO0; B,]-J[6; B,]=0 .

Adding (4.13) and (4.14) we find that J[0]—J[6]>=0, completing the
proof.
By (4.11), the minimizing function @(f) assumes a given value z on

the layer N,P,. In calculating for specific examples it is useful to ob-
serve as a consequence of equations (4.6) that if ,u(NJDx)>O then N,P,
is the maximal layer among layers NxL over which the mean is minimal:

M(N,P,)=x < M(N,L)

if #(N,L)>0; while if N,L> N,P, and if M(N,L)=M(N,P,), then N,L
and Nj’x differ by a set of measure 0. Similarly NIZB,G is the maximal

layer among layers UR over which the integral mean of «a(t) is maximal.

We term the subset of a neighborhood of a point ¢, consisting of
points £>t,, an wupper neighborhood of #, and the subset consisting of
points ¢ < %,, a lower mneighborhood of t,. Let 2 denote the set of
points each of which has an upper or a lower neighborhood in ¢ (de-
fined in Lemma 2.1); &> .

THEOREM 4.3. REPRESENTATION THEOREM. If, given ¢ >0, we have
HMUN.,..) >0 for every upper layer U containing a given point t,, and
H(P,_.L) >0 for every lower layer L containing t,, where c=0(t,), then

(4.15) O(t,)= sup inf M(UL) ,
U ato Ly tu

(4.16) O(t,)= inf sup M(UL) ,
Latu o atn

4.17) 6(t))= sup inf M(UL) ,
Usty L

(4.18) O(t,)= inf sup M(UL) .
Lazo U

In particular (4.15), ---, (4.18) hold if t, is a mass point of p or if t,1s
a point of continuity of O(t) not in .

We note that the measure of <" is 0, and that the Lebesgue meas-
ure of &7-¢” is 0. Further, since #(z)e .+, its discontinuities lie on a
countable set of monotone graphs (Lemma 2.3.). Theorem 4.3 thus gives
almost everywhere representations of 6(¢), provided that x is absolutely
continuous with respect to Lebesgue measure, or provided that the
Lebesgue singular part of ¢ concentrates its mass at a countable number
of mass points. In general, these representations need not be valid almost
everywhere.
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Proof of (4.15) and (4.17). Given U3¢, and given ¢ >0, then
#(UN,,.) >0 by hypothesis, so that by (4.6), M(UN,,.)<c+e. Hence

(4.19) inf M(ULY<e¢, if Usat,
Lato
and also
(4.20) inf M(IUL)<¢ if U>stg,.
L

Further, if u(N,L)>0, then by (4.6), M(N,L)=>¢c. But N,st, and
hence relations (4.15) and (4.17) follow respectively from (4.19) and
(4.20).

Relations (4.16) and (4.18) may be proved similarly.

We note that under the hypotheses of Theorem 4.3, if a(t) is mono-
tone nonincreasing in each argument, then the constant function

o(t) = Sady / de

minimizes J in M and also in M*. If «a(¢) is in the class M(M*) then
clearly 6(¢)= a(t) minimizes J in M(M*), even under the less restrictive

conditions of F' in §§ 2 and 3.

5. Uniqueness theorems. By the relation 6(¢) = 6(t), we mean that
equality holds almost everywhere.

THEOREM 5.1. Under the conditions of § 4, iof T(2) s strictly convex
(that is, T'(2) 1s strictly increasing) on I, and #f Ot) and O(t) both mini-
mize J in A, then 0(t) = 6(%).

Proof. The set {t: 6(t)~06(t)} is the union over all rationals »,
Uft: 0@) =r<0@)\U{t: 0@t) <r <6(@)} .

It suffices to prove that each of these sets has measure zero. Suppose
there is an », such that g{t: @) <r,<0(t)} >>0. Then there exists

z, such that, for r,<z<z, p{t: 6(t) <z<0(t)} >0. Asa consequence
of Corollary 4.1, p¢{t: @()=z}=0 for all but a countable set of z, hence

M{t: 6(t) <z< 0@)}=M{t: 6(t)<z<0(t)} <<z

except for a countable set of z between 7, and z. It follows from
Lemma 4.4 that

J0; B1>J[0; B]l, B={t: 6(t) 61) .

Similarly, if
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pit: 0t) <r,<0@t)} >0,
then

JI0; B,]>J[0; B], B,={t: 6(t)>0()} ,

and hence J[0] > J[#], contradicting the hypothesis that J[0]=J[O].

If 7T'(z) is not strictly increasing on I the above conclusion need
not hold. For example if 0 is interior to I and 7(2)=0 or z according
as z<0 or >0, then if @(¢) minimizes J, any distinet admissible funec-
tion 6(t), agreeing everywhere in sign with #(t), also minimizes J.

The next theorem applies either to problems covered by §3 or to
problems based on an integrand (4.1), and to both the minimum problems
in M and in M*.

If @(t) and 0(t) are both in M or both in M*, then

0,(t)=6(t) +2[0(t) -6 ()]
is in M (M*) for 0<<z<1. Setting #(2)=J[0,] we find that

(5.1) @)= 0-6rFuat, 0)dp,

provided the formal differentiation is valid. Moreover if # minimizes J
in M (M%), if _Z(0) exists, and if Taylor’s formula is applicable, then

(5.2) J[O1=J[0]=_F)—_F(0) = /)~ _F(0)-_ 7 '(0)=_7"(0)2,
0.

THEOREM 5.2. If (5.1) and (5.2) are valid, %f, for each z on the
unit interval F,[a(t), 0(t)] is positive for almost all ¢, and if 6(t) and
O(t) both minimize J in M or both minimize J in M*, then 0(t) = O(t).

The last two theorems apply in particular to integrands given by
(4.1) and (4.2) in terms of any one of the convex functions

(5.3) T(z)=zlog z+(1—2)log (1—2), zeI,=(0,1),
(5.4) T(z)—=7", ze Ij=(— o0, o),
(5.5) T(z)=z—logz, ze I,=(0, =),
(5.6) T(z)=zlog 2, ze I[,=(0, ).

Applications of these examples in mathematical statistics are discussed
in [3]. Each of these examples is covered by the hypotheses of § 3 and
of §4. It is easy to find suitable sufficient conditions for the validity
of (56.1) and (5.2) in each case.
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UNIQUENESS THEORY FOR ASYMPTOTIC EXPANSIONS
IN GENERAL REGIONS

PHILIP DAVIS

1. Introduction. Let D be a simply connected region with an
analytic boundary C. Assume that z=0 is an interior point while z=1
lies on the boundary. We assume further that the tangent to C at
z=1 is not parallel to the real axis. In this case, we shall be able to
fit into D small angles I" placed symmetrically about the real axis and
with vertex at z=1. These angles will be of the form —6<<60<4s or
r—0<0<rm+d, 6>0, depending upon the location of z=1. For a given
f(®) regular in D, we consider the following limits defined recursively

= lim f(z)
(1) o= lim (e—1)"'Lf () — a]

o= lim (z—1)7[f (z) — @y~ a,(z—1)]

If each limit in (1) exists and is independent of the manner in which
z~>1 through values in some angle I, then f(z) is said to possess an
asymptotic expansion at z=1 in the sense of Poincaré, and this is in-
dicated by writing

(2) F@~ S ae-1r.

We shall designate by A(=A(D)) the linear class of functions which are
regular in D and which possess asymptotic expansions at z=1 in the
sense of Poincaré. The angle /" in which (1) is valid may depend upon
the particular f e A selected.

Uniqueness theory is concerned with distinguishing nontrivial sub-

classes of A within which the expansion ian(z-—l)" determines the
n=0

corresponding function uniquely. Write for the remainder
(3) R ()=F()—a—a(z—1)—-+ —a,(z—=1)"",

and consider the ratios

Received January 6, 1956. The preparation of this paper was sponsored by the Office
of Scientific Research and Development of the Air Research and Development Command,
USAF.
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( 4) fn(z)z(z_l)_an(z) (%zlr 2, .- ')y So=T1.

For feA, the functions f,(z) are regular in D and are bounded as
z—1in I'. For a given sequence of positive quantities {m,}, we con-
sider the subset A(m,) of A consisting of those functions which satisfy
in addition

(5) "fn“l<Mknm31, (n=0, 17 2;"')

for some M >0, £>0. Here | | designates some conveniently chosen
norm. The constants M and % may vary from function to function
within the class. With the selection

(6) | fl= max lf@)I,

it has been shown by Watson [1] and F. Nevanlinna [5] that when D
is a sector, we may produce uniqueness classes by restricting the growth
of the sequence {m,} sufficiently. When D is the unit circle, T.
Carleman [2] has given necessary and sufficient conditions on {m,} in
order that the resulting subclass A(m,) be a uniqueness class. At the
same time Carleman raises the problem of giving necessary and suffici-
ent conditions in the case of a more general region D. This problem
(with the norm (6)) has been known in the literature at the generalized
problem of Watson. It has been treated by Mandelbrojt and MacLane
[3] using the theory of distortion in conformal mapping. See also Meili
[4]. In the present paper, we adopt the norm

(7) IrE={ 1r@r s,

and show how it is possible to combine Carleman’s idea of introducing
an appropriate minimum problem with the techniques afforded by the
theory of conformal kernel functions to arrive at a solution to this
general problem. The class A(m,) will henceforth refer to the norm
(7). Thus the question which we are treating may be worded as fol-
lows: What are necessary and sufficient conditions on the sequence of
constants {m,} in order that

(8) IfLk=] n@ras

=S0

determine f(2) uniquely from the asymptotic coefficients a, .

UG R el 1 G Y Bl ot VA I Wy V7 2P0
(z—1)" "

2. Preliminary observations. We must first explain the sense in
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which we shall understand the expression

| lr@ras

when f(z) is regular in D but not necessarily in its closure. Let w
=m(z) map D conformally onto the unit circle with m(0)=0 and m(1)
=1. The images of |w|=+ will be designated by C,, 0<r<{1. It is
well known that the set of functions

_ 1 " n _ ...
(9) Pa(2) o [m(2)] (n=0,1,2,-.--)

Tn+1/2

is complete and orthonormal over each C,, 0< <1, relative to the
inner product

(7, 0=, rads.

Suppose then that we are given a function f(z) which is regular in D,
Then for any fixed 0 <»<(1, f(2) is continuous on C,. Hence we can
write

(10) F@=3 a:$,(@)

holding uniformly and absolutely in the interior of C,. The coefficients
a, are given by

1) a=|, 1@ @@ (n=0,1,++1).
Hence, for r* <, we have from (9) and (10),
(12) |, r@rd= a0

O x n=0 Vs

r

This equation tells us that

[, Ir@ras

7

is an increasing function of +* and hence
lim S |f @) ds
1™ o Oy

exists (or equals + o), For f(z) regular in D we shall therefore agree
that
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50|f(z)12ds= lim S F @)1 ds .

r>1— r

LEMMA. Given an arbitrary sequence of positive constants {m,}; the
class A(m,) is not a umiqueness class for asymptotic expansions at z=1 if
and only if there exists an f==0 regular im D and constants M >0,
k>0, for which

f(2)

(13) (z— 1)

lZ<Mk"mi (n=0,1, 2, -++).

Proof. If A(m,) is not a uniqueness class, there will exist two func-
tions ¢(z), y(z) € A(m,), g=h, possessing the same asymptotic expansion,

say g,oan(z—l)”, and satisfying

n-1 2
S 9(@) — X arfz—1*
4

o ds < M, (n=0, 1, --+)

(14) 2o

ds < M., Jkrm}

1) — S age—1)"
o k=0

Sc (z—1)

with &k, <k, Therefore, by Minkowski’s inequality,

9(2) —(z)

" ds < (MR + MYHD)y
(z—1)

w

= (M3, [l + MYy Ry,
< (MY MY

so that g—#% does not vanish identically and satisfies (13) with M=(M}"
+Mi*)? and k=k,.
Conversely, let f=£0 satisfy (13). We shall show that (13) implies

o flR) -
(16) 12131 — 0 (n=0,1,2, ---)

as z— 1 through values in some angle I". Assuming, for the moment,
that this is so, (16) and (1) imply that
a7 f(R)~0+0-—=1)+0-(2—1)+---.

That is, f(z) possesses an identically zero asymptotic expansion at z=1.
Furthermore f,= f(2)(z—1)~*, so that (13) implies that f e A(m,). Thus,
A(m,) is not a uniqueness class for asymptotic expansions at z=1,
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We show now that (13) implies (16). Given any g¢(z) regular in D.
Select any 0 < r<1. We have from (9), (10), (11), and the Schwarz
inequality

18) 0GP <Ko (5 B) | o)1 s

for all z interior to C,. Kor is the so-called Szegd kernel function for
C, whose explicit expression is (Szegd [6], Bergman [1])

(19) K, (2 %)= i b (P =L T @I

27— |mf2) |*

Writing f(2)/(z—1)" in place of g(2) in (18), and using (13) and the
monotonicity with » of

[, roras,
we find for j <« and z interior to C,,

f(z)
(z—1)

- =1 Prim ()]

20 A
. =@ - Ima)P)

Mim:  (n=0,1,2, --+).

For each z in D we select an r=r(2)=|m(2)| +e(z) <1 where &(z) is de-
fined by

21) e(z)———-;—(l— Im(2)]) .
Thus,
(22) lim &(2)=0 .

21

Here, z— 1 through values in D. From (20), (21), and » <1,

(23) f@ [ =1 |m' @) Mk'm;
=1/ =  2n 2|m(z)|e(z) + €(2)
< 1= 1w’ @)\ MEms,

4r|m(2)|(2)

We are now ready to consider the limit of (23) as z— 1. First consider

() _1—|m(z)|_ 1 (1 =|m(2)l")
4) 1] 21 g L FmEDTE T

Since m(z) is by assumption analytic at z=1, we have in a neighbor-
hood of z=1,
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(25) m(z)=1+(z—1)R(z),

where R(z) is analytic there. Note that R(1)=m/(1)5%40, and write
R(z)=0(z)e™*, a(z) >0. We have o(1)5%0 and «(1)s~=/2, 37/2, inas-
much as the tangent to C at z=1 is assumed not parallel to the real
axis. Furthermore, write z2=1+pe®. Then, from (25),

@6) 1TMEF_—2Z{-1RE)} _[—1FIRE)P
lz—1] lz—1| [e—1|

= 2.5 {¢"0(2)*? } — [z~ 1||R(z)
= —20(2) cos (0 +a(z))— |z—1||R(2)]* .
If z— 1 through some angle I': —6<0 <6 or 7—8 <0 <rn+0, then,
since a(l)=£=/2, 3x/2, it follows from the above that for ¢ sufficiently

small, the expression (26) will be bounded away from 0. In view of
(24) we will have

(27) @ >0 21
lz—1]

for z in some I'. From (23), we have,

(28) ;Aff ()

( i)j2< lz—llz”‘“””]m’(z)lenmi é‘ﬂ,@@lhi(z) .
2 —

lz—1]

Thus, for 2rn—2j—1>>1 it is now clear from (28) and (27) that

For each j considered we need only use an n>j+1. This completes
the proof of the lemma.

3. The uniqueness theorem.

THEOREM. Given an arbitrary sequence of posttive constants m,.
The class A(m,) is a uniqueness class for asymptotic expansions at z=1
iof and only if for all ¢t >0,

. no otk ks P
(20) lim sup | log{ >, -~ [(z—1)""*} ~ log|m(z)|ds=oo .
nvoo 4 =0 m; on

k=0

Here 9/0n designates normal differentiation in the positive sense.
The above statement is equivalent to saying that A(m,) is not a
uniqueness class if and only if there exists a ¢ >0 and a K >0 such
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that

(30) Sclog { A 1(z—1)n-kﬂ}% log m(2)lds < K, n—0,1,2,---

k=0 M

K may depend upon ¢, but is independent of .

In view of the lemma of the preceding section, we shall prove that
(30) is a necessary and sufficient condition for the existence of an f(z)
=0, and M, and a & which satisfy (13).

Consider the following sequence of integrals

s U] SR [y
31) nn=3 £, L0l
SR I R0, 1, -,
=0 m;
where we have written
(32) =] | L fa k=0, 1,

We can also write (31) in the form

eu(2).f (2)
(z—1)

2

(33) L(f)=

where p,(2) is an analytic function which is regular in D, continuous on
C and is such that

n k 1/2

(34) p@l={ 5 Lo (=1}, for 2 on C.

0]

t
=0 M

We shall show below how a p,(z) may be constructed which has these
properties and has, in addition, the property that

(35) p()7%=0 for zin D,

Let n be fixed, and consider the following minimum problem P,. De-
termine that function f(z) regular tn D with f(0)=1 and such that

(36) L{(f)=minimum .

This problem can be solved by passing to a related problem P,’. De-
termine that function g(z) regular in D with ¢g(0)=1 and such that

(37) | 9 |F=minimum

The solution of the problem P, is given by the function (see, for ex-
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ample Szego [6], Bergman [1])
(38) 7*()=K(z, 0)/K(0, 0)

where K,(z, w) is the Szego kernel function of the region D. The mini-
mum value of the integral (37) is 1/K,(0, 0). If we write

RS (?)
P(0)(1 —2)"

we see, in view of (85) that the funection p,(z)f(2)/e.(0)(1—2)" can play
the role of g(z) in the problem P,. The minimizing function f¥ of the
problem P, is therefore

2

(39) L(f)=lp.(0)

’

() SO R0, 0

and the minimum value of the integral is

(41) L(fH)— g{o")‘;} .

We now assert: a necessary and sufficient condition in order that
there exist an f(z)=£0 and constants M > 0, £ >0 such that

f@)
(z—1)"

is that there exists a ¢ >0 and a K >0 such that
(43) In(f;bk)g-_K In:(), 17 2) cet .

(42) 1f = < M (n=0, 1, -++)

Referring to (41), this is equivalent to asserting that there exist a
t>0 and a K’ such that

(44) an(O)léK, n=09 17 2’ ctt .

We can prove this as follows. Suppose first that ¢(z) is such that
(42) holds for it. This function ¢(z) may have a zero of the pth order
at z=0. The function f(2)=q(2)/z* is then regular in D and is such
that f(0)7%=0. Now,

2

q(z)

F(0)"(z—1)
SRR N T

Jj=0

(45) LF@IFO)=3, ¥ SO

=0 m?

<.

A

| AP d ’

m
- M S M
@ FO)F 70 S d|fO)(1—th)

l

}I
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provided we select 0 <t < 1/k. Here d designates the minimum distance
from z=0 to C. Now since

* M == L]
(46) L) ZLR)FO) < [i“’lf(O)P(l—— tk)_ ’ (=0, 1, )

then (43) is satisfied with K equal to the right hand constant in (46).
Conversely, suppose that there exists a ¢ >0 and K >0 such that
(43) holds. Then from (31),

" S rp<k (1=0,1,2,+-+) .

In particular, taking the first term of (47) we obtain

(48) A<k n=0,1,2, -+ .
my

Hence we have
(49) If% ) < const. (n=0,1,2,---).

The inequalities (49) imply that the sequence of minimizing functions
{f¥} form a normal family and therefore there exist indices »,, », ---
such that f% — F(2) uniformly in any closed region interior to D.
Again, using (47) we have, for fixed 7 and for all n>j

(50) %Hf:f E<K.

Now for any 0< p<(1, we have
Sfa(2)

2

fal?)

(51) brib={ | 2@ = | G fas,
so that from (50) and (51),

22 [ 24— - .
(52) S% F o < rom (k=0,1,2, --).

Let n take on the values n, in (52) and let j be fixed. Then since
+(2)— F(z) uniformly in and on C,,

2

F@) Fas < gm .

) S% (e—1)

This result is independent of p and hence we may allow p-—1. Thus,
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F2)

o " ds < Kmit~! (G=0,1,2, ---).

i

Since obviously F(0)=1, we have exhibited in F(2) a function regular
in D, which does not vanish identically, a constant M(=K) and a con-
stant k(=t-') for which (42) holds.
It remains to construct p,(z), to show that it does not vanish, and
to compute p,(0). Designate by ¢,(z) the positive function
n tlc ) 1/2
(55) A= le-1-r1]

k=0 m;
defined on C. Now logt,(z) is continuous on C and hence

where g(z, w) is the Green’s function for D, is harmonic in D and as-
sumes on C the boundary values log t,(z). Designate by v, the harmonic
conjugate of u,. Then u,(2)+v,(z) is regular and single valued in D,
as is

(57) pn(z)——-exp [un(z) + ’b?)n(Z)] .

Now, |pu(z)|=e*z, so that on C, |p,(z)|=t.(2). Furthermore p,(z)#0, as
is clear from (57). Thus we may use p,(2)=p,(2). The condition (44)
then becomes: there exists a ¢>0 and a K’ >0 such that

(58) U (0) < K’ (n—>o).
Finally, using the representation

with z=0 in (56), we obtain the stated condition (29).

4. Concluding remarks. Norms other than (6) might be contem-
plated. In particular, we might have used

(60) Lrr={i, lr@raa.

However (60) has the disadvantage that the solution of the correspond-
ing minimum problem P, can not be so elegantly expressed in terms of
an analytic function p,(z) and so the role of the sequence {m,} is not
immediately evident as with (29).
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ON THE LEAST PRIMITIVE ROOT OF A PRIME

Paur ErRDOS AND HAROLD N. SHAPIRO

1. Introduction. The problem of estimating the least positive
primitive root g(p) of a prime p seems to have been first considered by
Vinogradov. His first result was [4, v. 2 part 7 chap. 14]

(1.1) g(p) < 2mp'log p ,

where m denotes the number of distinct prime factors of p-1. In 1930,
[6], he improved this to

1.2 <2m7p_17 1/2
(1.2) o)=2r

where ¢(n) is the Euler ¢-function. Next, in 1942, Hua [3] improved
this to

(1.3) g(p) < 2mp'*,

and obtained also, for the primitive root of least absolute value, A(p),

(1.4) In(p)| < 2"p'" .

Lastly, Erdos [2] proved that for p sufficiently large

(1.5) 9(p) < p"(log p)" .

This last result, of course, is not directly comparable with the
others, giving Dbetter results for some primes and worse results for
others.

In any event, all of the results are very weak (as is evidenced by
a glance at tables of primitive roots [1]) in relationship to the conjec-
ture that the true order of g(p) is about logp. In this connection,
Pillai [5] has proved

(1.6) 9(p) > log log p

for infinitely many p.

In this note we shall give a very simple way of handling character
sums, which not only yields (1.8) and (1.4) but allows a small improve-
ment of these results; for example

(1.7 9(p)=0(mp"?) , (¢ a constant).

Received March 12, 1956.
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2. A lemma concerning character sums. We consider first an in-
equality for certain character sums on which our later estimates will
depend. Let S and T be any two sets of integers, such that modulo a
given prime p, no two integers of S are congruent, and no two integers
of T are congruent. Denote by N(S), N(T) the number of integers in
S and T respectively. We have

LEMMA. For y a non-principal character modulo p,

(2.1)

S g+ )| <9V NSNED)

Proof. Set

()= 3 1(h)e=s.
h=1
It is well known that |z(¥)|=p"% for y a non-principal character. Also,
— f —
OrH)= 3 712
From this we get

T(}) Ee"‘s X(u -+ ?))= ﬁ nz—(h)eznih[p-(u«!-u).
u h=1
vET

I3
Nz

€
€

<

Then taking absolute values and using Schwarz’s inequality

ty

pllzl Z X(u+?})|§ Ze2ﬂihu/p Z eZﬂihv/p
nES h=1]|uES vET
vET
» 2 p i 2} 1/2
g{ Z ez‘minu/p Z Egzvz v] 0 } .
h=11u€s h=1} v€T
But
2 o L 2mih] pe (Uq —u,
Z e21t12hulp — Z Z evt pe Uy~ 2)
h=1| u€s h=1 u,ES
uZES
b
= 3 3 v nu) — pN(S)
u1€S k=1
u2€S
Similarly
D 2
> 3 el =pN(T),
h=1]veT
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and the lemma follows immediately.

3. Another proof of Hua’s result. By way of illustrating the
manner in which the above lemma is to be applied we give here another
proof of (1.3). It is well known that if ¢ is not a primitive root modulo
p then

P@)= /i(d) =0,
® dlzvz—‘l ¢(d) o(;éd X(t)

where o(y)=d denotes that the inner summation is taken over all
characters of order d.
Now if z+1=g(p), the smallest positive primitive root mod p, we

see that P(t)=0, 1<{t<«. Thus let S=T denote the set of integers
1,2, ---, [x/2]; we have

- #(d)
O B g@) e Y

—[w/2 + E 1 gg; oy % Hu+v).
Applying the lemma, this gives
(2" —1)p"[x/2] = [=/2T
or
[w/2] < (2"—1)p'".
Since 2[wx/2]+2>ax+1=g(p) this yields
g(p) < 2mp't—2p! 4 2 L 2mript?

which is Hua’s result (1.3).

Similarly, if in the above argument we use for S=T the set of
nonzero integers —[z/2], ---, [#/2] where a+1=|A(p)|, we are led im-
mediately to the result (1.4).

4. A small improvement in the estimate. The facility with which
the lemma of §2 enables us to handle the relevant character sums
makes possible an improvement of the estimates for g(p) and 2(p). We
consider only the case of ¢g(p), since a similar estimate for A(p) then
follows automatically.

Let F(d) denote the number of integers among

ute, 1=u<[22], 1<v<[x/2]
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such that #+v is a dth power residue modulo p. Then, letting S de-
note the set of integers 1, 2, ---, [x/2], we have

F. (d)—— > > Au+v)

ues o(x)\a

—Ller+l S S g,
d d o0ia wes
o(X)>1 veES

Applying the lemma of §2 we obtain

4.1) m(d)~— +O0(xp'™) .

If we let N(x) denote the numbers among the
u+v, ueS, veS
which are primitive roots modulo p, it is easily seen that

(4.2) N@)= 3 HdF) .

Applying Brun’s method to (4.2), in conjunction with (4.1), in order to
make a lower estimate for N(x), one obtains

N> 2 5, HD o omepta)

or

(43) N(x)> (A(p:]‘,)g w_z _|_O(mcp1/2x) .
p—1 4

Thus if we take x+1=g(p), N(x)=0 and (4.3) yields

(4.4) w=0(¢ (1; — 11) m puz)

Finally since

p=1 _ g 1
$(p—1) qyll 1/q<Hl1 1/

=0(log m)=0(m")
(where p, denotes the ith prime), (4.4) gives

z=0(mp'”),
and hence

g9(P)=0(m’p'"?)



ON THE LEAST PRIMITIVE ROOT OF A PRIME 865

which is the desired result.
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REGULAR REGIONS FOR THE HEAT EQUATION

W. FULKS

1. Introduction. Let R be a region (open connected set) in the
plane or in space (z==[z), 2,] or x=[x,, @, z;3]). We will say that R isa
regular region for Laplace’s equation

(1) Au=0

if the Dirichlet problem for R always has a solution for continuous
data. By this we mean: given a function ¢(&) e C (that is, continuous)
for £e B, the boundary of R, there is a unique function u(x)e C for

e R=R\UB, for which
du=0 rze R,
w(§)=9¢(¢) £eB.
We will further say that R is regular for the heat equation
(2) du=u,

if the ‘¢ Dirichlet problem’’ for the heat equation has a solution for
continuous data, that is, if for each

¢(x)e C zeR
and
g e C ¢eB, t=0
where
d(E)=¢(¢, 0)
there is a unique function u(z, ¢)e C, for ze R, t=>0 for which
du=u, zeR, t>0
w(z, 0)y=¢(x) zeR
u(§, t)=¢(, 1) §eB, t=0.

Tychonoff [4] has shown that if R is bounded and regular for

Received September 15, 1955. In revised form February 24, 1956. The work on this
paper was performed under sponsorship of the Office of Naval Research, Contract Nonr-710
(16); (NR 043 041).
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Laplace’s equation, then it is regular for the heat equation and con-
versely. We give here a new proof that regularity for Laplace’s equa-
tion implies regularity for the heat equation.

2. The work of Tychonoff. In the first half of the memoir cited
above, Tychonoff proves the following three theorems.

A. Each bounded region which is a regular region for the heat
equation is also regular for Laplace’s equation.

B. Each bounded regqular region for the equation du=2u for a certain

2>>0 is also regular for the equation du=iu for arbitrary 22> 0.

C. Each bounded region which is regular for all the equations du
=u for A== is also regular for the heat equation.

This cycle of theorems shows the equivalence of regular regions
for the equations du=0, du=Ju (12>0), and du=u,.

In the proof of B Tychonoff observes that the solution of the
boundary value problems

Adu— u=0 xeR
w()=¢(8) EeB

is equivalent to the solution of the integral equations
u=(-7 | 6, Yudy+ue)

where G is Green’s function for the region R for the equation du=7u,
and w(x) is the solution to the problem

dw—2w=0 ze R
wE)=¢(E) €eB.

The existence of both w and G are guaranteed by the assumption that

R is regular for du=J/u. He then deduces, via the Hilbert-Schmidt
theory, that the desired solutions of the integral equations exist and
hence these solve the boundary value problems.

However, in establishing C, he forsakes his integral equation
methods and bases his argument on a refinement of a differential-dif-
ference method due to Rothe [2].

We may note that to complete the cycle of theorems it is sufficient
to prove that if R is regular for 4u=0 it is regular for Au=wu, and
we give here a proof of this result using a modification of the integral
equation argument mentioned above.

In our argument we will use the following theorem which was indi-
cated in a footnote in the paper by Tychonoff. For the sake of com-
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pleteness we present the proof.

D. Let R be a regular region for du=0, and let ¢(& t) be defined
on B and be k times differentiable with respect to t, 0 <t <T < o, and
let ¢ and each of its k derivatives respect to t be continuous for &€ B,
0t<T. Further, let u(z, t) be the solution to the problem

Ju(z, t)=0 zeR
%(S, t)=¢(57 t)v 5€B, O§t<T.

Then u(x, t) has k continuous derivatives with respect to t and

J.
v="% 0<i<k,
ot’

solves the problem

dv(z, t)=0 ze R

W&, t)=~§ti,¢(s, 5, teB, 0<t<T.

Proof. Choose t,, 0 <t,<T. By the maximum and minimum prinei-
ples for harmonic functions

[u(z, t)—u(z, to)lgrgrggx (&, ©)—¢(E, t)l .
But by the uniform continuity of ¢(&, ¢) for £e B, and ¢ in a (suffici-
ently small) closed ¢ interval about Z, this maximum tends to zero as ¢

tends toward ¢,. So that u(x, ) is continuous in ¢.
Since R is a regular region for 4u=0 there is a solution to the problem

dv(x, t)=0 zeR

(&, t)=aat OE ¢), EeB, 0<tT.

Then

oE -9 t) 0,
f 8 -0 g, 1)

w(xw, t)—u(x, t,) — (=, t)‘<max oy

t""t()

by the same argument used above. But

‘r,’(s t) Sb(E,_to) a¢’(§ t(S))
t—1t

where #(¢) lies between ¢ and ¢,, Again by the uniform continuity of
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gf(é,,t) this maximum vanishes as ¢ tends toward f,. Hence u(x, ) is

differentiable with respect to ¢ and this derivative attains the continu-

ous boundary data git[}(f, t). Hence by the first part of the proof

g—?(x, t) is continuous in ¢. By iterating this argument % times the

proof is completed.

We will need the following, also taken from Tychonoff.

E. Let R be bounded and regular for Adu=0, and let G(z, y) be the
Green’s function for this equation and this region:

( Liog 1 g, 9) n—2
2 7 1y,
G(x, y)= )
1"'* —g9(z,y) n=3
4z 1y
where g(x, y) is the solution to the problem
4,9(x, y)=0 xeR, yeR
i-logL feB, ye R, n=2
2r Tgy
1 1
— ¢eB, yeR, n=3.
4 Tey

Thern Gz, ¥)=G(y, xz), xe R, yeR .

Proof. Let R, be a sequence of regions, R, C R;,; C R, which tend
to R with the property that the corresponding boundaries B, are sur-
faces having continuous curvature and such that the distance from each
point on B, to B is not greater than #; where the sequence J,—0 as
j— . For such a construction see Kellog [1].

Let G («, y) be the Green’s function for R,. Under the hypotheses
on R, it is well known that G,(x, y) is symmetric (see Tamarkin and
Feller [3]). It is therefore sufficient to prove that

J—roo

To this end we note that G>0: since it vanishes on B and is
large and positive near the pole y it must be nonnegative by the mini-
mum principle.

Let ¢>>0 be given, then if j is sufficiently large we have 0 <G(z, y)

< e for each point € E—R,, and in particular on B,. Hence
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0<Glz, ¥)—Gyz, y)=9(, y)—9gx, y) e

everywhere in R, since that inequality is true on B,. This completes
the argument.

3. Reduction of the data. We return now to the problem
du=u, zeR, t >0
Wz, 0)=¢(x) zeR
w, t)=¢E 1)  teB, t>0

under the assumption that R is regular for du=0. We show that ¢(x)
may be assumed to be zero. Let R’ be a sphere (or circle) containing

R in its interior, and let ¢’(x) be a continuous bounded extension of ¢(x)
into R’. Define

ula, 0= Ko—v, H6' @)y,

dy being the element of area or volume, and k(x, ¢) being the funda-
mental solution

k(x, t)=(4rt)="" exp [[|=["/4¢]

where
n
"x"2=,§ @l n=2, 8.

If u(x, t) be the solution to our problem, the function
v(x, t)=u(x, t)—uz, t)
solves the problem
dv=nv, zeR, t >0
v(z, 0)=0 zeR
v(§ =9, )—w(, ), £eB, t=0
and
v(&, Dliee=9(&, 0)—us(§, 0)=4(¢, 0)—(£)=0.
4. The integral equations. We study now the problem
du=u, reR, t >0
u(z, 0)=0 zeR
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u(g, t)=¢(¢, 1) éeB, t=>0
with
¢(§’ O)ZO, EGB.

Since R is assumed regular for du=0, let @(x, t) be the solution to

the problem
da(x, t)=0 reR

ag, t)y=9(E, ), reR

Also since R is regular for du=0, the Green’s function G(x, y) ex-
ists and is symmetric function by E, and if f(x) is differentiable the
funetion :

g(@)=— gRG(w, .S (y)dy

solves the problem‘

dg=f(x) ze R

9(6)=0 ¢eB.
(See Tamarkin and Feller [3]). Hence if u(zx, ¢) be the solution to our
problem it must also satisfy the integral equation

(3) u(e, )=u(z, = | 6@, 1) 2wy, Oy .

Conversely any solution of our integral equation which is differentiable
in z (and which attains the proper initial values) must also solve our
problem.

We apply the Laplace transform: let

L Huw, 1)} =w(x, s), < {ux, 1)} =v(, s),

so that (8) becomes
(4) w(z, 8)=o(z, 9)-s| Gz, Y, s)ds

which is a Fredholm integral equation with a symmetrical kernel
—G(z, y).

5. Restricted solution of the problem. To facilitate the solution
of our integral equations (3) and (4) we make additional restrictions
which will be removed later. We assume

(i) there exists 7> 0 such that ¢(¢, £)=0 for ¢t >T.
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(i) ¢(&, t) in addition to being continuous with respect to (¢, ?),

has four derivatives with respect to ¢ which are also continuous with
respect to (&, t) and

¢t(5v O)=¢tt(57 O)Z‘tbtu(Ey 0):0 ’ £eB.

From D it follows that #(x, t) has four continuous derivatives with
respect to £; and

Uy (x, 0)=1u,,(x, 0)=1u,,,(x, 0)=0
for z e R, by the maximum principle. From (i) it follows that
#w, t)=0, for t>T, weR.

Since —G(z, y) is symmetric in (z, y) it follows that the eigenvalues
of our problem are all real and in fact it is well known that they are
all negative. (See for example, Tamarkin and Feller [3]).

The solution of (4) is

(5) w(w, 8)=v(e, )+ £ 4,0),
where ¢,(x) are the eigenfunctions for the kernel —G(x, y) and where

0a(s)=|_pu(oh(a, s)i .

We must now invert the Laplace transform and show that
ZZ-Hw(z, s)} is the solution to our restricted problem. To this end we
examine some of the properties of w(x, s). We begin with an examina-
tion of wv(x, s).

By its definition we have

(@, s)=§we““ﬂ(x, 1yt

the integral being uniformly and absolutely convergent for xzeR, and
# s>>0. In fact any of the x derivatives of v can be computed under
the integral sign, since the resulting integral is uniformly and absolute-
ly convergent for <# s_>0 and « in any closed sub-domain of R. So
that, in particular,

o, s)=§°°e-sua(x, £dt=0 |
0
Furthermore wo(zx, s) is analytic for <#s >0, and bounded for

# 820, and by integrating by parts, under of course the restrictions
(i) and (ii) we get
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1(=_ st
vz, S)_‘"* umn(xy t)e~"dt .
st

From this we see that
(e, )| < Kiflst], #s>0, weR

which is of interest only for large [s| since v(x, s) is bounded.
Since

sv4(8) , pal)
w(z, s)=v(z, 8)— Z(S/ i o

we get

lw(z, 8)] <lv(zx, s)| +I:Z ]l(z[/'lav;(S)]!jz Enl (i)n(x) '_'lllz

Now 2,=<0 so that [(s/4,)—1|=>1, and hence
oo, 9 oo, 9+ 15l | loto, o do-{ 6, ay]”

BUtS G*(z, y)dy is bounded since G is continuous except for a
R

singularity at « like log |[#—y| or 1/|z—y]|, as the case may be. Hence

ot <8+ TS for i1

uniformly for xe R, <% s>0, and
lw(z, s)| < K,, Is|I<1, F#s=0

since v(x, s) is bounded there.
Hence w(x, s) is also bounded for all ze K, <#s>0, and for large
Isl,
w(x, s)=0(1/ls[)

uniformly for xe R.
The inverse transform

(6) u(zx, t)=~217_ Sﬁim w(x, s)eds >0

7l Jo-te

exists, and since ¢* is bounded and w(x, s)=0(1/|s|’) converges uniform-
ly. Also
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a% 1 So‘+i
I, t)=—"
ot @ ?) 2t

a-i

sw(xz, s)eds ,

since the integral converges uniformly.

Since w(x, s) satisfies (4), by applying the inverse transform to
each side we are led back to (8), the integration under the integral
sign being permissible by the uniform convergence of the integrals in-
volved. Hence u(x, t) as given by (6) where w(x, s) is given by (5) is
the solution to the integral equation (3), and as such is a solution to
the heat equation in R and attains the proper boundary conditions. Let
us examine the initial values of u(, ¢):

o +hoo —_
u(z, 0)=2-%Se_iww(x, s)ds , >0, xeR

ute, 1< | hota, 9)1-1dsl,

gffsr I KLSM dv
T 27)-w(o+47) 2me®)-= |[1+w0)
which tends to zero as o becomes infinite. Hence u(z, 0)=0, zeR.
This completes the solution in the restricted case.

6. Removal of the restrictions. We first remove the restrictions
(ii).

Let (&, t) be continuous, ée€ B, t>0, with ¢(¢ 0)=0, £e B, and
¢, t)=0, t >T. By the Weierstrass approximation theorem there is a
polynomial p, (¢, t) such that

l¢(&, t)—pal§, DI<1/dnm, ¢€eB, 0<t<T.

By the uniformity of the continuity of ¢(& t) there exists ,, t,
such that

0<t<t,, €£eB
|¢(&, )| < 1/4n, for
t,<t<T, ¢eB

and without loss of generality we may, assume ¢,< 1/2n and T'—¢, <
1/2n.

Let ¢,(t)e C° 0<t, increase from 0 to 1 as ¢ increases from 0 to
t, and be identically 1 for ¢, <<¢<t¢, and decrease to zero again at
t=T, and have four vanishing derivatives at ¢=0 and at t=17.

Now let ¢.(& t)=q.(t)p.(&, t). This function is an admissible
boundary function under the restricted proof, which we have already
completed, Hence for each » there is a solution wu,(x, ) of the heat
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equation assuming these boundary values and of course zero initial

values. To show that this sequence converges to the solution to our
present problem we consider first

G, )= (€, DI=19(E, ) —pa(&, D) <;§‘;z

for ¢, <<t<t,. For 0<t<¢t, and ¢, <t T,
9, ) — (€, DIIDE, DI+ 1da(E, B

;h ol a6 ) < 1 +1mae, o)1,

4 ~ 4n
but
1.1 1
dn 4n 2n
so that
1906, D=6 DI< - 0<t<T,
and consequently
(&, ) —gne, < 1 0<t<T.

mlrklr(”n;”v'a)i ’
For xeR, 0<t<T
u(x, t)—uy(z, t)

is a solution of du=u, in R and continuous for ze R, 0 <t <T. Hence
by the maximum and minimum principles for the heat equation this
function attains its maximum and its minimum on the bottom or lateral

parts of the space time cylinder defined by zeR, 0t T
It follows that

Iun(wy t) _um(ml t)[ é max I‘rbn(éy t) - S[)m(sy t)l é . *1 R
£€B, 0st=T min(m, n)

from which the uniform convergence of the sequence u,(x, t) in the
cylinder is clear. The limit function, u(x, t), clearly attains the proper
initial values, since each of the approximating functions does. And for
£eB,

w(&, t)=lim u,(¢, t)= ling (&, O)=¢(§, 1),
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so that u(zx, ¢) is the solution to our problem under the restriction (i).
Consider now any ¢(£, t), continuous for ée€ B, ¢t >0, which vanishes
for t=0. Then let

1 0<¢

IA

n

rat)={1+(n—t) wlitn+l

0 n+1<t.

IA

and this time let
¢n(5y t)=¢(5, t)rn(t) .

If wu,(z, t) be the solution to the problem with data ¢, we will again

show convergence. For let (z, t) be any point, ze R, t>>0, and let n
and m each be greater than, say 2¢t. Then

‘un(x’ t)‘um(xy t)] g gfg; kbn(gy T)*Sl'm(ér T)[

where the maximum is computed over all ée B, 0<r=<{2t. But this
maximum vanishes, hence wu,(x, {)=u,(z, t) for n, m sufficiently large.
So that lim u,(z, t) exists and is a solution of the heat equation and

700

takes on the prescribed initial and boundary values.
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A REAL INVERSION FORMULA FOR A CLASS OF
BILATERAL LAPLACE TRANSFORMS

WiLLIAM R. GAFFEY

1. Introduction. The Post-Widder inversion formula for unilateral
Laplace transformations [1] states that, under certain weak restrictions

on ¢(u),

tim (£)7 " st exp (=1 Yau=gtc)

ko0 k! 0

for any continuity point ¢ of ¢(u).

This formula applies when ¢(x) is defined only for u—>0. A similar
formula may be deduced if ¢(u) is defined for u > —a, for some positive
a. In such a case, we may let ¢*(u)=¢(u—a), and we may then use
the Post-Widder formula to determine ¢*(x) at the point u=c+a. The
inversion formula then becomes

lim (_’i )"” lS:qs(u—a)uk exp ( kY )du=¢(c) ,

ke \ e k! c+a

or, if we make the transformation z=u/(c+a),

(1) lim -];;c,+1»gm¢[(c+a)z——a]z’° exp (—k2)dz—a(c) .
—y 00 I 0

This suggests that, if ¢(u) is defined for — oo <u < o, some sort
of limiting form of (1) applies. We shall prove that under suitable
restrictions on ¢ and on the behavior of ¢(u),

(2) ¥im ~-]Z'tlgl¢[(c+ks)z—ke]z" exp (— kz)dz—(c) .

k—>o0

2. Remarks. In the following sections ¢(u) will be assumed to be
integrable over the interval from — o to o, and ¢ will be assumed to
be a continuity point of ¢(u). All limits should be understood to be for
increasing values of k.

The expression d/(c+kf), where 6 and e are positive numbers, occurs
frequently. It will be denoted by 6&(%, e).

Finally, it may be noted that in terms of the Laplace transform of
¢(u) for real ¢,

Received December 7, 1955, and in revised form April 13, 1956.
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£O="_ow exp (—twpan,

the inversion formula (2) may be written in the form

X (——1)” & RS e L
lim 761*“(517{;) dte Lf(t) exp (—tk")]izricorns,=0p(C)

3. Preliminary proofs. The results of the following four lemmas
will be needed below. Proofs are given for the first two. The second
two are proved in a similar way.

LEMMA 1. If n is any fized number and 1/3 <e<1/2, then
lim &[1+ o(k, €)]* exp [—kd(k, €)]=0 .

Proof. If the logarithm of the expression under the limit sign is
expanded in powers of d(k, ), the sum of two of the terms in the ex-
pansion approaches — oo as k— oo, while the sum of the rest of the
terms is bounded.

LEMMA 2. If 1/3 <e<1/2, then

kk+1
k!

. 1+8Ck, 3) 1
lim S 2" exp (—kz)dz = 9
Proof. It is well known [1] that

klc-(—l

k!

lim rzk exp (—kz)dz = % .
1

Therefore, it is sufficient to show that

. klc+1 o
lim S 2" exp (—kz)dz=0 .

k! Jivsae o

Since zexp(—=z) is a decreasing function of z for z > 1, the above ex-
pression is, for fixed %, no larger than

.,l;:”? [L+0(k, e)]*"exp [—(k—1)(1+ (K, €))] S zexp (—=2)dz .

B3
1+8Ck,8)

By applying Stirling’s formula and Lemma 1, we see that the upper
bound approaches zero as k increases.

LEMMA 3. If n is any fized number and 0<e<1/2, then
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lim &"[1—8(k, €)]* exp [ko(k, €)]=0 ,

LemMmA 4. If 0 <<e<{1/2, then

kk-('-lSl

lim -
k!

2" exp (—kz)dz x—;— .

1-8Ck,e)

4. The inversion formula.
THEOREM. If

(a) || a2 < 4 exp (— o+

for some positive quantities A, d, and «, and if

(b) max (1/3, 1/@+a)) < e < 1/2,
then
lim I,— lim fg“ifS: Sl(c+k)z— KT exp (—k2)de—a(c) .

Proof. For any 6 >0, the infinite interval may be partitioned into
the four subintervals (—oo, 1—6(k, ¢)), (1—68(k, ¢), 1), (1, 1+ (%, 2)), and
A+ (k, €), ). I, may be considered as the sum of four integrals over
these intervals, so that we may write

L=IP+IP+IP+1IP .

I is understood to represent the integral over (—oo, 1—0(k, ¢)) ete.

|, —g(e)| < [ IP]+ | TP — -@2@

+ 19— 2| 1o
R 2 R
We prove first that I{® and I{® approach zero as k— . For I,
consider first the integral over the interval from 0 to 1—d(k, ¢). The
function zexp (—z) attains its maximum at the upper endpoint. There-
fore an upper bound for the absolute value of this portion of the ex-
pression is

kk+1

M= oGk, 9 exp [—k+ko(k, 1 | Igle+ke—Ridz

1-5¢k.
0

which approaches zero by Stirling’s formula and Lemma 3.
Consider now the integral over the interval from — o to 0. Inte-
grating by parts, we find that it is equal to
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1 kk+2 0 g g + —
etk ’*krg_mF[(0+k)z—k]z" '(1—2) exp (—kz)dz ,

where F(z)=sZ $(w)du. Note that, by the assumption on F'(z),

|Fl(c+E)2—Fk]| < Aexp[—d{—(c+Ek)z+E}**"],
which is in turn equal to or less than
A exp [dz(c+ k) +*] |

The result of the integration by parts may be written as the dif-
ference between two integrals, the first containing 2¢~* and the second
containing z*. The first integral is no greater in absolute value than

ilﬂi:zgo 1251 exp [z {d(c + k)i — k} 1dz
(c+ k) k! J-= )

Since ¢(24+a)>1, the coefficient of z in the exponent above is
positive for sufficiently large k. Therefore, after some manipulation,
this upper bound can be shown to be equal to

Ak (k)
(C+ k) kI [dct k)™ —k]*

’

which approaches zero as k — .

By the same argument, the second integral approaches zero, so that
lim I»=0.

For I, observe that since zexp (—z) is a decreasing function of z
for z>>1, the expression has the following upper bound for its absolute
value :

B ET+0(k, o exp[—k—kak, |, lele+k)—kidz
! 1468(k, €)

Since the integral is bounded, the whole upper bound approaches zero
by virtue of Stirling’s formula and Lemma 1.
We now prove that

. 1 1
lim I — " =
im 19— - ¢(0)| < 37

for any 7 >0. By Lemma 2, it is sufficient to show that
+1(1+8Ck, €
‘lim Kt S )

- {pl(c+k)z— k] —p(c)}2* exp (—ka)dz| < % :

1
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Since ¢ is a continuity point of ¢(u), there is a 6>0 such that if
[(e+k¥)z—k*—c| <0, that is, if |z—1|<d(k, €), then

lpl(c+E)e—E]—(0)| <7 .

For such a 4, the absolute value of the expression above is equal
to or less than

7 lim )

E+1(1+8Ck, &)
S 2 exp (——lcz)dz=% .
By the use of Lemma 4, it may be shown in a similar way that

lim I®— —é—d)(c) < ;v .

Putting together these results, we have |lim I,—¢(c)|< 7 for any
» >0, which proves the theorem.
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ON CHARACTERISTIC FUNCTIONS OF BANACH
SPACE VALUED RANDOM VARIABLES

R. K. GETOOR

1. Introduction. In recent years several authors have considered
the notion of random variables with values in a Banach space, X. One
of the basic problems is to characterize those positive definite functions
on ¥* that are characteristic functions of such random variables. Mourier
[4] has given a solution to this problem if ¥ is separable and reflexive.
The purpose of this paper is to give another solution of this problem.
Our results are valid if X is reflexive. However the contribution of this
paper is not so much the removal of the condition of separability, rather
we feel that our method sheds new light on the problem and aids in
understanding it. The basic tool that we use is the concept of a weak
distribution as introduced by Segal [5], and this idea succeeds in unifying
the theory.

Section 2 contains the basic definitions and preliminaries. The main
results are contained in §3 but in a form slightly more general than
needed for the problem at hand. However we will need the results in
this generality in a future paper. The contents of §3 are clearly valid
in any locally convex linear topological space. Finally in §4 our solution
to the problem stated above is given along with some examples and
consequences.

The considerations of Bochner in chapters five and six of [1] are
somewhat related to our problem.

2. Definitions. Let (2, ¥, P) be a probability space, that is, £ is
an abstract point set, $§ a s-algebra of subsets of 2, and P is a measure
on (2, ) with P(2)=1. Let ¥ be a real Banach space' and X* its conju-
gate space. Let X: 0Q-X, we will call X an X valued random variable
if X is weakly measurable, that is, if {a*, X(w)> is a real valued -
measurable function for each a2*eX*, Let E(X) be the Pettis integral
of X with respect to P, provided it exists. Thus E(X) is the unique

element of % such that (o*, E(X)>=E{<z*, X5} =S<x*, X(w)>dP for each

x* e X*. .The characteristic function of X is defined as follows,

@.1) Wa*)=E(e ¥y = [HaF (@ )

Received January 16, 1956. This research supported in part by Office of Ordnance
Research, U.S. Army, contract DA-36-034-ORD-1296 RD.
! The extension to a complex Banach space is essentially clear.
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where Fi(a*; 1) is the distribution function of the real valued random
variable {&*, X(w)>. It follows that ¢(0)=1, ¢ is positive definite, and
¢ is continuous. For a detailed discussion of the above concepts see [4].

If we put L(@*)=<{x*, X(w)> then L is a linear map from X* to
random variables. Segal [5] defines a “weak distribution”, L, on X to
be a linear map from X* to random variables. However there are two

interpretations of this statement. We may mean L( é aixz“)= i aL(x})
i=1 t=1

with probability one or the stronger statement that for almost all @ the
funection L(-, w) is linear*. Theorem 2 of the next section shows that
these two possibilities are actually equivalent. Thus since there is a
possible ambiguity and since we want to consider a weak distribution
as the generalization of an ordinary n-dimensional distribution we make
the following definition.

DEFINITION 2.1. A weak distribution, L, on X is a map which as-
signs to each finite collection of elements (xF, ---, 2) in X* an n-dimen-
sional distribution function F(x¥, 4,; ---; x¥, 4,) such that

(1) F, is symmetric in the pairs (7, 4;) .

(2) Fn(m;ky z1; ey il?;f, oo)an—l(x;F, x1; e Loy Zn—l)-

3) If tfn_]alxi*=0 then
=1

S an(m;k; 21; ey x;f, Rn)ZE(Z)

where (1) is the unit distribution, e(z)z{o 20
1 2>=0.

Note. Condition (3) implies that if z*= i axF then
i=1

F(z*, x)=§ APk, X; e @y 1) -
aidi =4

1Ma

(2

ExampLE. If X is an X valued random variable then there is as-
sociated with it in a natural way a weak distribution which assigns to
(zf, +--, z¥) the joint distribution function of the random variables

{z¥, X(w)), thus,
F(a7;k’ 21; *ccs w:) '{n)= Pr [<x;k’ -X(w)>-g 4, 77:1’ % 9’&] .
2 Since “random variable” in [5] in treated as a residue class module null sets, it

clearly seems that the definition of weak distribution given there refers to the first inter-
pretation.
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Given a weak distribution L we define its characteristic function
(™) by

2.2) <;b(x*)=§e“dF(x*; 2.

It is clear from (2.1) that if L comes from X (as in the example) then
the characteristic function of L and X are the same.

We are going to give conditions that a weak distribution come from
some ¥ valued random variable and hence that ¢ be the characteristic
function of some ¥ valued random variable.

3. The main theorems. From the definitions in the preceding sec-
tion we see that L and its characteristic fuunction ¢ are both defined
relative to ¥*, In other words in the study of the relations between ¢
and L the space ¥ plays no role. We are thus led to define a g-weak
distribution on ¥ as a map, L, from finite sets of elements (ay, «--, 2,)
in X to distribution functions which satisfies the conditions of Definition
2.1. We can now state our first theorem.

THEOREM 1. There is a unique one-to-one correspondence between q-
weak distributions L defined on X and positive definite functions ¢ defined
on X satisfying (1) ¢(0)=1 (ii) ¢ @s continuous on each finite dimensional
subspace of £. We say that ¢ is the Fourier transform of L and denote
the correspondence by H=L(L).2

Proof. In the following we will need a formula for change of vari-

ables in Lebesgue-Stieltjes in:cegrals that we give here for convenience,
If

F(R)SS an(Ali ct )ln)

iiiazl»zél
then for any bounded Borel measurable function, f, we have
3.1) S F)AFQ) = S f( o ahzi)an(x], e 1)
Given L we define the corresponding ¢ by

3.2) gb(x):Se“dF(x; 2) .

3 This result was essentially contained in a lecture of I. Segal given at the Institute
for Advanced Study during the academic year 1954-55. See also [1]. Note that (ii) can
be replaced by the equivalent condition that ¢ is continuous at 0 on each finite dimensional
subspace.
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Clearly ¢(0)=1 and since

- nw
1>, arldk

qS( i akwk>=Sei"dF( i ®pllys} l)=Se k=1 AW, Ay v v Ty An)
k=1 k=1

(using the formula stated above) it is evident that ¢ is continuous on
each finite dimensional subspace of X. Moreover

n
>
k=1

S a@p—o)= Lo |-z, )

= 2 akCYjSei(}\"—}\f)sz(xm Ay @y A3)

7
Jrk=1

I

n
Z ak&jgez(Ak_)\j)an(xh Ay o e s Tny Zn)
Jik=1

g

Thus ¢ is positive definite and satisfies the conditions of Theorem 1.
Conversely suppose we are given ¢ satisfying the conditions of
Theorem 1. For any finite set of elements (x, ---, 2.) we consider the

funetion ¢(«ay, ---,an)=¢(§] akxk). It then follows that ¢ is an =-

"4F, >0 .

n ;
Z akez)\k
Jik=1

dimensional characteristic function in the ordinary sense. Hence by the
n-dimensional Bochner theorem there exists a distribution function
F(x, 2} «++; @, 4,) such that

(33 o Eaw)=gla, o @) = BBy, 25 e, 2.
k=1

By using the uniqueness assertion of the n-dimensional Bochner theorem
it is easy to show that the above construction actually defines a g-weak
distribution on X. The fact that the correspondence established between
the ¢’s and the L’s is one-to-one (and unique) again follows from the
uniqueness in the n-dimensional Bochner theorem.

COROLLARY 1. A necessary and sufficient condition that ¢ be con-
tinuous on X is that F(z, ))—e(2) as z—0.

Proof. This is an immediate consequence of the representation (3.2)
and the properties of ordinary characteristic functions.

The following example shows that there actually exist positive defi-
nite functions continuous on each finite dimensional subspace without
being continuous. Let ¥ be a separable Hilbert space and let {e,} be

n
a linear base, thus if e X then z= >\« s, and this expression is unique.
1

It is no restriction to assume |le,||=1 for all 4. Let {s,} be a given
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sequence from {s}, and let Y, be independent Gaussian random variables
(real valued) such that E(Y,)=0 and E(Y;)=n. Put Y, =Y, and Y,=0

is 0740, for some n., If xziaje(,j we define L(x)zian,j. This
1 1

then defines a ¢-weak distribution, L, on X as described in the example
of §2, that is, Fl(xy, 4; +--; 2, 4,) is the joint distribution of L(zx,),
coe, Lx,). Let ¢=F(L) then, according to Theorem 2, ¢ is continuous

. . . 1 .
on each finite dimensional subspace. However — =€, — 0 while for each

.l/
n F < 1/1: ey , 2) is the standard normal distribution with mean 0 and
n n

variance 1. Thus by Corollary 1 we see that ¢ is not continuous on ¥%.

Since for any g-weak distribution on X the family of associated
distribution functions satisfies the Kolmogorov compatibility conditions
we can construct a stochastic process in R* (R is the real number
system) which induces the given distribution functions. If we put Q=R*
then we can denote this stochastic process by L(x, w)=w(x) and the
joint distribution of L(z,, »), ---, L(x,, ) is given by F (x;, 1;; -} Tn, 1n).
See [2]. Taking into account condition (3) of Definition 2.1 it is clear
that one should expect the sample functions L(-, ) to be linear in some
sense. The next theorem states that L(-, o) is a linear function for
almost all .

THEOREM 2. Given a g-weak distribution L on X then the stochastic
process L(x, w) can be realized in the space of all linear fumctions from
X to R, that s, in the algebraic dual of X.

Proof. Let £ be the set of all linear functions from ¥ to R, let

% be the field of cylinder sets of 2. e P if and only if U= {w/(w(x),
<+, w(x,)) e A,} where A, is a Borel set in B*. Let P, be the n-dimen-
sional measure induced by F,(x;, 4,; ---; @,, 4,) and then we put P(UA)=
P.(4,). We will now show that P is a completely additive measure

on %.

(1) If AeF then P(A) is uniquely determined. This is proved in
exactly the same way as in Kolmogorov [2].

@) P(2)=1. Clear.

(3) If A and *B are disjoint cylinder sets then P(A\J B)=P(A)+ P(B).

Let A={w/(o(x)), - -, o(xy)) € A} and B={ov/(o(a)), ---, o(z)) € B},
then by assumption % N\ B=0. Let (v, ---, ¥, contain all the x,’s and
x’s in some order and let A be the cylinder set in R* with base A4, in
R* and B be the cylinder set in R" with base B, in R’. We claim that
P,(A N B)=0. Suppose not, that is, P,(A N\ B)>0. We distinguish two
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cases. First suppose (v, ---,¥,) are linearly independent. A N\ B+#0
since P,(A/\ B) >0. Let (4, ---,2,) € AN B, define w(y;)=4, and extend
o linearly to the linear extension, {w, -+, ¥.}., of (% -+, ¥,). Then
we can extend @ to a linear function on all of ¥ (w can even be taken
to be continuous by the Hahn-Banach theorem). Thus we 2 and
oeANB which is a contradiction. Second suppose there is a linear

relation, > a,=0, among the y,’s. Sinece
1

dF(yli Xl; s Yny Rn)ZE(l)
2 aiki =4

7w
the measure P, in R" is concentrated on the subspace 3 a,4,=0. Because

i=1

P(ANB)>0 there exists a point (4, -+, 4,)€A N\ B such that

ﬁalﬂi=0. If we define w as before we obtain the same contradiction.
i=1
Thus P,(A N\ B)=0. Now

PR B)=P,(A\J B)=PF,(4)+ P,(B)—P,(A N\ B)=PR)+P(B) .

(4) P is completely additive on . This again can be proved
exactly as in [2].

We can now extend P to a completely additive measure on the o-
algebra, §', generated by & and thus the proof of Theorem 2 is complete.

The next theorem gives conditions under which L(-, ) is continuous
for almost all @, that is, L(-, v)e X* for almost all «. The proof is
fashioned after a proof given by Mann [3] in the real valued case.

THEOREM 3. A mnecessary and sufficient condition that L(x, w) is
realizable in the space, X*, of all continuous linear functions from X to
R s that for any separable subspace ¥ and any e, p_ >0 there ewists
0=0(e, 9, X') such that for any finite collection x,, «--, x, € X' with ||lz)]| <o
we have

(34) SE "'Se an(xl’ '11; e Tpy 37»)21“77

Proof of sufficiency. First note that if 2,=¢ and 1,=—¢ (1=1, 2,
.-+, m) are continuity points of F), then the integral (3.4) is equal to
P[ max |L(z;)] <¢e]. For the purposes of this proof we denote X* by 2

1=sisn

and then as in the proof of Theorem 2 we can introduce a finitely ad-
ditive measure, P, on the field, ¥, of cylinder sets in 2. We will now
show that P is completely additive. As is well known it is sufficient
to show that if 2, DU, > --. is a decreasing sequence of cylinder sets
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such that ﬁ%rnzo then P(2,)\0. Assume P(,)\6>0. It is no

loss of generality to assume that U, is defined by «,, ---, z, and a closed
Borel set A4, in R”

Ay={o|(o(@), -+, @(7,)) € Aa} .

Let X’ be the separable subspace generated by {z, z,, ---}, and let
{y,, ---} be the set of all finite linear combinations of the =z,’s with
rational coefficients. Thus {y,} is a countable dense set in ¥’ and we
arrange the notation so that A, depends on y, ---, y;, where k, <k, if
t1<7 and k,—> o as m—c. By hypothesis we can choose a 8, >0,
independent of n, such that

P[wlmaxlw(yi)l_g% for i<k, and ][yillgangl _%} .

Define %if,={wlwe%fn and max lw(yi)lé—g; 1 <k, IIyiil_S_&z}, then since

P(2,)>>0 we have P(3)> g+z and 92 CA,. Also AW

Similarly we define inductively

—{o e W, max o(y)| < o, for i <k, Iyl <5,}

and P(A2) > g +-g—p. More over AP DAL > -+« and W AT ... TN,
Consider the sequence 2? and note that 2 DA > ..., also note that
Az depends on y, .-+, Y, - Moreover the above inequality shows that
P(%Ig)g—g—. We can now replace the A2 by sets B, depending on v,
0 Ys, such that B, CAZ and the corresponding Borel set, B,, in R?
is closed and bounded and P(?B,,)g-z—. See [2].

Now choose w,e®B, and by the diagonal process we can choose a
subsequence (which we again denote by w,) such that w,(y,) — 4, for
each y,. Since B, is closed the point (4, ---, Z,cp) is in B, and thus if
we define o(y;)=4; for all y, we see that if we can show we X* it will
then follow that we®,. Clearly o is rational linear on {y;}. We now
show that « is uniformly continuous on {y;}. Given ¢ >0 choose 5 such
that ZJ < % and then choose §=4¢, (the ¢, used in the construction of
At). For any y;, with |ly,]| <8 we have

lo(y)l < o) — oY)+ o) -



892 R. K. GETOOR

Since w,(y;) > »(y;) we can choose a p, such that p>p, implies

lw(yi)—wp(yi)lg_—;- We choose a p such that p=>p,, p=>j, and k, >4,

then w,e®B, C Az A7 end hence |w,(y,)] g;gfé. Thus if |yl <o

then |w(y;)|<{e. Since w is rational linear on {y,} it follows that w is
uniformly continuous and hence can be extended by continuity to X,
Clearly the extension will be linear on X', and hence by the Hahn-Banach
theorem » can be extended to be a continuous linear function on X.
It now follows that we®B, for all p and since B, T A, we have that
we ﬁ A,. Hence P is completely additive on .

k=1

Proof of mecessity. Since L(-, w)e X* for almost all @ we can write
L(z, wo)={r, X*(w)>. Let X' be a separable subspace of X and let
I X*(w)||' be the norm of X*(w) when considered as a linear functional
on ¥/, then || X*(w)||’ is a measurable function. Given ¢, 7 >0 we can
choose ¢ >0 such that P[|X*||' <e/d]>=1-—7% and this § has the required
properties.

4. Application to ¥ valued random variables. We can now give a
solution to the problem stated in the introduction in case X is a reflexive
space.

THEOREM 4. Let X be a real reflexive Banach space and ¢(x*) be a
positive definite function on X*. A necessary and sufficient condition that
¢ is the characteristic function of an X valued random variable is that :

(i) #(0)=1 and ¢ be continuous on each finite dimensional subspace
of X*.

(i) If L=5(¢p) (which exists by (1) and Theorem 1) then for any
separable subspace X of X* and any e, 7 >0 there ewists 0=05(Xy, ¢, 7)
such that for any finite collection =¥, «--, xF¥ e XF with |lz¥|| <6 we
have

Ss ...Se dF (xF, 2+« zr, y=1—7.
-t -t

Proof. L is a g-weak distribution on X* which satisfies the conditions
of Theorem 8 relative to X¥*. Hence L can be realized in X**=% since
¥ is assumed reflexive. Thus L(z*, 0)={z*, X(v)> and X(w) is weakly
measurable since L(z*, -) is measurable for all #*. But ¢ is the charac-
teristic function of L and hence as remarked in §2 it is the charae-
teristic function of X. The necessity of the above conditions is obvious
if we apply Theorem 3.
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We conclude by giving two “continuity” theorems. Suppose ¢,=
B(X,) (F(X,) denotes the characteristic function of X,) and ¢, (z*)—
¢(z*). Clearly ¢ is positive definite and if ¢ is continuous at 0 on each
finite dimensional subspace then there exists a weak distribution L on
% such that ¢=%(L). The question naturally arises as to when there
exists an X such that ¢=%(X). We give two theorems which bear on
this question and then two examples.

THEOREM 5. Let X be a real reflexive Banach space and let ¢,=
BUXL), of du(x™) = p(a™) then a necessary and sufficient condition that
there exist an X such that ¢=F(X) s that :

(1) ¢ restricted to any finite dimensional subspace of X* 4s continuous
at 0.

(2) Given any separable subspace Xf of X* and any e, 7 >0 there
exists a O such that for any finite collection J=(af, ---, x¥) e X with
o | < 0 there exists n(J, 8) such that of n_>n(J, o) then

(4.1) Plmax |Ly()| < e]=1-7 .

Proof. Recall that L,(z*)={z*, X,(v)>. We now prove the sufficiency.
Condition (1) implies that there exists a weak distribution L such that
¢=%(L) and L,— L in the sense that

(4.2) F& (s, Ay coes o, Ag) = B, Ay o5 2, A)

provided (4, +--, 4,) is a continuity point of F,. We show that L

satisfies the conditions of Theorem 4. For convenience we put F(c)=
F(e, ++-, &)= F(—~¢, -+, —¢) for any distribution function F' and we say
e is a continuity point provided (e, ---, ¢) and (—¢, +-+, —¢) are continuity
points of F.

Given X, ¢, 7, choose & of Condition (2) corresponding to X, ; , Z~ ,

Given any finite collection J=(z;, ---, zi) € ¥¥ with ||zf||<é we must
show that

[ amer, a5 s o a0 =10,
Choose ¢ such that ¢ is a continuity point of F, and -;<s’<s.

Choose m, such that n,>n(J,d) and 1?@(5)—1‘@(5/)@_% then

Fi(e) = Fooe') ~ v% . Since ¢>>¢ we have
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SE S AF(f, A -e 05 @, Rk)ng(e’)__ZF'z’!o(e’)——ZA
-t -€
>1-7-7 >1—y9.
2 4

The necessity is proved by a similar computation.

THEOREM 6. Let X be a real separable reflexive Banach space and
let d,=F(X,), if Pu(@™) > p(x*) then a sufficient condition that there exist
an X such that ¢=%(X) is that :

(1) Condition (1) of Theorem 5 hold.

@) If G.(a)=P[||X,||< a] then there exists a subsequence an(a) con-
verging to a distribution function G(a). (||X,| s measurable since X is
separable.)

Proof. In the same way as in the proof of Theorem 5 we have
that L, > L where L=%(¢) and L,(z*)=<{z*, X,>. Given ¢, » >0 choose

>0 such that % is a continuity point of G and G<2€3>>1_'g'
Choose N such that n, > N implies

655~ (55)

Now let J=(af, ---, x5) where ||a}||< 3, and let ¢ be a continuity point

7
<y

of Fi(xf, ; -+, xf, 2,) such that é—<e’ <e. (We use same notation as
in proof of Theorem 5.) Choose n; > N such that
Fpe) =P <
We now have
Fe) = Fue) 2 Fine) - L = Fa(5) -2
But

Fo($) =P max <at, X, )1 < & | = Pl 01X, 1< 5 =6 () -

Therefore we finally obtain

[ ool amer, 15 s at, =Fu0 26(5) - 7

>1-7-7=1—9,
2 2
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and hence the proof of Theorem 6 is complete.

COROLLARY 1. Condition (2) of Theorem 6 is implied by

lim inf G,(a)=1 .

A n

Proof. In this case every convergent subsequence (at least one
exists by the Helly theorem) converges to a distribution funetion.

COROLLARY 2. (Mourier [4]). The following condition implies (2) of
Theorem 6. For some a >0 E(||X,||*) exists for all n and E(||X,||*) < M.

Proof. An immediate consequence of Corollary 1.

ExampPLE. Let ¥ be a separable Hilbert space and let {e,} be a
complete orthonormal system. Let Y, be ordinary random variables
mutually independent with normal distributions such that E(Y,)=0,

E(Y;):-L. Define Xn=§‘ Y,e,., clearly X, is an ¥ valued random vari-
n 1
able. Moreover (identifying ¥* with %), if z=> &, then
1

Pu(x)=E Jle " Yk} P N .

But g.(z)—>px)=e iz

Clearly ¢(x) corresponds to the weak distribution L(z)= i £.Y,. How-

and the convergence is uniform if |jz]| < A.

ever there is no ¥ valued random variable corresponding since 3. Yie,
1

diverges with probability one. (This also follows from Theorem 4.) Thus
uniform convergence of ¢, (x*)— ¢(«*) on bounded sets is not sufficient
to insure that ¢ corresponds to an X valued random variable.

ExampLE. This example shows that condition (2) of Theorem 6 is
not a necessary condition. Let ¥ and {e,} be as in Example 1. We
define an ordinary random variable Y with the following distribution.

P[Y=1/5]=P[Y*=n]=1 (¢ for n=0, ---. Clearly E(Y)< 1. Let
n:

Y., be independent random variables each with the above distribution
with parameter 2,,. Put

1/,}2)312 k_<_n2 o s o
A= ( == o= Ap = .
.k { 0 k>n2 ’ k§=j{ n,k 21: n,k 1/')?;
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2

Let Xn=k§‘,1 Yn,kek=kz Y, 16, then again X, is an X valued random vari-
= =1

able. If x=§‘, &.¢, then
k=1

Bl X1} < 3516t Sl | S8, ]" =il 0.

Therefore (x, X,)— 0 in probability hence (x, X,)— (x, X) in probability
where X=0. Thus the weak distributions corresponding to X, approach

the weak distribution corresponding to X. However llxnllzzi Y%, where
k=1
the Y., are independent Poisson variables with parameters A,,. Thus

the distributions of |x,|* is Poisson with parameter }Eln,k=1/E and
k=1

clearly no subsequence converges to a distribution function.
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SOME INEQUALITIES BETWEEN LATENT ROOTS AND
MINIMAX (MAXIMIN) ELEMENTS OF
REAL MATRICES

Louis GUTTMAN

1. Introduction. Because of the usual tediousness of computing
latent roots, any quick information about them is often welcome and
useful. We develop here some lower bounds to the absolute value of
the major latent root (the one largest in absolute value) of any real .
symmetric matrix that depend only on a simple inspection of its ele-
ments. Also, lower bounds are developed for the largest latent root of
a Gramian matrix of the form AA’ that require inspection only of the
elements of A. The latter case is especially important in linear regres-
sion theory of statistics, in factor analysis theories of psychology, and
elsewhere.

The original motivation for our inequalities was to study the relation-
ship between latent roots and the von Neumann value of a two-person
zero-sum game matrix. We actually use the von Neumann theory to
establish our bounds to latent roots, and in return we show how latent
roots can be used to bound the game value of a matrix. The latter
kind of bound will be useful whenever it is easier to get at the appro-
priate latent root than at the desired game value.

The bounds to latent roots are first exhibited in §§ 2-3, and then
proved in § 4. How to reverse their emphasis to provide bounds for
game values is shown in § 5.

2. Lower bounds to the major latent root. Let A be any real
matrix of order mxmn. Let a,, be the typical element of A (i=1, 2,
cee,m; j=1,2, ..+, m), and let p, and ¢, be defined respectively as

(1) p;zmina”, QJ= maXaij ('L:l, 2, --.’m).
J k3

j=1) 2’ e,
Furthermore, let p and ¢ be defined respectively as
(2) p=maxp; , g=nming; .

i J

From (1), it immediately follows that

(3) pléa[“___{q.’ (’[i=112y --.,7%)’
J=1, 2, e, m

Rece;ved— February 20, 1956.
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and in particular that p <gq.

Let 22 be the largest latent root of 4A4’, where A’ is the transpose
of A. We shall prove in §4 below that both of the following inequalities
hold :

(4) | =pv'n
(5) M= -av'm .

Inequality (4) is a useful lower bound to |4} if and only if p>0,
while (5) is useful if and only if ¢<{0. If p<<0<q, we obtain no infor-
mation about [1].

One interesting feature of (4) and (5) is that they show that 2 is
generally at least of the order of m or of n, depending on whether
q<<0 or p>0.

Corresponding inequalities can be developed by considering A’ in
place of A. Let p; and ¢; be defined respectively as

(6) p;=mina,, , ¢;= max a;, (7,=1, 2, °~-,m>’
i ’ j=1,2, -+, m
so that
(7) P <a; < ¢ <z=1, 2, ,m)
j=1’ 2y "‘,n

Let ' and ¢ be defined by

(8) p= m%le ;. q¢'=mingq;,

whence, from (7), p'<¢'.

Now, AA’ and A’A have the same nonzero latent roots, which are
all positive. So if 2* is the largest latent root of AA’, it is also the
largest latent root of A’A. In addition to (4) and (5), we can write

(9) M =2v'm
(10) M==dvn .

Notice that the roles of m and % in (9) and (10) are reversed from
those in (4) and (5). If p’ >0, A* is at least of order m, while if ¢’ <0,
2 is at least of order n. If either of p or p’ is positive, or if either
of ¢ or ¢’ is negative, we get some information about |4].

Matrices of the form AA’ or A’A are called Gramian, or nonnegative
definite symmetric. In statistics, any correlation matrix R is Gramian.
A good deal of work in psychology, for example, is aimed at “factoring ”
an R into the form R=AA’. Given such a factoring, our inequalities
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immediately given lower bounds to the largest latent root of R from
the minimax and maximin element of A. The latter are easily ascertain-
able by inspection.

3. The case of symmetric matrices. If m=%n, A itself has no
latent roots defined. However, if A is square, then it does have a
characteristic equation and latent roots. A particularly important case
is where A is symmetric, or A=A’. Then the latent roots of A are all
real, and their squares are the latent roots of AA’=A4* If 2 is the
largest latent root of AA’, then 2 must be a root of A largest in abso-
lute value, and conversely. In this symmetric case, we have not only
m=n, but also p=p’, ¢=¢. So (9) and (4) are redundant, as are also
(10) and (5). The inequalities can now be interpreted as referring to
the major latent root of A itself, and not merely to a root of AA’.

When A is symmetric, we can usually improve on (4) and (5).

Let I be the unit matrix of order %, ¢ be an arbitrary constant,
and A* be defined as

(11) A*=A—cI .

If 2 is a latent root of A4, then A—c¢ is a latent root of A*, and con-
versely. Let p* and ¢* be the maximin and minimax of elements of
A* respectively, or, if J,, is Kronecker’s delta,

12) p*=max min (a,;—cd;,) , ¢*=min max (a,,—¢d;;) .
4 J i J

Then in place of (4) and (5), we can write
(13) i—cl=Zp"vV'n, |l—c=-"v'n  (4=4),

where 1—c is the major latent root of 4*. In special cases, a judicious
choice of ¢ may be apparent that will make maximum |1—¢| correspond
to a 2 which is either the most positive or the most negative latent root
of A, and with a better bound than given by (4)-(5).

An especially important symmetric case is where A is a correlation
matrix R, with all diagonal elements equal to unity. In such a case,
the largest latent root of R cannot be less than 1, for the trace of R
is n and all » latent roots are nonnegative. For this case, if p >0,
then choose ¢c=1—p. This implies that the main diagonal elements of
R* are all equal to p. Then, clearly p=p*; and since 1>>1 for any R,
|[A—1+p|=2A—1+p when p >0, and (13) becomes

(14) 1Z1+p(V'n—1) (=0, A=R).

Similarly, if ¢ <0, by choosing ¢=1—¢ in (13) we get
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(15) 1Z1-9q(vV'n—=1) (¢<0, A=R).

4. Proof of the inequalities. Let P, denote the space of all k-
dimensional probability row vectors. That is ze P, if and only if zis a
row of k& nonnegative numbers whose sum equals unity. Let 2’ denote
the column vector that is the transpose of z. Then 2z’ is the sum of
squares of the components of 2z, and it is easily established and well-
known that

(16) 71;<zzf<1 zeP,).

The equality on the left of (16) is always attained by letting z=z,
where 2z, is a vector whose components all equal 1/k (and hence z, € P,).

von Neumann [1] has shown how each real matrix A has associated
with it a unique real number » with certain important minimax pro-
perties. Since his theorem was developed in the context of his theory
of games, we shall call v the game wvalue of A. Our present interest
of course is to regard von Neumann’s theorem as a general theorem on
real matrices, without necessary reference to the theory of games.

von Neumann’s theorem is as follows. If A is a real matrixz of
order mxmn, then there exist an x, and o y,, where x,€ P, and y, € P,,
and o unique real number v, such that

an Ay, < v < x,AY for all xzeP,, yekP,.
Furthermore,
(18) P=v=0q,

where p and q are as defined in (2).
To use this theorem for establishing our own inequalities, apply
Schwarz’s inequality to (17) to see that

(19) =V (@) (oA Aye) = v <V (yy )@ AA'x;) (@€ Py, yeP).
Let 2 be the largest latent root of A4’ and A’A. Then
(20) BAA T < Pay <, A Ay <Py <2,

the second inequalities in each part of (20) following from the second
inequality in (16). From the first inequality in (16),

1

Ly yy’g'” (xer, yePn),
n

(21) xx =
m

and we have noted that the equalities in (21) are always attainable, by
best possible @, and y, for this purpose. Using (20) and the equalities
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of (21) in (19) yield

~ i i

Then (4) and (5) follow from (22) and (18). Inequalities (9) and (10)
follow from the restatement of (22) for the game value v' of A’:

'_m ’ IH
(23) 1/%“‘2” < Ak

Inequalities (22) and (23) are of course sharper than those stated in
§ 2 above. If game values are known, they can be used in place of p,
q, p’, or ¢’ in the latter inequalities. We have stated our inequalities
in the form most practical to use, since p and ¢ can be determined by
inspection, whereas v usually cannot, except in the special case where

p=q=0.

5. Application to game values. Let us now consider the converse
problem of bounding game values. If an upper bound to || is known,
this will serve to bound » and +' via (22) and (23). Thus, useful bounds
to v can be set that may sometimes be better than (18) when p4q.
Perhaps more important, (22) and (23) show how the magnitudes of v
and v compare with those of m and » in general, given some notion
of the size of |1].

For the purpose of bounding v and v, (22) and (23) can be improved
on. Let 4, be the m xn matrix whose typical element is a;;—¢, where
¢ is an arbitrary constant. Thus A, is obtained by subtracting ¢ from
each element of A (so A,%= A* if ¢£0). It is easily verified that the
game value of 4, is v—e¢, and optimal probability vectors «, and y, for
A are optimal also for A,. Let 22 be the largest latent root of A, A, (or
of A.4,). Then we can replace (22) and (23) by the more general in-
equalities

_ 1l 1]
(24) -l Sve+ go
and

el |2
(25) o=t SV et Jo

Evidently, the best choice of ¢ is that which will minimize 22. A
practical way to approximate this choice is to minimize instead the
sum of all the latent roots of A,A,, or the trace of A,4,. This requires
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minimizing
7 & .
(26) > 20 (a—c),
i=1 j=1
for which the minimizing value is c¢=a, where
1 m n
(27) a= >a;.
mn i=1 j=1
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THE NUMBER OF DISSIMILAR SUPERGRAPHS
OF A LINEAR GRAPH

FRANK HARARY

1. Introduction. A (p, ¢) graph is one with p vertices and ¢ lines.
A formula is obtained for the number of dissimilar occurrences of a
given («, B) graph H as a subgraph of all (p, ¢) graphs G, a <p, 8 <q,
that is, for the number of dissimilar (p, ¢) supergraphs of H. The
enumeration methods are those of Pélya [7]. This result is then appli-
ed to obtain formulas for the number of dissimilar complete subgraphs
(cliques) and cycles among all (p, ¢) graphs. The formula for the num-
ber of rooted graphs in [2] is a special case of the number of dissimilar
cliques. This note complements [3] in which the number of dissimilar
(p, k) subgraphs of a given (p, ¢) graph is found. We conclude with a
discussion of two unsolved problems.

A (linear) graph G (see [5] as a general reference) consists of a
finite set V of wvertices together with a prescribed subset W of the col-
lection of all unordered pairs of distinct vertices. The members of W
are called lines and two vertices v;, v, are adjacent if {v,, v,} € W, that
ig, if there is a line joining them. By the complement G’ of a graph
G, we mean the graph whose vertex-set coincides with that of G, in
which two vertices are adjacent if and only if they are not adjacent
in G.

Two graphs are disomorphic if there is a one-to-one adjacency-
preserving correspondence between their vertex sets. An automorphism
of G is an isomorphism of G with itself. The group of a graph G,
written I'y(G), is the group of all automorphisms of G. A subgraph G,
of G is given by subsets V; SV and W, < W which in turn form a
graph. If H is a subgraph of G, we also say G is a supergraph of H.
Two subgraphs H,, H, of G are similar if there is an automorphism of
G which maps H, onto H, Obviously similarity is an equivalence rela-
tion and by the number of dissimilar vertices, lines, -+ of G, we mean
the number of similarity classes (as in [3, 4, 6]).

Two supergraphs G, and G, of H are H-stmilar if there exists an
isomorphism between G, and G, which leaves H invariant. It is clear
that the number of dissimilar (p, ¢) supergraphs of H is equal to the
number of dissimilar occurrences of H as a subgraph of all (p, ¢) graphs.

2. Supergraphs. Let H be an arbitrary («, §) graph. We wish to
enumerate the dissimilar (p, ¢) supergraphs of H where p>a«a, g = 8.
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Let sZ , be the number of dissimilar supergraphs of H with p vertices
and ¢ lines. For given p, let

p(p-1J2

(1) si@)= 3] %

be the counting polynomial for the numbers sZ,. We shall develop a
formula for s¥(x) using Pélya’s enumeration theorem.

In precisely the form in which we require it, Pélya’s Theorem is
reviewed briefly in § 2 of [2]. Therefore, we shall not repeat here the
definitions leading up to the statement of Poélya’s Theorem, but shall
only restate the theorem itself.

PéLya’s THEOREM. The configuration counting series Fl(x) is obtain-
ed by substituting the figure counting series ¢(x) into the cycle index
Z(I") of the configuration group I°. Symbolically,

(2) Fa)=Z(I", ¢(z)).

This theorem reduces the problem of finding the configuration count-
ing series to the determination of the figure counting series and the
cycle index of the configuration group.

The observations needed to make our problem amenable to Poélya’s
Theorem are as follows: A (p, q) supergraph G of the given («, ) graph
H is a configuration of length p(p—1)/2—pS whose figures are precisely
those vertex-pairs of G not adjacent in H. The content of a figure is
one if the vertices are adjacent and is zero otherwise, so that the figure
counting series ¢(xr)==1+x. Hence the content of the configuration G
is ¢g—p. The desired configuration series is s%(x).

In order to apply Pélya’s Theorem, we still need to know the cycle
index of the configuration group 7I'; ,. The degree of this group is
p(p—1)/2—p since the objects acted on by its permutations are the lines
of the complement of H in the complete graph of p vertices containing
H. All permutations of these lines which are compatible with 77(H)
are in /'y ,. Before obtaining the cycle index of Iz, we state the
form of the result by applying (2) to the present situation:

(38) sZ(x)=aPZ(I"y ,, 1+2).

We now turn to the development of the permutation group I’z , in
a form which will yield its cycle index. Let F, denote the complete
graph of p vertices, that is, the graph with p vertices and all p(p—1)/2
possible lines. As in [3], let I"(G) be the line-group of the graph G,
that is, the permutation group whose objects are the lines of G, and
whose permutations are induced by those of I'(G), the group of auto-
morphisms of G. If I' is a permutation group of degree s, let T(/")
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be the pair-group of I', that is, the permutation group of degree
s(s—1)/2 which acts on the pairs of the object-set of I but is isomor-
phic to I" as an abstract group. Then clearly I'y(F,) and T(I"(F,)) are
isomorphic as permutation groups. Let I';-I", denote the direct product
of the permutation groups 7", and I", whose object-sets are disjoint.

The lines of the object-set of the configuration group Iy , are of
three possible kinds:

I. neither vertex is in H
II. both vertices are in H
III. one vertex is in H and the other is not.

For each of these three cases, we find the permutation group on the
corresponding subset of lines and then form their direct product to get
Iy ,. In case I, every rearrangement of the lines with neither vertex
in H which is induced by a permutation of the vertices of G—H is
compatible with the group of H, so that we have the group I'(F,-.).
For case II, we obtain the line group of the complement of H, that is,
I'(H'). The third ‘“ mixed ”’ case yields the group M(H, F,-,) of degree
a(p—a) on those lines of F, joining a vertex of H with one of F,_,,
consisting of those permutations of these lines which are compatible
with I'((H). Then Iy, , is the direct product:

(4) Ly =T'(F,-0)- '(H')-M(H, F,_,)

and by a remark of Pélya [7] to the effect that Z(I",-I",)=Z([",)-Z(I,),
we have

(5) 2y, ) =2 (Fy-0)) Z(I"(H'))- Z(M(H, F',-.)) .

We note as a ‘‘ dimensional check ’’ that the degree of the groups
of the right hand member of (4) are (p—a)(p—a—1)/2, a(a—1)/2—-4,
and a(p—a) whose sum is p(p—1)/2—p3, the degree of the configuration
group.

Combining (5) and (3), we are now able to develop the counting
polynomial for the dissimilar p vertex supergraphs of H. It is useful
for this purpose to recall equation (10) of [2] which gives a formula
for the first factor of (5). In this formula, which is equation (7) be-
low, the letters g, are employed for the indeterminates of the cycle
index, S, denotes the symmetric group of degree p, the sum is taken
over all p-tuples () satisfying

(6) i+2j,+ - +05,=D,

and d(q, r), m(q, r) denote the greatest common divisor and least com-
mon multiple respectively.
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Equation (7) gives the first factor of the right hand member of (5).
The second factor depends on the particular graph H whose supergraphs
are being enumerated, The third factor also depends on H, but can
be readily computed as soon as Z(I'(H)), the cycle index of the auto-
morphism group of H, is found, by the following procedure. It is well
known that for S,, the symmetric group of degree p, one has

(8) AS)=1 S bbb

! D11 24,1 - - ping, !

where the sum is taken over all partitions (5) of p satisfying (6) and the
letters b, are indeterminates. We write Z(I"((H)) using the letters a; as
indeterminates, and then form the product Z(I"((H))-Z(S,-,). This will
be a polynomial whose general term, aside from its numerical coefficient
is of the form

) (@0 -0, ) b -022) =TT e T
s=1 r=1

If the letters ¢, are the indeterminates of the third factor of (5), we
then obtain Z(M(H, F,.,)) by substituting for (9) in Z(I'(H))-Z(S,-.)
the expression:

R j a(r,s)
(10) I1 euiss

7,8

3. Cliques. We now specialize (5) to the case where H is a clique
or complete graph, that is, to H=F,. For this to be meaningful, we
define Z(I'(F,))=1, so that (5) becomes

(11) I p, 0)=Z(1'\(Fy-0)) ZAM(Fa, Fyp-0)) -
To illustrate (11), we take p=4, a=2. Then the first factor is Z(I"(F}))=¢,

and the second factor is Z(M(F,, F2))=i—(c;‘+303). Therefore in thiscase,
(8) yields the polynomial:
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F - 1 5 2
s, M(x)=2- T (¢l +3eccs, 1+x)
=g+ 20° +42° + 4ot + 22° +

which can be readily verified pictorially by observing the number of
dissimilar lines in all the graphs of 4 vertices: see Figure 1.

D S S N
1l U
AN

Figure 1

Equation (7) gives the first factor of (11) explicitly. One can also
obtain an explicit formula for the second factor of (11) by applying
(10) to two copies of (8) for the degrees « and p—a. The result of
this procedure is

(12) Z(M(FM Fp_m))z 1 N Z Z m'a! . ({):a)!
alip—a)l & ® {1, p]:[’&.jlji!
i=1

i=1

T e
When (12) is specialized to a=1, and then substituted into (3), the
formula in [2] for the number of rooted graphs results.

4. Cycles. A cycle of length n, or an n-cycle, of a graph is a col-
lection of » lines of the form A4, A4, ---, 4,,4,, 4,4, in which
the vertices A, are distinct. Let C, be a graph consisting of an =-
cycle. We now specialize (5) to the case H=C,. Since a 3-cycle is also
a 3-clique, the particular case a=3 for cycles has already been treated.
In general, however, I'(C,)=D,, the dihedral group of degree = and
order 2n. From Poélya [7], we have

-;—alag"“, when n=2m—1
18)  ZAD)=1 3 ¢ld)ai+
2'}7/ ain

Lli—-(a?a;"'l-ka;”), when n=2m .

When the cycle index of Z(D,) is multiplied by Z(S,-,) from (8), and
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(10) is applied, one obtains a formula for Z(M(C,, F,-,)) analogous to
(12). Substituting H=C, into (5), we see that

(14) 2oy, ) =Z(I\(Fy-o))- Z(I'(CL))- Z(M(Cay F,-0)) -

The only factor of the right-hand member of (14) for which we have
not yet developed a formula is Z(I',(C)).

To deseribe Z(I,(C,)), it is convenient to use a special case of the
“ Kranzgruppe ’’ of Pélya [7]. Let I' be any permutation group of
degree d, and let E, be the group of degree » and order 1. Then by
I'[E,], the crown-group of I' around E,, is meant the permutation
group of degree nd obtained from I by replacing the d elements of
the object-set acted on by the permutations belonging to I°, by d dis-
joint sets of » elements each. Thus Z(I'[E.)]) is obtained from Z(I")
when one replaces each factor f,’+ occurring in each term of Z(I") by
S

For a odd, a=2n+1, one sees that
(15,) F1(C;n+1)=D2n+l[En—1] ’

from which Z(I",(C,,,,)) is readily computed.

For « even, a=2n the group can be described using A. Cayley’s'
term ‘‘ dimediation.”” For example the permutation group 7(C;) is
generated by (123456)(789) and (12)(36)(45)(7)(89). Thus [I'(C;) is iso-
morphic to D, as an abstract group, but as a permutation group it can
be constructed from one copy of D, and two different copies of D..
Abbreviating dimediation by ‘dim’’ following Cayley, we have in
general

(15'7) I'(Cyn) =DylE, -] dim D, .

One can compute Z(/",(C;,)) by multiplying each term of Z(D,[E,_.])
by the appropriate term of Z(D,).

A Hamilton cycle of a graph is a cycle passing through all its ver-
tices. Thus the number of dissimilar Hamilton cycles occurring in all
(p, @) graphs is the number of dissimilar (p, ¢) supergraphs of C,. In
this situation, (14) becomes simplified to:

(16) Z(Iq,,,)=2(I"(C3)) .

We illustrate (16) for p=>5. Here (15’) becomes ['(C;)=D,[E]=D;,
and by (13):

Z(Dy;)— i16 (@ + 4a;+ 5a,al)

1 See for example: A. Cayley, On the substitution groups for two, three, four, hve,
six, seven, and eight letters, Quart. J. Math. 25 (1890) especially p. 74.
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so that applying (3), we get the counting polynomial for the number
of dissimilar Hamilton cycles of length 5:

875(x) =a" + &° 4+ 22" + 2’ + ¥+ 2 .

This polynomial is verified by the graphs of Figure 2, in each of which

the Hamilton cycle is drawn as the exterior cycle.

N A
Q- &

For p=>5, it turns out that each similarity type of Hamilton cycle oc-
curs in a different graph; but this is not always so for larger p.

5. Problems. We discuss two unsolved problems implicit in [4]
and [8] respectively.

I. It was shown in [4] that for any linear graph G; the dissimi-
larity characteristic equation:

amn v—(k—k,)+(c—c)=1

holds, where v, k, k, denote the number of dissimilar vertices, lines,
exceptional lines® respectively, and ¢, ¢, denote the number of cycles,
exceptional cycles respectively which appear in any dissimilarity cycle
basis® of G. In the past, dissimilarity characteristic equations for trees
and for Husimi trees [6] have proven useful in enumerating these
kinds of graphs. The unsolved problem is to sum (17) over all (p, q)
graphs, then multiply the resulting equation through by z* and sum over

q=0 to (g) When this is done, the term 1 which is the right-hand

member of (17) becomes g,(x), the counting polynomial for all p vertex
graphs [2] and the term v clearly is manipulated into G,(z), the polyno-
mial for p vertex rooted graphs [2]. By a result of Pélya [7], the
enumeration of configurations in which all figures are distinct may be
accomplished by using Z(A4,)—Z(S,), where A4, is the alternating group
of degree n. But this is precisely the nature of the term k—F%, of (17),
which is the number of dissimilar lines of G whose vertices are not
similar to each other. One sees by inspection from Figure 1 that for

2 An exceptional line of a graph is one whose vertices are similar to each other.

3 A dissimilarity cycle basis of a graph G is a minimal collection of cycles indepen-
dent mod similarity on which all cycles of G depend mod similarity. Consult [4] for more
details.
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p=4, the counting polynomial induced by the term k—Fk, is
4200 20+ 20 .

To derive the general formula of which the preceding polynomial is the
special case p=4, let us regard F, as a line whose vertices are not

similar. Then replacing F, by F, in (11), we get

(18) Z(I 5y, o) =Z((F, ) Z(M(F,, F,os))
An explicit formula for the second factor is computed by noting that
we may take Z(FO(I_V’Z))=Z(AZ)—Z(Sz)zl(af—az) by the above-mentioned
result of Pélya, then multiplying this cycle index by (8) in which p is
replaced by p—2, and applying (10).

The only term of (17) which we have been unable to sum is c—ec,.
This appears to offer a nontrivial combinatorial problem, which if solv-
ed would provide a functional equation for g, () of the form

9,(@)=G ()~ Z(I'"5, ,, 1+2)+the missing term.

Using (14) for «=3, 4, ---, p one can enumerate all the dissimilar
cycles among all (p, ¢) graphs, but this does not count just those in a
dissimilarity cycle basis.

II. An n-cube can be described briefly as a graph whose vertices
are the 2" n-digit binary numbers in which 2 vertices are adjacent
whenever they differ in exactly one place. An interesting unsolved
problem with some potential applicability to switching theory is to deter-
mine the number %, of dissimilar Hamilton eycles in an n-cube. It is
well known that A,=h,=1 and it has been shown by E. N. Gilbert (un-
published) that 2,=9. From the formula of [3] one can find the number
of dissimilar (p, p) subgraphs of any (p, ¢) graph, and of course, all
the Hamilton cycles of the graph are included among these subgraphs.
On the other hand, (16) gives a formula for the number of dissimilar
Hamilton cycles occurring in all (p, ¢) graphs. However, each of these
observations merely provides an upper bound for A4, and leaves the pro-
blem open. The more general problem of determining the number of
dissimilar occurrences of a fixed graph H as a subgraph of a fixed
graph G is also interesting.

One can give the results of this paper an interpretation in binary
relations, following [1], and can also generalize them to directed graphs
by employing the ordered-pair group of [2] instead of the pair group,
but we shall not spell this out. We note finally that (3) implies that
each such counting polynomial has end-symmetry with respect to its
coefficients. This is explained geometrically by the one-to-one correspon-
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dence between the collection of all supergraphs G of H and the collection
of their relative complements G, with respect to H defined by
Gr=G \J H.
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STRUCTURE THEORY FOR A CLASS OF
CONVOLUTION ALGEBRAS

EpwIN HEwITT AND HERBERT S. ZUCKERMAN

Introduction. This paper is a chapter in the study of convolution
algebras begun in [7]. The algebras studied here are algebras of Borel
measures on certain compact semigroups, and we describe completely
the structure of these algebras. The solution obtained seems remarkable
in view of the extreme complexity of the corresponding measure algebras
for compact Abelian groups (see [12]). Our success is explained by the
simple algebraic structure of the semigroups we deal with.

In addition to the structure theory (§§ 2-6), we give an application
to probability (§ 7), and some concrete examples and illustrations (§ 8).

Throughout this paper, we use the notation and terminology of [7].
In particular, the reader should be familiar with § 1 of [7]. The related
papers [6] and [8] are not essential for understanding the present paper,
but are referred to occasionally here at points of contact in subject-
matter. For all measure-theoretic terms and techniques not explained
here, see [4]. References are made throughout the present paper to
[9] for topological matters, and to [10] for the elementary theory of
Banach algebras. We use K to denote the complex number system. All
other special symbols will be explained as they appear.

1. The semigroups to be studied.

1.1. We consider an arbitrary non-void set G, completely ordered
by a transitive, irreflexive relation “<’”. That is, for all z, ye G, ex-
actly one of the relations <y, =y, y<x obtains, and the relations
x<yand y<z imply x<2z. As usual, we write y >z, meaning x <y,
and we write x <y, meaning <y or x=y. For uw,ve G, we define

Tu, v[={z:2e G, u<ax<v} (open interval) ,

[u, v[={x:xe G, uLa<v} (half-open interval) ,
Tu, vl={z:2xe G, u <z v} (half-open interval) ,
[u, vl={z:2eG, ul o<} (closed interval) .

These sets may or may not be void, depending upon the relation between
u and v.

Rece;ived January 17, 1956. The first-named author is a fellow of the John Simon
Guggenheim Memorial Foundation. Research also supported in part by the National Science
Foundation.
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1.2. We make G into a semigroup by defining the product xy as
max (z, y) for all x,ye G. It is obvious that z(yz)=(xy)z for all z, y,
ze€ @, that xy=yx for all z, ye G, and that «*=z for all zeG.

1.3. Being a completely ordered set, G has a natural topology defined
in terms of the ordering. For all ae G and all u,ve G such that u <7
a<_v, the open interval Ju, ¢[ is taken as an open neighborhood of the
point ¢. If there is no u such that u<a (i.e., if a is the first element
of G), then [a, v[ with v >> a is a neighborhood of @, and analogously if o
is the last element of G. These are all of the open neighborhoods of a.
It is obvious that Hausdorff’s neighborhood axioms are satisfied and that
Hausdorff’s separation axiom is satisfied. A point @ in G is isolated if
and only if it has an immediate predecessor and an immediate successor.
It has a complete neighborhood system consisting of intervals [a, o[
(Ju, a]) if and only if it has an immediate predecessor (an immediate
succeessor).

It is easy to verify that the semigroup operation ay= max (x, y) is
continuous in both « and y for the topology described above. Hence G
is a topological semigroup satisfying the Hausdorff separation axiom.

1.4. We impose the additional restriction on G that it be compact
in the interval topology'. For this, it is both necessary and sufficient
that every subset of G admit a least upper bound and a greatest lower
bound. In particular, G has a least element, which we shall call «, and a
greatest element, which we shall call  (not to be confused with the ordinal
number o). For a sketch of the proof of this, see [9], p. 162, exercise C.

1.5. From now on, we shall suppose, save where the contrary is
explicitly stated, that G is a completely ordered set that is compact in
the interval topology, and made into a topological semigroup by the
operation max (z, y).

1.6. Let €(G) denote the linear space of all complex-valued con-
tinuous functions on G. We give €(G) the usual norm :

I1= max | £(@)

for fe@(G). Let €(G) denote the conjugate space of G(G), that is,
the linear space of all complex-valued linear functionals L on €(G) such
that the number

1= sup {IL(NI: fFeC(&), IA1=1}

is finite. It is well known that each Le @(G) has a unique representation

1 See however 8.5.
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as an integral with respect to a complex-valued, countably additive, re-
gular measure 1 defined on all Borel subsets of G (see [4], pp. 247-248).
That is,

(1.6.1) L= | f@di@)

for all f e €(G). While many authors have contributed to this theorem,
we call it for convenience the Riesz representation theorem. Elements

of @(G) will be denoted by capital Roman letters, L, M, ---, and the
corresponding measures of the kind referred to will be denoted by the
corresponding lower-case Greek letters 4, ¢, ---. Under our interpretation
of the term “measure,” the measures 4, g, --- are set-functitns and not
linear functionals (for a different point of view, consult [2], passim).
However, we shall allow ourselves the abuse of notation 1€ @(G), mean-
ing that 2 is connected with an element Le @(G) by the relation 1.6.1.

At various points in our discussion, it will be necessary to pass
from an element Le€(G) to the corresponding measure 1. For non-
negative L (that is, L(f)>0 for f real and nonnegative), this process
is simple. Let F be any closed subset of G. Then

(1.6.2) AF)=inf {I(f): feC(&), f(x)=>=1 for xe F,
f(@)=0 for ze G} .

Let H be any open subset of G. Then

(1.6.3) MH)=sup {A(F): F is closed, FC H} .
Let X be any subset of G. Then

(1.6.4) AX)=inf {2(H): H is open, HD X} .

These three definitions of 1, on various families of sets, are all consistent,
and 1 is an outer measure on all subsets of ¢. Every Borel set is -
measurable, 2 is regular, and 1.6.1 holds.

For an arbitrary Le@(G), we obtain the corresponding measure 2
by writing L as

(1.6.5) L——~L1—L2+'i(L3—L4) ’

where L, ..., L, are non-negative functionals on &(G).

1.7. We recall that a semicharacter of a semigroup H is a bounded
complex-valued function y on H, not identically zero, satisfying the
functional equation y(zy)=yx(x)x(y) for all =, ye H ([7], 3.1 and [8], 1.3).
Semicharacters of our semigroup G play a vital réle in the solution of
the present problem, and we proceed to identify the semicharacters of
G.
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1.8. THEOREM. Let G be as specified in 1.5. Then functions of
the following two types are semicharacters of G:

(1.8.1) Sunctions ¢, where a€ G and
T
04 2 >a;
(1.8.2) Sunctions ¢, where a € la, w] and
pu={1 ¥ #<a,
0o 2=>a.

Furthermore, every semicharacter y of G is one of these two types.

Proof. It is easy to see that all functions ¢, (aeG) and ¢, (a <
a < w) are semicharacters, and we omit the verification. To establish
the converse, let ¥y be a semicharacter of G. Since z’=z for all ze G,
¥ assumes no values other than 0 and 1. If y is identically 1 (in this
case we write y=1), then y=¢, . If y41, then there exist a and b
such that y(a)=1, x({b)=0. Let A={x; xe G, y(x)=1}, B={x; ze(,
1(x)=0}. If xed and z'<ax, then we have 1=y(x)=y(a'z)=y(a" ) ()
=y(x’). If xeB and z' >z, then we have y(a')=y(x'z)=y(z')X(z)=0.
The sets A and B are therefore non-void complementary sets forming a
Dedekind cut in G. Since G is compact, A has a least upper bound a.
If ae 4, we have y=¢,; if ae B, we have y=¢,.

1.9. THEOREM. Let G be as specified wn 1.5. Suppose first that
a<La<w. Then the function ¢, (1.8.1) is continuous if and only if
has an immediate successor. The function ¢, s trivially continuous.
Suppose neat that a < a < w. Then the function ¢, is continuous if and
only if a has an immediate predecessor a., and in this case, ¢, =¢,-;.

We omit the proof of this theorem.

1.10. THEOREM. The semigroup G admits a continuous semicharacter
different from 1 if and only if G s disconnected.

Proof. Since a semicharacter of G can assume only the values 0
and 1, the necessity of the condition is obvious. Conversely, suppose
that G is disconnected, and that P and @ are non-void complementary
open sets in G. Since supPe P and sup Qe @ (P and @ being closed),
we may suppose without loss of generality that sup P<w. Let B=
{x; xe G, x>sup P}. If sup P=inf B, then every open interval con-
taining sup P contains points of B, and B Q. Since P is open, this
cannot occur. Hence sup P<inf B, and the function ¢, ) is a continu-
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ous nonconstant semicharacter.

1.11. REMARK. If G is not compact in its interval topology, then
semicharacters of the types 1, ¢,, and ¢,; may or may not exhaust the
class of all semicharacters. If G admits a Dedekind cut {4, B} (where
A is the lower class) and where A has no supremum and B no infimum,
then the function ¢, equalto 1 on A and 0 on B is a semicharacter different
from 1, ¢, and ¢, for any a. The proof of 1.8 shows that the exist-
ence of such a Dedekind cut is also necessary for the existence of a
semicharacter different from 1 and all ¢, and ¢,,.

1.12. THEOREM. Let G be as in 1.5. Let G denote the set of all

semicharacters of G. Then Gisa semigroup under pointwise multipli-
cation.

Proof. If y, and y, are semicharacters, then the product yxy,
(ap(@)=x(x)xx) for ze G) is obviously either 0 or a semicharacter.
Since y.(a)=y,(a)=1, we cannot have yy,=0.

2. The convolution algebra @(G). In a previous paper, we have
introduced the general notion of a convolution algebra ([7], p. 69, 1.3).

We shall show here that €(G) is a convolution algebra, where F=C(G).

2.1. THEOREM. Let xeG and let fe@(G). Then the function .f
whose value at y€ G is f(xy)=f(max (x, y)) is continuous.

Proof. This assertion follows immediately from the fact that

wf(y)Z{ Sf(@) for y<=z,
Sfy) for y>uo .

2.2. THEOREM. Let fe@(G) and Le&(G). Then the function on
G whose value at x<G is L(,f) is continuous [we also write L(,.f) as

Ly(f (zy))].

Proof. Let u, ve G and suppose that « <<v». Then we have

S@)=f) if asy<u,
(2.2.1) S =S @)= f)—fly) i u<y<Low,,
0 if v<y.

Now let ¢ be a positive real number, and let x be an arbitrary element
of G, Since f is continuous, there exist a,be G such that ¢ <x<b
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(we omit the obvious changes needed when r=a«a or x=w) and such that
| f(s)—f@)<e- Lt for all s, tela, b[. It follows from 2.2.1 that
| f (@) —of ()| < e-|LJ* for all x’e]Ja, b[ and all ye G. Hence we have

o ) = LG S M- f =1 <o

This completes the proof.

2.3. THEOREM. Let L and M be elements of €(G). For all f e G(G),
let LxM(f) be the value assumed by the fumctional L for the function
whose value at = is M(,f). We write

(2.3.1) L M(f)=LAM/f (zy))) .
Then LxM e §(G), and
(2.3.2) LM < |\Lj- )M

Proof. Theorem 2.2 shows that the right side of 2.3.1 has meaning.
Now for all x,yeG, we have |f(xy)|<<|fl, and hence [.fI<|rF].
Therefore |M,f(zy)| <|M|-[f], and in turn |L«M(f)| < |L|-|M|-|f]. This
proves that L*M is a bounded functional, and since L*M is obviously
linear, 2.3.2 and the present theorem follow.

2.4. REMARK. Theorems 2.1, 2.2, and 2.3 are verifications of [7]
1.8.1, 1.8.2, and 1.8.8, respectively. Therefore we have proved that

G(G) is a convolution algebra with the convolution LxM of 2.3.

2.5. THEOREM. Let L, M be elements of C(G) and let 2, p be the
corresponding measures as in 1.6. Then we have

(2.5.1) L+ M( f):MG f(max (z, y))dp(y)di(z) ,

Sor all f e @(G).

Proof. The right side of 2.5.1 simply rewrites the right side of
2.3.1, making use of 1.6.1.

We shall write 2*¢ to denote the measure associated with LxM by
1.6.1.

2.6. THEOREM. The algebra C(G) is associative and commutative.

Proof. Associativity is a property of all convolution algebras ([7],
p. 73, Theorem 1.5). Commutativity follows immediately from Fubini’s
theorem (which applies since all measures under consideration are finite
and countably additive) and 2.5.1:
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L) ={ | flmax (@, wdpwii@) =| | r(max (@, p)die)anw)

=[|_r(max v, epaxe)du) =m+Ls)

2.7. To identify the unit in @(G), and also for certain future pur-
poses, we introduce a class of special linear functionals E(a e G):

(2.7.1) E(f)=r(a) for fe@G).

It is clear that lltlEal+"°+tsEas“=Z [t,| for all complex numbers ¢,
j=1

.+, t, and distinct a,, ---, @, in G. It is also clear that the measure ¢,
corresponding to F, is the unit mass at a:

1 if aeX,

(2.7.2) ea(X)z{O ek

for all X CG.

2.8. For all 1eG(G) and every Borel set A in G, let 2* be the
measure such that 4(X)=1(4 N\ X) for all Borel sets X G.

2.9. THEOREM. For all 1€ €(G) and all ae G, we have

(2.9.1) e d=N[at, a])e,+ 1!
and
(2.9.2) EM*XZZ([C(’ a[)€a+2[“'w7 .

Proof. The set [«a, a] being a closed subset of G, it is certainly
a Borel set (although not necessarily a Baire set), and hence i([«, a]) is
defined. Similarly, Ja, «} (which is void if a=w) is a Borel set, so that
A%l is defined. Hence the right side of 2.9.1 is defined.

Consider the integral I(x):§ Sf(max (z, y)defy), where fe@(G).

The integrand has the constant value f(x) for ye[«, ], and is equal to
f in the interval Jz, @]. Therefore if z<a, then I(z)=f(a). If 2 >a,
then I(z)=f(x). It follows that

(2.9.3) L*Ea(f)=ggl(x)di(w)= | (@) 10i(a) + Sw | F@i)
— e, A)ELH)+ | Frds) .

The relations 2.9.3 imply 2.9.1 immediately, and 2.9.2 is a trivial con-
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sequence of 2.9.1.

2.10. THEOREM. For all e &(G), we have e,xa=2. That is, E, is
the unit of €(G).

Proof. Putting a=a«a in 2.9.1, aud taking an arbitrary Borel set
X G, we have

(2.10.1) e AX)=2{a}) e X)+2(a, ] N X) .

If a¢ X, then ¢(X)=0 and Ja, ]\ X=X. Hence ¢,xA(X)=2(X) in this
case. If ae X, the right side of 2.10.1 is equal to

A({a} N X)+ (e, @] N X)=A({a} N X) U (Ja, @] N X))=AX) .

Therefore e,xA(X)=2(X) in all cases, and e,xi=21.

2.11. THEOREM. For all Le G(G), we have EL—L(V)E,. In terms
of measures, we have e xi=A[a, v])e,.

Proof. The set Jo, ] is void, and so, putting a=w in 2.9.1, we
get 1°1=0 and e, *1=2([«, w])e,. The first statement is obviously equiva-
lent to this.

2.12, THEOREM. For a,beG, we have e*e,=¢max cap)-
Proof. This too follows at once from 2.9.1.
We summarize 2.3, 2.6, and 2.10 as follows.

2.13. THEOREM. Under the convolution 2.3.1, @(G) s o commutative
Banach algebra with unat.

3. The maximal ideals of €(G).

In this section, we identify all of the maximal ideals in @(G). Since
€(G) is a commutative Banach algebra with unit, every maximal ideal
in 8(@) is closed and regular, and we may identify the class of maximal

ideals in @(G) with the class of all (algebra) homomorphisms of G(G)
onto X. For a discussion of Gel’fand’s theory of commutative Banach

algebras, see [10], pp. 66-81.

3.1. An obvious source of homomorphisms of €(G) onto K is the
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set of all continuous semicharacters on G. If y is such a semicharacter,
then L(y) is defined for all Le €(G) and the mapping

(3.1.1) L—L(x)
is obviously a linear functional on €(G). If L, Me€(G), then

Gl L)~ | wendpwiie) = | | sonwirwie
[ |, 1@ ]| 10 due |-zomm .

Hence the mapping 3.1.1 is multiplicative, that is, it is a homomorphism
of €(G) onto K.

However, as 1.8 and 1.10 show, G may have very few continuous
semicharacters. Indeed, it can be shown that there exist mappings of
the form 3.1.1 carrying an arbitrary L=£0 into a non-zero number if and
only if G has Urysohn dimension zero. (We shall go no further into
this minor point.) Therefore, if we have any hope of proving @(G)
semisimple, we must look further for homomorphisms of €(G) onto K.
Our construction hinges on the fact that while the functions ¢, and
¢, are often discontinuous, still they are Borel measurable and bounded.
Therefore they are A-integrable for all ie @(G) even though L(¢,) and
L(¢,) may be undefined ab initio. The Riesz representation theorem
gives us a canonical method of extending L from €(G) to the space of

all bounded Borel measurable functions on G, and it is just this faet
that we use.

3.2. THEOREM. Let aeG. Then the mapping

8.2.1) L - )(«, a])———gagﬁa](x)dZ(x) (L e (&)
s & homomorphism of @(G) onto K. Let aela, w]. Then the mapping
(3.2.2) L (e, a)={ ¢u(@)ii@) (LeE(@)

18 o homomorphism of @(G) onto K.

Proof. First of all, it is clear that the mappings 3.2.1 and 3.2.2

are linear and not identically zero on €(G). Our only task is to show
that they are multiplicative. To this end, we consider first the mappings
3.2.1. If a=w, then we are dealing with the continuous semicharacter
1, and this case has already been treated in 3.1. We may therefore
suppose that a <w. If @ has an immediate successor ., then the
interval [«, a] is open and closed, and the function ¢, is a continuous
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semicharacter. Once again we can refer to 3.1. The remaining case is
that in which ¢ <o and a has no immediate successor. In this case,
the interval Ja, u[ is non-void for every u _>a, the semicharacter ¢, is
discontinuous, and a more detailed examination is needed.

It is convenient first to treat the case of non-negative, non-zero linear
funetionals L and M. It is obvious that if L and M are non-negative,
then LxM is non-negative. The set [a, a] being compact, we have
xp(la, a])=1inf L=M(f), the infimum being taken over all f e €(G) such
that f > ¢, (see 1.6.2). Since the measure 1 is regular, we have

[, ay=inf {A(T"): T is open, TDOla, a]} .
Every such set T contains an interval [«, u], where u >a, and hence
Ma, a])=1inf {2([a, u]): a <<u <o} .
Similarly, we see that
#([a, al)= inf {p(a, ul): ¢ u <o} .

Now let ¢ be any positive real number. Since 2 and g are additive
measures, the preceding two sentences show that there exists an element
u € Ja, @] for which the following inequalities hold :

(3.2.3) 2(]a, u[) < min <§JT46(T) , ;) ,
(3.2.4) #(la, uf) < min (gg(ff)u 1)

Since G is normal, there exists fe@(G) such that f(x)=1 for
rzela, a], f(x)=0 for zelu, o], and 0 f(x) <1 for 2 G. (See [9],
p. 141, Theorem 5.9.) We now consider the function f(max(z, y)) on
G xG. The following facts are easily verified :

1 for (z, y)ela, a]lx[«, a] ,
0 for (z, y) e GxJu, o]\Ulu, 0]xG,
Sf(x) for (@, y)ela, ul x[a, a] ,
fy) for (z, y)ela, alx]a, u[ .

(8.25)  f(max(z, )=

We now have, applying 3.2.5, 3.2.3, and 3.2.4:
depla, a) S LU= | | f(max (o, 1) duwdi)
— (e, a)-pule, a) + | Fdia)-pla, a)
+| P ap+ | fma @ 0)dne)de)

la,ulJ]
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< a, al)-m[«, a]) +i(Ja, u)-px(a, a])+ p(e, u))- ([« a])
+2(Ja, ul)- p(la, ul)

LU, a])- e, a])+-;—+ ; + ;—=l([04, al)-mle, a) +e .

Since ¢ is arbitrary, we infer that 1xx¢([a, a]) < ([«, a])- x([«, a]).

To establish the reversed inequality, let ¢ again be an arbitrary
positive real number, and let f e @(G) have the properties that 1>
f(@) = ¢q@) for xeG and L+xM(f)<2xp([a, a])+e. The existence of
such a function f follows at once from 1.6.2 and the non-negativity of
L=M. 1t is obvious that f(x)f(y) < f(max(x, y)) for (x, y) e GxG. We
now have

(e, a)- (e, o) < | F@di@)-| £

[\ r@rwanwara < | | rimax @ mamwaie
=L+M(f) < Axp(la, a])+e .

Since ¢ is arbitrary, we have proved that

(3.2.6) xp(la, a]) =, a])-1a, a]) .

We now prove that the mappings 3.2.2 are multiplicative for non-
negative L and M. Since 2, #, and Axp are regular measures, there
exists, for every positive integer », a compact subset C, of [«, a] such
that

A(le, a[)—-—i— < UG, e, )~ }2 < (G,
and
(e, a{)—% < 1p(C) .

We may evidently suppose that C,=[«, b,] for some b,<a. (If a has
an immediate predecessor a@_, so that [«, a[=[«, a-], we may refer to
3.2.6.) Then we have, applying 3.2.6 :

3.2.71)  Zxp(la, a)=lim 2xp(C,)=lim (A(C,)- #(C.,))
=(lim X(C,))-(lim p(C,))=A[e, al)- e, al) .
To establish the present theorem for arbitrary L, Me G(G), we cite

1.6.56: L=(L,—L,)+4(L;—L,), M=(M,—M,)+i(M;—M,), where L, and
M, are non-negative (7, k=1, ---,4). The relations
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1*#([“) a])ZZ([(X, a])-;z([a, (I;]) (a’e G) ’
p([e, aD=Aa, al)-pla, af)  (aela, o)),

now follow from 3.2.6, 3.2.7, and the identity (r1+su)(4)=7r1(4)+spu(4),

valid for all »,se K; L, Me @(G), and Borel sets A C G. This completes
the present proof.

3.3. THEOREM. Let 7 be a homoemorphism of @(G) onto K. Then
either there ewists be G such that n(L)=N[«, b]) for all Le §(G), or
there exists be Ja, o] such that =(L)=(a, b[) for all Le €(G).

Proof. It follows from 2.10 that n(e,)=1. Let z, y be elements of
G. Then, using 2.12, we have

(e,)- m(e,)= (e sv) =7T(Emax @) -

The function p on G such that p(x)=n(e,) for all xe G is therefore a
semicharacter of G. Theorem 1.8 asserts that either there exists be G

such that

(3.3.1) m(e)=¢nx) for xze@,
or there exists be Ja, w] such that

(3.3.2) m(e)=¢,(x) for xzeG.

Suppose first that 3.3.1 holds. Applying = to the left side of 2.9.1, we
have

(3.3.3) (ea* )=n(e)* 1(A) = (@)m(2) .
Applying = to the right side of 2.9.1, we have
(3.3.4) (e, al)e,)+ 1) =[e, al)dy (@) + (22T .

By 2.9.1, the last members of 3.3.3 and 3.3.4 are equal. We set a=b
in these expressions and equate them :

(3.3.5) n()=A(e, b]) +m(2P 1),

We next show that (1 “})=0. Here there are two cases. Suppose
first that b has no immediate successor and that ¢ is any element such
that ¢>b. Then there is a d such that 6<d<Ce¢. It follows at once
from 2.9.1 that ex2*I=2*], Since n(¢,)=0, we have

(3.3.6) (AN =0 .

To infer from this that #(21”“})=0, we must use the continuity of = in
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the norm of €(G). In faect,
(3.3.7) l7(L)| <)L for all Le&(G)

([10], p. 69, Theorem). Let 2 denote the total variation of 2 ([5], p.

459, 1.2). It is easy to see that 2 is regular. Thus, for every positive
real number ¢, there exists a compact subset of 1b, w] (which we may

clearly take to be of the form [e, w] with ¢>>b) such that (b, c[) <e.
Then we have

@38 pea-ra—sw || r@dE|: <1} <70 D <-

We infer from 3.3.6, 3.3.7, and 8.3.8 that [z(2»“)|< e, and hence
2 (Al =0,

Suppose next that b has an immediate successor b,. Then b, w]=
[b., ®]. From 2.9.2, we have

€b+*z[l)+,m]=2]b+,m] ,

and since (s, )=¢53(b.)=0, we have

(2849l =0=n(2T*1)
Therefore 7(11“})=0 in both cases, and, returning to 3.3.5, we find
(3.3.9) m()=2a, b))  for all 1e&(G).

This proves the present theorem in case 3.3.1 holds.

We have still to deal with the case in which 3.3.2 holds. If b has
an immediate predecessor, we are actually in the case 3.3.1. We there-
fore may suppose that b has no immediate predecessor. Applying = to
both sides of 2.9.1, we have as before

(3.3.10) ()= 2[«, a])+ m(11*7) for aela, d].
Relations 2.9.2 and 3.3.2 imply that =(1®*1)=0. Hence
(A3 0]y =7(21%:81)

for all aela, b[. An argument based on [A1**[], very like that used
above, shows that for every positive real number ¢, there exists a,<b
such that |z(2**))|<e if a,<a<b. Since 1 is regular, there exists
a; <_b such that

(e, a) —([a, )| <e if a,<a<b.

From these facts and 3.3.10, we obtain the present theorem in case
3.3.2 holds.
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3.4. REMARK. It is interesting to compare 3.3 with the correspond-
ing assertion for compact Abelian groups. Let H be a compact Abelian

group with group operation zy. Then G(H) is a convolution algebra,
where

(3.4.1) puf)=| | rednaie  tor feCH)

If H is infinite, then the homomorphisms of €(H) onto K are enormously
complicated, and in fact need not be described by characters of H (see
[12] for a detailed discussion).

4. G(G) is semisimple.

We establish first a preliminary result, which will also be of use in

§ 6.

4.1. THEOREM. Let f be an element of C(G) and let e be a positive
real number. Then there exists a finite subset {a;}7-, of G, where

A=y < Uy < v Ly < v s =@,

such that the oscillation of f is less than e on each of the sets la;-;, a;]
(.7=1r 27 ctcy m)-

Proof. The function f is continuous. Hence, for all z e G, there

exists an interval neighborhood U(x) such that |f(y)— f(y')] << ; for all

v,y € Ulx). Since G is compact, a finite number of these neighborhoods
cover G. Let U, U, ---, U, be such a collection of neighborhoods.
Each U, has one of the following forms: TJu, o[; [u, o[; Ju, v];
{w}(m <v). Whenever an interval U, can be written in one of the last
three forms, let the elements u, v or the element w be considered as
the endpoints of U,. Otherwise, call u, » the endpoints of U,. There
are at most 2p distinct endpoints of the sets U,: we write them in
increasing order as a,, @, -+, a,,. Since « is in some U, and since the
only types of open intervals containing « are [«, v[ (@< v) or {a} (if
a is isolated), we must have q,=«a. By the same token, we have a,=w.
Now consider an arbitrary interval Ja,_., a,] (k=1,2, ---, m). The
point @, lies in some interval U, (s=1,2, ---, p). If U, is of the form
Tus, v or Jug, v], it is obvious that a,_.,>wu, and hence la;-., a,] CU,.
If U, has the form [u,, v,] with u,< a, then it is again obvious
that Jay-,, a,] CU,. In these cases, the oscillation of f on Ja,-, @]
does not exceed ¢/2. If U, has the form [a,, v or {a;}, then since U;
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is open, a, has an immediate predessor, say w. If a,_,=w, then
lax-1, a]={a,}. Consider an interval U, that contains w. If U, has
the form [w, v,[ or Ju,, w] or {w}, then w=a,-,. In these three cases,
the oscillation of f on Jay_,, a,] is 0. If U, has the form Ju,, v,[ and
does not have any of the three preceding forms, then we have a, <v,,
u, < w, and necessarily u, <a,_,. Again it follows that la,-., a,]C U,,
and the oscillation of f on Ja,-., a.] does not exceed ¢/2. Since ¢/2 is
less than ¢, the lemma is proved.

Our next theorem shows that @(G) is semisimple.

4.2. THEOREM. Let L be an element of €(G) such that A[a, a])=0
Jor all aeG. Then L=0.

Proof. Let f be any function in €(G), let ¢ be a positive real
number, and let {a,}7, be as in 4.1. Let p be the function on G such
that

p(x):{ fla) for z=a,
flay) for o, <ox<a, (k=1,2,---,m).

Then p is Borel measurable and bounded and hence is in £,(2). Our
hypothesis on 1 implies that 2({a})=0 and that i(Ja;.., a,])=0 (k=1, 2,
-+, m). Consequently, gp(x)d/I(x)zo. On the other hand, we have
G
|p(x) — f(x)] <e for all xe G. Therefore

L= |[ r@die)]| =] s - s
< | Ir@-noIdie) <46 .

Since ¢ is an arbitrary positive real number, it follows that L(f)=0,
and therefore L=0.

4.3. THEOREM. Let L be an element of &(G) such that A({w})=0
and A([«, a)=0 for all aela, w]. Then L=0.
The proof of this theorem differs only trivially from that of 4.2.

4.4. THEOREM. The Banach algebra €(G) is simisimple. If L e G(G)
and L0, then the tmage of L under some homomorphism 3.2.1 is dif-
ferent from zero. If the image of L under every homomorphism 3.2.2 is
zero, then L=te, for some te K.

Proof. The second statement of this theorem merely repeats 4.2.
The first statement follows from the second. To prove the third state-
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ment, let t=1({w}). Then (1—te,)([«, a[)=0 for all ac]a, ], and
(A—te,)({w})=0. We now appeal to 4.3.

A

5. G as the maximal ideal space of €(G).

5.1. Theorems 3.2 and 3.3 identify completely the homomorphisms

of €(G) onto K. In order to study the space of all these homomor-
phisms, we introduce some new notation. For all ae G, let a denote
the homomorphism 38.2.1: a(L)=A([a, a]). Let G denote the set of all

homomorphisms a. For i1e §(G), we define the function 2 on G as

usual : Aa)=a(L) for all ac G. For a€Ju, o], let @’ denote the homo-
morphism 3.2.2: a'(L)=i[«, af). Let G’ denote the set of all homo-

morphisms a’. For 1e €(G), we define the function 1 on G as usual:
ﬁ(a’)za’(L) for all @’ € G'. By an abuse of notation, we identify G\U G’
with the semigroup G of all semicharacters of G (1.8 and 1.12). Theorems

3.2 and 1.8 of course suggest this step. The function 1on G=GUG&
is called the Fourier transform of L.

5.2. Before going further, we must agree on certain identifications
that may have to be made between G and G'. If aeG and a¢ has an
immediate successor a., then [«, a]=[«, a.[, and hence a=a,. Equiva-
lently, if a € Ja, o] and ¢ has an immediate predecessor a-, then [«, a[=
[¢, a_], and a’=a-. For all such ae]a, o], we agree to identify the
point @’ with the point a_.

5.3. For u,ve G, we define [u, v] as the set of all ce G such that
u<ce<w. The sets [u, v[, [u/, v'], etc., are defined similarly.

5.4. The Gel’fand topology for G is the weakest topology (that is,
the topology with the smallest family of open sets) that makes all of

the functions 2 continuous. It is well known that G is a compact Haus-
dorff space in this topology ([10], p. 52, Theorem 19B). We now de-

scribe the Gel’fand topology for G.

5.5. THEOREM. The point ® is isolated in G. Ifbela, o[ and b
has no tmmediate successor, then a complete family of neighborhoods of
b consists of all sets of the form

(5.6.1) [b, [ \J b, ] where celb, ] .

If bela, of and b has an immediate successor b,, then b=0b, is isolated
inG. I I bela, o] and b has no immediate predecessor, then a complete
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family of neighborhoods of b’ consists of all sets of the form
(6.5.2) la’, 8’1\ [a, b where ac€la, b .

It b has an immediate predecessor b-, then b =b_, and is isolated.

Proof. We use repeatedly the fact that all 7 must be continuous

on G. The function ¢, is 0 everywhere on G except at o, and &,(@)=1.
Hence w is isolated.

Consider next any point & such that a <b< w. If b has no im-
mediate successor, there exists, for every open set T containing [«, b],
an element ¢ such that ¢ >b and [«, b]C [, ¢f CT. Every measure

2e €(G) is regular, and hence we can find a ¢,>>b such that

(5.5.3) [4([e, D) — ([, )| e

for all ¢ such that b <{e¢<{g¢, ¢ being an arbitrary positive real number,
This means that

(5.5.4) 2(B) =) <e if b<c<c.

If 4 is non-negative, 5.5.8 clearly implies that |i([e, b])— A([«, c])| < e for
all ¢ such that b{c¢<¢, Since 7 is a linear combination of four non-
negative measures, we now have the following result.

5.5.5. Let befa, o[ and let b have no immediate successor. Let
le @(G), and let ¢ be any positive real number. Then there is a ¢, >b
such that [A(b)—i(c)]<e if b<<c<c, and |A(B)—Ac')| <e if b<c<q,.

If b has an immediate successor, b., then we have
1 if x=b=b,,

(5.5.6) z,,(x)—%,,+(x)={ oo :
eisewnere on .

Since the function &,— &, is continuous on C}, the point b==0b/, is isolated.

We next consider a point b’ e G such that b has no immediate
predecessor. Then [a, b[ is a nonclosed open subset of G, and for every
closed subset F of [«, b[, there exists ¢ <b such that F C[a, ¢] C[a, b[.

If Ae@(G), then 1 is regular, and we see just as in 5.5.5 that:

5.5.7. ﬁ(c’) is arbitrarily close to }(b/) if ¢<e¢<b and ﬁ(c) is
arbitrarily close to ,A%(b’) if ¢,<<c¢< b (here ¢, is an appropriately chosen
element <b).

The case in which b has an immediate predecessor has already been
dealt with.
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The topology imposed on G by the neighborhood system 5.5.1 and
5.5.2 (and with isolated points as described) is obviously a Hausdorff
topology. In 5.5.5, 5.5.6, and 5.5.7, we have shown that every function

1 is continuous on G in this topology. From 5.4, we see that the
Gel'fand topology is weaker than or equivalent to the topology just
described.

To show that this topology is precisely the Gel’fand topology, econ-
sider any b, ce G such that a <b<¢<{w and such that b has no im-
mediate successor. It is easy to see that

é,,(x)~—€c(x)={ 1 if xe[b, U, ],
0 elsewhere on G.

Hence all of the neighborhoods of b enumerated in 5.5.1 are necessarily
open in the Gel’fand topology. Since ¢ is the immediate successor of
b if and only if b is the immediate predecessor of ¢, the same function
é,—é, shows that all of the neighborhoods of &' enumerated in 5.5.2
must be open in the Gel’fand topology. Points with immediate succes-
sors and the point @ have already been dealt with : such points must

be isolated in the Gel’fand topology for . This completes the present
proof,

5.6. REMARK. Since €(G) has the unit ¢, (2.10), G must be com-
pact. Thus the topology of 5.5 is a compact Hausdorff topology. This

fact could of course be established by a direct examination of G.

5.7. The mapping L— 1 is a linear mapping of @(G) into the func-
tion space (S(G) that changes convolution into pointwise multiplication.
That is, L*M — (,z*,u)t—_i-ﬁ for all L, M e 6(G), where 1. £ is the pointwise
product of 1 and /2 on G. This follows at once from 3.2. Theorem 4.4

shows that this mapping is an algebraic isomorphism. The result of the
present section is to describe the (unique) compact Hausdorff topology

on G under which the functions 1 are continuous. Thus in studying
algebraic properties of @Z(G), we may consider the subspace of @(G)

consisting of all i In 6.7 and 6.9, we will give a more precise descrip-
tion of these functions.

5.8. The Stone (or kernel-hull) topology for G ([10], p. 56) is
identical with the Gel’fand topology. A neighborhood of xe G in the

Stone topology consists of all y such that ﬁ(y);é(), where i(x);é(). It
is clear that the Stone topology is weaker than or equal to the Gel’fand
topology, and since the funections é,—¢é, are different from 0 exactly on
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the neighborhoods 5.5.1 and 5.5.2, the two topologies coincide.

6. The Herglotz-Bochner theorem for G(G).

6.1. Weil’s generalization to locally compact Abelian groups of the
Herglotz-Bochner theorem (see [10], pp. 141-142, Theorem 36A) gives
an intrinsic characterization (positive definiteness and continuity) of all
functions on the dual group that are Fourier-Stieltjes transforms of
finite non-negative regular Borel measures. We here give two analogues

of the Herglotz-Bochner theorem for the algebra €(G).

6.2. Let 1 be a non-negative measure in €(G). Then the function
A is continuous, real-valued, and non-negative on G. It is also nondecreas-
ing in the sense that A(a)<<i(b) and Aa’)<<A(b) if a<<b. We shall
show that these properties completely characterize Fourier transforms
of non-negative measures. In fact if 2 is a continuous, real-valued, non-
negative function on G such that A(a) <A(b) for a<b, and A(w) >0,
then A=21 for some non-zero 1€ @(G) such that 1>>0. The proof requires
a number of steps, which we state as separate theorems.

6.3. THEOREM. Let h be a continuous function on G that is real-
valued and non-decreasing on G. Then h is also real-valued and non-
decreasing on G .

Proof. 1t is first clear that 4 is real-valued on @, since G is dense

in G. Let a, b be elements of G such that a <b, and let ¢ be a positive
real number. There exists an element ¢ < a such that |2(a’)—A(x)|<e
for all x such that ¢ <2z <7a (see 5.5.2). This holds trivially if « has
an immediate predecessor. Similarly, there exists an e<(b such that
(b)) —h(y)| < e for all y such that e <y <b. If we choose e > a, then,
as % is non-decreasing on @, all of the numbers 4(x) are less than or
equal to all of the numbers Z(y), and it follows that A(a’) < 2(b').

Given a function % as in 6.2, we must recapture the measure 2, or,
equivalently, the linear functional L., whose Fourier transform is %. For
this purpose, we introduce a Riemann integral with respect to %.

6.4. DEFINITION. Let % be any real-valued, non-decreasing function
on G. Let 4 denote a finite subset {a,a, ---,a,} of G, such that
=0, a,=o, and a,.,<a; (j=1, --+,m). For an arbitrary complex-
valued function f on G, let

S, )= 3 f(@)(ila)—Ha,.))
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6.5. THEOREM. Let f be a continuous function on G. Then there
exists a unique number L(f) such that for every e >0 there exists a 4,
as in 6.4 with the property that \L{f)—S(f, M) <e for all 4> 4,. We
write this relation as L(f)= liAm S(f, 4).

Proof. Let f=h(w)—n(a). If 3=0, then S(f, 4)=0 for all 4 and
there is really nothing to prove. Otherwise, let 0 be an arbitrary posi-
tive real number. Then, by 4.1, there exists a 4={a,}7, such that the
oscillation of f is less than 70 in each of the sets Ja,-;, a;] (5=1, 2,
-++,m). Suppose now that /" is a finite subset of G such that "D 4.
We shall prove that

(6.5.1) IS(f, )=S(f, I <0 .

Write I'={b,}5.0, by, <b;, and suppose that b,=a,, b, <a, for k<s.
Then we have

(6.5.2)

5 PO = Mbems) — Fl@) ) — Ma)
~| £ (700~ £@))b) ~ b))
< B0 3 (B = h(b-)) ) =~ 0(h(@) — h(ay)) -

If i(a,)—h(a,) is positive, it is clear that the inequality in 6.5.2 is strict.
Estimates similar to 6.5.2 obviously hold for the b’s lying in the inter-
vals Ja, @], «++, 1&n_1, ¢,]. Adding these estimates together, we obtain
the result that

IS(F, H)=S(f, I)| < [ S5 (hla) - h(am))]ﬂ“lﬂzﬂ .

the strict inequality holding because some A(a;)—h(a;_,) is positive. This
is just 6.5.1.
Let 4, be a subset of G as in 6.4 such that |S(f, 4)—S(f, 4.)|<n™"

for all 42 4,, and let I',=\J 4,(n=1,2,3, ---). Then {S(f, I"}i. s a
Cauchy sequence of complex numbers and hence has a limit, which we
take as L(f). If e is a positive real number, then there exists an
n>> 8/ such that |L(f)—S(f, [')|<e/8. If 4> 1, then 42 4,, so that
IS(f, 2)=S(f, ') <2/n. Thus |L(f)—S(f, 4)i<e, as was to be proved.
The uniqueness of L(f) is proved by a standard argument, which we
omit,

6.6. THEOREM. The function L defined in 6.5 for all f e &(G) s
o non-negative linear functional on C(G).
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Proof. Since 2 is real and non-decreasing, it is clear that S(4, f) is
real and non-negative for all real f e @(G) that are nonnegative and all
4 as in 6.4. Hence the limit L(f) of these numbers is non-negative.
The linearity of L follows at once from 6.5 and the obvious equality
S, uf +vg)=uS(4, f)+vS(4, g), valid for all complex numbers u, v, all
f,9¢eC(G), and 4 as in 6.4,

We can now state and prove our main theorem.

6.7. THEOREM. Let h be a continuous function on G that is real-
valued, non-negative, and non-decreasing on &. Let L be the non-negative
linear functional associated with h as in 6.5. Let 2 be the measure
associated with L as i 1.6.1. Then h s the Fourier transform of
A+ h(a)e, :

(6.7.1) h=2+h(@)é, =2+ h(a) .

Proof. Sinee 1 and % are completely determined by their behavior

on the dense subset G of G, we have only to show that 6.7.1 holds on
G. That is, we must show that

(6.7.2) Aa)=2([e, al)=h(@)—h(a) for all aeG .

If ae G and a has an immediate successor, then the function ¢, is
continuous, and by the definition of 4 given in 1.6.2, we have i([«, a])=
L(¢,)). If 4 is any finite subset of G as in 6.4 that contains a, then it
is plain that S(¢,;, 4)=h(a)—h(e). This implies that L{¢,)=nh(a)—h(a),
that is, that 6.7.2 holds for this value of a.

If @ has no immediate successor, then, for every positive real number
e and every b > a, be G, there exists a non-negative real-valued funection
f e@(@) such that f(z)=1 for x<a, f(@)=0 for >0, 0 f(@)X1
for xe G, and

(6.7.3) I([a, al) - LN < ; .

This follows at once from 1.6.2 and the fact that G is a normal topolo-
gical space. Now let 4 be any finite subset of G as in 6.4 that contains
a and b. The inequalities

(6.7.4) Ma)—h(a)y < S(f, 4) < h(b)—h(a)

obviously hold. Since % is continuous on é, we can choose the element
b > a such that 0 < (b)—h(a) <e/3. By 6.5, there exists a finite subset
I' of G such that I" > 4 and

(6.7.5) IS(f, =L)< 3 :
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Combining 6.7.3, 6.7.4, and 6.7.5, we have
(6.7.6) |A([«, a])—(h(a)— (@) <e .

Since e is arbitrary, we have proved 6.7.2.

6.8. REMARK. Theorem 6.7 is an analogue of the Herglotz-Bochner
theorem, since it characterizes in a simple way those functions on G

that are Fourier transforms of non-negative measures in €(G). We can
also obtain an exact analogue of the Herglotz-Bochner theorem in terms

of positive definite functions. A function p on G is said to be positive
definite if

6.8.1) ﬁl S EED(L7) =0

A

for all complex numbers &, «--, &, and all distinct %, -+, ¥n in G. If
1 is a non-negative measure in €(G), then we have

S ef = 5 56k re@m@ae

1 k=1

Mz

J

[ |Z e =0.

Hence 1 is continuous and positive definite in the sense of 6.8.1. Con-

versely, let » be a continuous function on G that satisfies 6.8.1. Let
a,beG and let a <b. For m=2, yy=¢u, X.=¢;1, &=1, and &= —1, the
the inequality 6.8.1 obviously reduces to

(6.8.2) —D(La)) +2($e1)) =0 .

Writing p(¢,7)=p(x) for xe G, we have p(a) < p(b). From 6.8.1, we also
see that p is non-negative. That is, p is continuous and non-decreasing
on G and hence is the Fourier transform of a non-negative measure
(6.7). Monotonicity is a much easier property to verify, in applications,
than the inequality 6.8.1, so that the present characterization of Fourier
transforms of nonnegative measures as continuous, positive definite
functions is perhaps only a curiosity.

6.9. REMARK. Theorem 6.7 permits us to characterize general
Fourier transforms 1, where 2 is an arbitrary complex-valued measure

in €(G), as being continuous functions on G that are linear combinations
of continuous, real-valued, non-decreasing functions. However, there is

another characterization of the functions 1, more intrinsic in nature.
Namely, let p be a function on G and let a, b be elements of G such
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that @« <{b. We define the variation of p on the interval [a, b] as the
supremum of all numbers

3 Ip(a) (e

taken over all finite sets a=a,< a,< .-+ <a,=b (if a=b, we take the
variation as 0). We write this variation as V(p: a, b). One can then
prove that a function ¢ on G is the Fourier transform of some measure
in @(G) if and only if ¢ is continuous and V(g: @, ) is finite. The
proof is suggested by standard arguments from the elementary theory

of functions of a real variable (see for example [11], pp. 215-223). In
the non-trivial direction, the proof is carried out by showing that every

continuous real-valued function of finite variation on G is the difference

of two continuous, real-valued, non-decreasing functions on G. We omit
the details.

7. An application to the theory of probability.

7.1. Theorem 6.7 has applications to the theory of probability. Let
@ be a random variable defined on a probability space (Y, =) with values

in G. The function d on C;‘, defined by

(7.1.1) { dla)=={y:ye Y, o(y)<a} for aecC,
dla'y=={y:yeY, oy)<a} for aela, o],

is obviously non-decreasing on & and G’. Under some obvious hypotheses
on 7 and @, this function d is continuous on G and hence is the Fourier
transform of a probability measure 2 in @(G) (6.7). It is clear that 2 is
non-negative, and since d(w)=1, we must have i(G)=1, that is, 1 is a
probability measure on the Borel sets of G. If @, are independent ran-
dom variables as above with corresponding probability measures 2, € @(G)
(j=1, ---, m), then the probability corresponding to the product @,---2,
is the convolution 4,%---x«4,. Thus the arithmetic of independent sets of
random variables is just the arithmetic of the set of all continuous,
nonnegative, non-decreasing functions p on G such that p(@)=1. The
operation is of course pointwise multiplication on G. 1f we denote the
set of all probability measures in @(G) by B, then the set of funection
on G that we are now considering is exactly €. In the case of a finite
semigroup G, the arithmetic arising in this way has been studied in
detail in another place [6].

We proceed to a description of some of the properties of P and %B
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7.2. It is clear that ¢ has a unit, namely ¢, (2.10). Since the
measure e, has the property that

0 if x#w,

1 if x=w,

£ux) =1

it follows that e *A=e, for all 1 such that A(G)=1. Hence ¢, is a zero
in the set L.

7.3. We next identify the idempotent elements of L. If Axd=1,
where 1€ @(G), then :{“’zﬁ, and 1 assumes only the values 0 and 1. If

2€ P, then 1 is nondecreasing on & and A(w)=1. The requirement of
continuity makes it obvious that there exists an element b€ G such that

Aa)=0 for a<'b, (a)=1 for a>b, i(a’)=0 for a <b, and i(a’)=1 for
a>b. This implies that /i:é,,. Hence the only idempotent elements of
‘B are the measures e¢,.

7.4. DEFINITION. Let {1,};.. be a sequence of measures, where
l,e P for all n. If there exists 1e €(G) such that lim 2,(x)=i(x) for

all xe G, then we say that 2 is the limit of the sequence {2} -1, and
we write A= lim 4,.

7.5. It is easy to show that lim 2, is in { whenever it exists. The
notion of limit adopted here is very like that employed in the classical
theory of probability (see for example [3], pp. 58-62, and esp. 102).
There are obvious differences, as we insist on pointwise convergence

throughout the entire space of homomorphisms G, while the classical
theory deals only with the homomorphisms defined by integrals
Sm e~ d(x), which are not even dense in the space of all homomorphisms

(see [12]).

7.6. THEOREM. Let 2e€P and let A"1—ix---xlq, (n=1,2,8, ---).
Then there is an element a € G such that lim A" =e,.

Proof. Consider the function :i":(,{["J)A on the set G. Let A=
{r:2€G, ﬁ(x)=1}. Since we 4, A is non-void. Let a=inf A. Since 4
is non-decreasing, we have {z:xe G, x>a} CA. Since 1 is continuous
on G, we have ae A. It follows that
=1 if z>a,

(7.6.1) i(x)Jl
<1 if z<<a.
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This implies that

(7.6.2) 1im2(x)={‘; li xi“’
if z>a.

Nn~>00

Therefore lim ﬁ“(x)=éu(x) for all xe G. The same relation holds if

xe G, as is shown by the same argument. (Continuity shows that
a=inf {x: x € G, f(x’)=1} .) Therefore, by 7.4, lim A"1=¢,.

7.7. Finally, we may look for the class of probability measures in P
that can be written in the form lim (gx---*xp,), where p,€ . For this

purpose, it is convenient to go over to 513 Let 2 be an arbitrary element
of B. Write l=p. Then for every positive integer », there is a unique

nonnegative function »'" on G. Tt is easy to see that p'" satisfies the
conditions of 6.7 and has the property that p'"(@)=1. Hence p'" is the
Fourier transform of a probability g, such that ull=2. It is further-
more clear that

lim p'*(x)-p'/"(x): -+ -p""(x)=p(x)

for all xe@. Therefore, if we write 2,=py*ppx+ - *p,, we have lim 2,=
2. Therefore every 1in ¥ is an “infinite product”. If 1 is not idempo-
tent (that is, not of the form ¢,), then no g, is idempotent, and 2 is
an infinite product with “nondegenerate™ factors.

If e,=lim (px---*p,), then it is clear that all g, are equal to e,.
For in the contrary case, we have f,(a)<1 for some ae G and some
positive integer j. Hence lim i (a)---p,(a) < pi(a)<1, and f- -+ +f1,

does not converge to é,=1 everywhere on G.
On the other hand, if be G and b > «a, choose any € G such that
a<u<a. A simple calculation shows that

lim (3.(x) + 3¢ (x))" =2 (x)

uniformly on G. Hence e, is an infinite product with all factors non-
degenerate. (For the case of a finite G, see [6], 8.2.)

7.8. An intuitive interpretation of the results of 7.1-7.7 may be
given. Consider a game whose possible outcomes are points of G, with
the probability that the outcome lies in A C G given by 2(4), where
leP. We play the game repeatedly and keep score as follows. After
the first game, we take its outcome, x;,, as our “score”. After each
subsequent game, we take as our score the maximum of its outcome
and our previous score, That is, the score after n» games is max (u,
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-++,@,). The probability that this score lies in 4 C G is 1"1(4). Hence,
as n—>o, 7.6 shows that the outcome is almost certainly a, where
a=inf {z: xe G, 1(Jz, ®])=0}. This is in accordance with what one
intuitively expects. If there is a positive probability of obtaining x in
some interval [a, b], then, after sufficiently many repetitions, the pro-
bability is arbitrarily close to 1 that the maximum will be greater than
or equal to a.

A similar interpretation, based on 7.7, can be given for games with
different probabilities 2,. Here an arbitrary 1€l can be obtained as
the limiting probability as the number of games goes to oo.

8. Examples and special results.

Our construction yields interesting results in certain classical cases.
We here list a few of them.

8.1. Let G be the closed interval [0, 1] on the real line, with the
usual ordering. Then C(G) consists of all complex, finite, countably
additive Borel measures on [0, 1]. The space G is the union I I\ {1},
where I=[0, 1[ and I’ is a replica of ]0, 1] disjoint from 7 and {1}. The
point 1 is isolated. Sets of the form [¢, ¢+ 6[\U]t’, ¢’ + 6], where [¢, £+ 0[
C I and J¢,t'+6'1C I, are a basis for open sets in I\JI’. This topology
was described many years ago by Alexandroff and Urysohn for counter-
example purposes [1], and it seems remarkable that it turns up here as
the maximal ideal space of a certain Banach algebra.

As noted in 6.9, the Fourier transforms 2 are just the continuous
functions on G that have finite variation on I\J {1}. Now let ¢ be any
complex-valued function on [0, 1] that has finite variation and is continu-
ous on the right: ¢(t+0)=¢(t) for 0 <t <0. It is well known ([3], p.
53) that ¢ determines and is determined by a 1e §(G) : ¢(t)=A([0, th
(0<L¢<1). Hence i(t)=ga(t) for all telI\J {1}, and it is easy to see
that 2(t’)=ga(t—0) for t'eI'. It follows that the algebra L of all right-
continuous functions of finite variation on [0, 1] with pointwise operations
is isomorphic to the algebra of Fourier transforms 1 and hence to &(G).
Furthermore, the homomorphisms of 8 onto K all have the form ¢ — ¢(¢)
(0<t<1) or ¢—>¢(t—0) (0<t<1). This answers a question put to
the first-named author by Professor Einar Hille in 1946. Finally, if
¢,€%B, and ¢, corresponds to the measure 1, €(G) (j=1, ---, m), then
the function ¢;+---- ©,, corresponds to Apk. -« xd,,.

8.2. Let G be any well-ordered set having a greatest element. It
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is obvious that G is compact and hence €(G) is an algebra of the kind
analyzed in the present paper. The measures in @(G) are all uncompli-
cated. In fact, if 1€ €(G), there exists a countable subset {a}my of G

and a sequence {z,};-; of complex numbers such that i |2,] < o and
n=1
such that

(8.2.1) 2= s, ©
n=1

The proof of this depends upon the following fact.

8.2.2. Let A be a well-ordered set with a greatest element and let
0 be a finitely additive, real-valued, non-negative measure on the Borel
sets of A such that é({p})=0 for all pe A and ¢J is inner regular in the
sense that J6(P)=sup {6(F'): F compact, ¥ P} for all intervals P=
fa, ul C A. Then §=0.

Proof. We may suppose that A is infinite. Let « be the least
element of A and let «, be the successor of a. Then &(a, a.[)=
d({a})=0. Suppose that we A and that J([a, {)=0 for all t<u. If
u has an immediate predecessor »_., then we have

o(la, uD=o(e, u-[\U {u-})=d([a, u-[)+6({u-})=0 .

If u has no immediate predecessor, then for every compact set F* C [«, u[,
there is a ¢<u suech that [«a, {] D F. There is also a ¢’ such that
t<<t' <u, and we have F C[a, t] [a, t/[. By our inductive hypothe-
sis, we have o([«, t[)=0. By the regularity of 0, we infer o([«, u[)=
sup {0(F): F compact, F' C[«, u[)} =0. Hence ([, u])=0 for all u e A.
Since d({w})=0, it follows that §(4)=0.

In proving 8.2.1 from 8.2.2, we may clearly suppose that 1 is non-
negative (use 1.6.5). Let {a,};., be the subset of G consisting of all

points for which 1 is positive, and let z,=4({a,}). Then d=1— ilzne% is
a measure satisfying the hypothesis of 8.2.2 (this ¢ is even countably
additive).

It follows that the algebra @(G) ig isomorphic to the algebra [,(G)
described in [8]. Since we have obtained all of the semicharacters of
G in the present case, Theorems 1.8, 3.3, and 4.4 of the present paper

are somewhat more precise that the corresponding Theorems 5.1, 2.7,
and 5.8 of [8].

8.3. As another illustration of our techniques, we find all idempotent
elements in €(G), where G satisfies 1.5. If 2+1=2, then =1 and 1 can
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assume only the values 0 and 1. According to 6.9, 2 must have finite

variation on @ and be continuous on (. Hence 4 can have only a finite
number of changes of sign on &. A simple argument shows that there
exists a finite subset {b,}7, of G such that « <0, <0,<---<b, <w
(we write a=b,, w=b,,, in the following formulas) with the following
properties. First, we may have

1—(=1)* for xelb, b.:[ (k=0,---,m),

8.3.1 2)(x) =
( ) (x) { 1_(_1)771 fOI' xe [bm’ bm+l] .

Second, we may have

1+(=1)" for xel[b, byl (k=0,---,m),

(8.3.2) 22(x):{
1+(_1)7n for xe [bm’ bm+1] .

These are the only possibilities. Translating this into a statement about
the original measures, we see that 1 must have the form

(8.3.3) A=es—e, Feg,+ o e e+ (—=1)%,, ,

where o <e¢, < e, < -+ <¢, < w. Since every measure 8.3.3 is obviously

idempotent, we have found all idempotent measures in 6(G). This may
be compared with Theorem 9.1 of [8], where we obtain a less precise
result for a class of measure algebras related to but more complicated
than those under study here.

8.4. Again let G satisfy 1.5. G(G) admits an obvious involution.
Let Le@(G) and L=M+4iN, where the functionals M and N are real-
valued for real-valued f e &(G). Then the mapping L—>L—M —1N is an
involution of @(G). Furthermore, @(G) is obviously symmetric under
this involution : (T)/\ is the complex conjugate of 7. However, @(G) is

never isomorphic to €(G) (pointwise operations) if G is infinite. If G is
infinite, we may suppose without loss of generality that G contains an
infinite strictly increasing subset

(8.4.1) A <0y, <y <o <Ly < ee
Let b be the least upper bound of this set. It is easy to see that
T={a,}\J {b’'} is a closed subset of G. The function 7 on 7T such that
r(an):—lf(l—(—l)”) and 7(b’)=0 is continuous on 7. By Tietze’s exten-
n
sion theorem, there is a continuous function j, on G such that rola,)=

r(a,) ([9], p. 242). Obviously 7, has infinite variation on & and hence
is not a Fourier transform (6.9).
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8.5. Following a suggestion of the referee, we note that if a semi-
group G satisfies all of the hypotheses of 1.1-1.8 and if 1.4 is replaced
by the hypothesis of local compactness, then it can be treated in much
the same way as we have treated the compact case. Certain changes,
however, are needed. The function space €(G) of 1.6 is replaced by
€*(G), the space of all bounded continuous functions on G. The conju-

gate space @(G) is replaced by Z(G), the space of all countably addi-
tive, complex-valued, finite Borel measures on G. (This is a realization

of @(G) for G compact but is ordinarily only a very small part of the
conjugate space of C*(G) if G is non-compact.) The integral 1.6.1
exists for all fe@*G) and ie . #(G) and defines a bounded linear
functional on €*(G). Under this definition, .#Z(G) is a convolution
algebra. Every semicharacter of G is defined by a Dedekind cut, and
it will be of the form 1.8.1, 1.8.2, or as in 1.11. _.#(G) has a unit
if and only if G has a least element a and the unit in this case is e,.
(See 2.10.) The results of §§33 and 4 can be carried over with obvious

modifications. The maximal ideal space of _#(G) is still G (see §5),
but the topologieal structure may be complicated. We omit the details.
The changes necessary in §§ 6-7 are considerably greater, and the more
general results to be obtained would not seem to justify carrying out
all of the details.
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SOME TAUBERIAN THEOREMS

AMNON JAKIMOVSKI

1. Introduction. The following Taurberian theorem is well known.

THEOREM A. If the sequence {s,}, n=0,1, 2, --., is summable Abel*
to s and the sequence {n(s,—S,-,)} is bounded on one side, then {s,} s
convergent to s.

Another Tauberian theorem, proved in [4], is

THEOREM B. If the series ﬁan is summable Abel to s and the se-
n=0

quence {n*(@t,-,—a,)} s bounded on one side, then lim na,=0.

N~>o0

An immediate consequence of Theorem B is the well known proposi-

tion that, for a convergent series ian with monotonically decreasing

n=0
terms, lim na,=0.
N~>oo

By a well known theorem of Tauber, the series ian of Theorem
n=0

B is convergent and hence the sequence {s,} of partial sums of the
series is summable (H, —1), that is, {s,} is summable by the Holder
method of order —1, as defined in §2. Thus Theorem B is equivalent
to the following

THEOREM C. If the sequence {s,}, n=0,1, 2, -.., 4is summable Abel
to s and the sequence {(g)(sn_z—2sn_1+sn)} 18 bounded on one side, then
{s.} 1s summable by the Holder method of summability of order —1.

As will be shown below both Theorem A and Theorem C are special
cases of general results proved in § 5 of this paper.
The Tauberian conditions,

(1) sa-s—s0=0u0

and

Received September 16, 1955 and in revised forms January 16, 1956, and May 28, 1956.
1 Concepts and propositions mentioned or used in this paper without definition or proof
are to be found in Hardy’s book [3].
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(5)(5a-s—2501+8)=0u(D),

belong to the general class of conditions of the form

() 450-s=0u0),

where %k is some fixed nonnegative integer and 4%s, is defined by

u k
Aks,—_—z(—l)v< )s
=0 VY
In this paper we prove for the Abel transformation Tauberian theorems

in which the Tauberian conditions are of the form

(2)4s0-s=0D),
or O(1), or O,1), as m»— o. For these theorems see specially § 5.

2. Some properties of Hausdorff and Holder transforms. For all se-
quences appearing in this paper the index denoting the order of the
terms will assume the values 0, 1, 2, ---. If, in some formulae in this
paper, a term appears with a negative value of the index denoting the
order of the term, then we shall understand that this term assumes
the value zero.

We say that a sequence {¢,} is a Hausdorff transform, generated
by the sequence {g,}, of the sequence {s,}, if

(1) to= 33 (1)@ " 1),

m=

for n=0,1,2,---. A Hausdorff transform generated by a sequence
{#,} will be called here, for shortness, a (9, p,) transform.

It is known that a necessary and sufficient condition for a sequence
{t,} to be a {9, p,} transform of {s,} is the existence of

(2) Aty=prn+ A",

for n=0,1,2, ---,
It is easy to see that, if {4,} is defined by

(3) 2=,

for n=0, 1, 2, ---, where {g,} is an arbitrary sequence, then for each
pair of nonnegative integers p and ¢

(4) 43 = A, .
If {4,} is defined by (8) then (2) might be written in the form
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(5) Aty= 472y A7,
for n=0, 1, 2, -.-. Equation (2) now shows that
(" - _
to= 3 (2 )" n)sm, n=0,1,2, -+,

is, by (4) and (5), equal to

35 (o )"

m=0

which, by the symmetry of (5) in {4,} and {s,}, is equal to
LS -
pol (m>(d Se)

= 35 (0 ) )(d7s,-)

for n=0, 1, 2, --- .
Thus the (9, p,) transform of {s,} might be defined equivalently
by

(6) to= 32 (0 ) m) (@50

I

for n=0,1, 2, ---; a fact which we use later.

We shall denote, in this paper, by {g¢}, where « is an arbitrary
fixed real number, the sequence {(n+1)"*}. The Holder transform of
order a, {h®} (or, in short, the (H, «a) transform) of a sequence, where
« is a real number, is defined as the (9, ) transform of the original
sequence. We say that a sequence {s,} is summable Holder to s if it is
summable (H, «) to s for some real number «. We say that {s,} is bound-
ed Holder if it is bounded (H, «) for some real number «.

Let k& be a fixed nonnegative integer. It is known that

( 7) Ak“/.lf[k):o
(8) pO=(=1) !
for n=0, 1, 2, ... ; therefore, by (6),
k
(9) B =3 () - (1) (478, -)

for n=0, 1, 2, --- ., Equations (9) and (8) immediately yield the identity
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0 0 v 0 AP
A A0 e 0
n
(10) (k)'dksn—k ‘u(()_g) Ap§ AZ#(()—Z)._. 0 hi
)
RN
p=0
[ A B e 4D R

for n=0,1, 2, --.. If the determinant on the right side of (10) is ex-
panded then we obtain

k
for n=0, 1, 2, --- ; where, as is easy to see,
k
(12) Sa®=0; a £ 0,
p=0

for £k=0,1, 2, --.. In the rest of this paper we shall denote by af®,
-, af” the coefficients which appear in (11).
It is known that the Holder transform of order « of the Holder

transform of order # of a sequence {s,} is identical with the Holder
transform of order a+p of {s,}.

Let {g,} be defined by ""=<Z>’ n=0,1, 2, ---, where k is a fixed

nonnegative integer. It is easy to see that

of N

0 for p>k.

A consequence of (13) is that the sequence {(Z)A"s,,_,c}, n=0,1, 2, -,

is a Hausdorff transform, generated by %(——1)7‘<Z)} , of the sequence
{8,}.

It is known that the product of two Hausdorff transformations is
commutative; therefore, taking one the transformations to be that given

by {2{®} and the other to be that given by {(Z)A"s,,_k} we obtain the
following consequence of (11).

LEMMA 1. Let a be a real number and k o nonnegative integer ;
then, for any sequence {s,},
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LAWTIREY ® k), pla—k+p)
(7)a i3 a0- b
p=0
Jor n=0,1,2, -+,

3. A proposition concerning the product of two summability
methods and three Tauberian theorems. We shall use later the follow-
ing proposition (proved by O. Szasz in [7]).

THEOREM D: If {s,} is summable Abel to s and {¢t,} s a regular
Hausdorff' transform of {s,}; then {t,} is summable Abel to s too,

and the three theorems

THEOREM E. If {s,} is summable Abel to s and {s,} is bounded,
then [s,} is summable (H, ¢) to s for each ¢ > 0.

THEOREM F. If {s,} is summable Abel to s and {s,} is bounded on
one side, then {s,} is summable (H, 1) to s.

Theorem E may be deduced from Theorem 92 and Theorem 70 of
[3], while Theorem F is Theorem 94 of the same book.

THEOREM G. If f(x) possesses a finite nth derivative, n=>2, in the
wnterval 0 < x <1, and if for some real number «

fz)y=o((1-2)"), z11,
SN (@)=0/1—z)*"), zt1,

then for all integers k satisfying 1 <k <n,
f®(x)=0((1—x)*"F), x11.

If, in Theorem G, we put 1—x=y!, the theorem becomes a result
first proved by N. Obrechkoff in [5] and subsequently generalized by
M. Parthasarathy and C.T. Rajagopal in Theorems B and C of [6].

We shall now show the following proposition to be a consequence
of Theorem G.

LFMMA 2. Let the real sequence {s,} be summable Abel to s, that is
(14) lim (1—2) 3 s,0"=s .
ztl n=0

If for some nonnegative integer k
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(15) (7)450-s=0s(1), s,
then for all integers p satisfying 0 < p < k,
(16) lim (1—m)-<k—v-l>-n§j;p (Z)-(A’”sn_,c)x”"’=(—1)""”(1‘;;1)8 .
Proof. The identity
S st =(=1y (=) " 3 (&5, )"
for r=0, 1, 2, - -+ combined with (14) yields (16) with p=0; that is
1n io (445, )" o (—1)Fs(1 — )1 z11.

Taking the kth derivative of the left side of (17) and using (15) we
obtain

=OL<§;x“"°>, 211,
=0/((1—2)"), xtl.

The validity of (16), for all integers p satisfying 0 < p <k, follows
now from (17) and (18) by an appeal to Theorem G with

@)= 2, @ —(—1)s(l—a)*", a=k—1, n=Fk, k=p.
n=0

4. A Tauberian inequality for power series. In this section we
prove one of the fundamental steps used in proving the main results
of this paper. This step is the following.

THEOREM 1. Let p be a fixed nonnegative integer. If for some real
or complex sequence {s,},

(pz1>"’p“8"’”‘l

then, for x=1—(m+1)7,

lim

n-—>co

=80+  f oo,

(19) il_lﬁi —(1_w)—p'dpsm—p_ Zp. (1 -x)r_p' i (Zj)wﬂ_r‘ Ap*lsn—p—l
Mmoo 7=0

n=0

< p,-lim (pf_l)-mﬂsn-p_l [ ,

n—>o0
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where p, is independent of {s,}.

The case p=0 of Theorem 1 is well known. See for instance, in-
equality (15) of H. Hadwiger’s paper [2].
The proof of Theorem 1 requires the following auxiliary proposition.

LEMMA 3. For any pair m, n of integers satisfying m=>1, n >0,
and for 0 <o <1, we have

0<1— 2( )(1 @)= P<( )(1—90)"‘

=0
where we suppose <z>=0 fp>n.

Proof. By the Taylor expansion

0=+ @)t QL povia + =0 poas o—a),

001,
we obtain, by choosing b=1, a=1—x (0 <z < 1) and f(¢)=¢t",

1— z( )(1 )ran ”+( )(1—x)m(9c+0(1—x))"“m, 0<0<1.

p=0

Hence, for the stated values (in the theorem) of m, » and =,
0<1— 2( )(l—x)”w" v<( )(l—w)””.
Proof of Theorem 1. We have

@) —(=a)ds = S (= ay e 51 2,

50
(

—-a5{1- %

r=0

:f)(l _x)rxn—-r} AP,

LR VI B () C B0 TR

n=m+1\ r=0
=I1+1,.

Lemma 3 yields

L < (l—x)"”g_‘b (1—x)r+?

(p?‘ 1). A 8ypa|

Now, for x=1—(m+ 1)},
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1) lim |1, ;m[(pﬁl).awlsn_,,_l :

m—»co N—>co

For each >0 there exists an integer m,(e) such that, for every
m > myfe),
() ] <0

We suppose now m > m,(e); then

@) LIS Ee+9- S S (Ma—aee (1)

n=m+1\ r=0

=(P+1)(S*V +¢) é(g)(l“w)“““"’- S a4 (n—p) !

n=m+1l

It is easy to show that for 0 <» < p we have

@)  (1-a) 0" 3 o)

n=m+

=xm+1—rp§l(_1)q(1 -—x)'(”‘r“’)-d”""‘q"l(m—}— 1—Q— p)—l
a=0

+(=1 S (n—p) 2,

n=m+l+p—1r
and for r=p

@)  A-ey e S @ d-p) = 5 (e-p) e

n=m+1

If we choose x=1—(m+1)"* and apply (23) and (24) to (22) we infer
easily that, for p >0, there exists a positive constant 2, which is in-
dependent of the sequence {s,} and such that

Tim || < 2,- (S* +¢) .

Since ¢ >0 is chosen arbitrarily we infer that, for x=1—(m+1)7,

(25) lim |, < 2,-S@#v

m-rco

Combining (20), (21) and (25) we see that our proposition is proved.
A consequence of Theorem 1 which will be used later is the follow-
ing proposition.

LEMMA 4. Let {s,} be summable Abel to s, and let there be a fixed
positive integer k such that

(26) (Z)Aks,,_k;oa), n—co.
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Then (i) (Z)A?’sn_”=o(1), n—oo, for 1< p<k, (ii) {s,} s conver-

gent to s.

Proof. 1If k=1, we have to prove conclusion (ii) alone, and this
follows from Theorem 1 with p=0. If k>2, then, by Theorem 1 and
(26), for x=1—(m+1)7%,

@7) lim —(1—:11;)”‘”-A"‘lsm_kﬂ—’g(l——x)'“"“‘i(Z)x"‘r-A"sn_k —0.
m—>oo =0 n=0
The Abel summability of {s,}, (26) and Lemma 3 show that
@) lim S a—ay- SV ats, =5 (- e (F 1) 0
ztl =0 n=o\7 r=0 T
=(=1)%0-(1=1)*
=0.
(28) and (27) show, for x=1—(m+1)"", that
lim |(1—2)~ED. 4571, oy]|=0.
The last fact shows, immediately, that
(kfl>'dk—13n—(k—1)=0(l) , 7 —> © ,

Thus we reduced %k in (26) by one, and by such a reduction (repeated
if necessary) prove conclusion (i). Finnally we derive conclusion (ii)
from conclusion (i) as already stated.

5. Some Tauberian theorems. The main result of this paper is
the following.

THEOREM 2. Be k some fized positive integer. A mecessary and
sufficient condition for {s,} to be summable (H, k) is that {s,} should be

summable Abel to s and lim <Z)'Aksn—k=0'

7n—»>oo

Proof. Proof of the sufficiency part. From the convergence of
{s.} to s and the relations (Z)Al’sn_?=o(1), n — oo, for p=1, ---, k (from

Lemma 4) rewritten in the form (11), we get

lim AP =s

N—>o0

for p=1, 2, ---, k, successively; which proves the sufficiency part of the
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theorem. The proof of the necessity part of our proposition follows
from (11) and the fact that the limits
im A, lim A ED, -« -, lim A

exist and are all equal to s.
Now we prove three interesting consequences of Theorem 2.

THEOREM 3. A necessary and sufficient condition for a sequence {s,}
to be summable (H, «), for some real value of «, is that {s,} should be
summable Abel and that the sequence

{('}:)A’“ sn_k} , n=0,1,2, ---

should be summable (H, a+k) to zero for some fixed positive integer k.

Proof. The necessity of the Abel summability of {s,} is obvious.
The necessity of the (H, a+k) summability of

{(Z’)A s} , n=0,1,2---,

to zero follows from Lemma 1 (if we replace « there by «+£k). Thus
we have proved the necessity part of our theorem. The sufficiency
part of our theorem is proved as follows. Suppose, first, that o >—k.
Then, by Theorem D, the sequence

{hsb“+k)} ’ n':ov lr 27 ctty

is summable Abel to the same sum as the original sequence {s,}, hence,
using Theorem 2 with {A%*®} instead of {s,}, which is justified by
Lemma 1 with « replaced by «a+#k, {s,} is summable (H, «); which
proves the sufficiency part of our theorem for a>—k. In the case

{(E)a e}

being summable (H, a+k) to zero, is necessarily convergent to zero;
and so, by Theorem 2, {s,} is summable (H, —k), or {A®} is summable
(H, —a—k), and consequently summable Abel too. Thus, by Theorem
D, {#{*®} is also summable Abel and the proof can be completed as in
the case o > —k.

The case k=1 is a special case of Theorem (9.4) of [1], with A=«
+1 there.

THEOREM 4. Be k an arbitrary fived nonnegative integer. If a
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sequence {s,) is summable Abel to s and the sequence

(@]

is bounded (H, a+k) for some real number «, then {s,} is summable (H,
a+e) for each e > 0.

The case k=1 of the last theorem is the special case f=a+1 of
Theorem (9.5) (for Abel summability) of [1].

Proof. TFirst suppose @ >0. Then, by Theorem D, (11) and (12),
v, =3 aPhFI=0(1) , n—sco,
p=0

and {v,} is summable Abel to zero. Therefore, by Theorem E, {v,} is
summable (H, ¢), for each ¢ >0, to zero, or {(Z) AF Sn—k} is summable

(H, a+k+e¢) to zero, and the conclusion follows by Theorem 3. If «
<0, we apply the preceding argument to the (H, —a) transform of
{v,} which is clearly O(1), as n— o, and summable Abel to zero.
Thus we find that the (H, —«a) transform of {v,} is summable (H, ¢)
to zero, for each ¢ >0, or that {»,} in summable (H, —a+¢) to zero
and hence summable Abel to zero. Since v,=0(1), {v,} is, by Theorem
E, summable (H, ¢) to zero and the proof is completed exactly as in the
case o > 0.

THEOREM 5. Be k an arbitrary fixed positive integer. If a sequen-
ce {s,} is summable Abel to s and the sequence

{(2)a-

18 bounded (H, a+k) on one side, then {s,} is summable (H, a+1) to s.

The case k=1 is the special case f=a+1 of Theorem (9.6) of [1].

The proof of Theorem 5 is exactly the same as that of Theorem 4.
But now we have to use Theorem F in place of Theorem E.

In conclusion I wish to thank Professor C. T. Rajagopal for helpful
suggestions.
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SIMPLIFIED PROOFS OF “SOME TAUBERIAN THEOREMS”
OF JAKIMOVSKI

C.T. RAJAGOPAL

1. Introduction. In this note, the preceding paper (mentioned in
the title) will be referred to as [J], the papers or books numbered 1, 2,
- in the bibliography concluding [J] will be referred to as [J1], [J2],---,
while those in the numbered list of references at the end will be re-
ferred to by their numbers in square brackets.
The notation in [J] is retained with a slight simplification as follows.
As in Hardy’s Divergent series [J3], a sequence {t,} is called a Haus-
dorff transform of another sequence {s,} when there is a sequence {z,}
such that

(1 ) Ant():#nAnSo .

If « is a real number, the special case of {¢,} defined by (1) with g,
=(n+1)"*, called the (H, «a) transform, will be denoted by H*s where
s denotes the sequence {s,}. Since two Hausdorff transformations are
commutable, the operator H* is such that H*HPF=HPH*=H®*® and H°
is the identity operator.

From the Abel or (A) transform of {s,}, defined as the left-hand
member of

(2) (1-2)3 s,2"=(~1)"(L—a) " 3 475, 0",

0<ﬂ7<1, p:‘l, 2, 3: ttty

we deduce the equality (2) by induction on p. It is in the form of the
right-hand member of (2) that the (A) transform is used in this note.

For any sequence {s,}, summability (H, «) to a finite value [ and
summability (A) to { have their usual meanings as in [J].

2. The fundamental theorem in [J]. This theorem ([J], Theorem
2) may be restated as follows with its non-trivial parts separated, so
that Tauber’s first theorem ([J3], Theorem 85) emerges as the case
k=1 of the first part, with the conclusion of the convergence of {s,}
restated as that of the (H, —1) summability of {s,}.

THEOREM 1. (a) If () {s.} is summable (A) to I, (ii) for a positive
integer k, n*d’s,_,=0(), n — o, then {s,} is summable (H, —k) to l.

Received June 18, 1956.
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(b) Conditions (i) and (ii) are also necessary for {s,} to be summable
(H, —k) to L.

For establishing this theorem, Jakimovski’s tools are (1) the Tau-
berian technique embodied in Lemma 2 of this note with the additional
complications necessary to bring in n”4%s,_, to take the place of ndvs,_ ,,
(2) the technique of repeated differences (or differentiation) implicit in
his appeal to one particular case of a theorem proved by Parthasarathy
and Rajagopal ([J6], case k=[++ of Theorem C). However, the second
technique, while generally useful in proving Tauberian theorems of the
Hardy-Littlewood class, is not required at all for proving the original
Tauberian theorems; and it is perhaps not very satisfactory to use it to
prove Theorem 1 which is essentially of the latter class of theorems.
The present note supplies a new proof of Theorem 1 whose merit is
that it depends only on Lemma 2 as it stands and on the interpreta-
tion, in Lemma 1, of n(rn—1)---(n—p+1)d¥s,_,, which is asympotically
equal to n”4%,_,, as a Hausdorff transform of s,. Although the content
of Lemma 1 is due to Jakimovski, the proof of Lemma 1 as it appears
here is a simplification of his proof, resulting from the symbolic repre-
sentation (5) of the Hausdorff transformation of s, in question, sug-
gested to me by Mr. M. R. Parameswaran.

LEMyMA 1. If k is a positive tnteger and
(3) to=(7) 45 s,
then t, is related to s, by (1) with

(4) m=(=11(})

that is, {t,} in (8) i<s the Hausdorff tramsform of {s,} corresponding to
the {p,} defined by (4), and further we have symbolically

(5) (t.) E(;kaH—k(Ho—Hl)(HO-zﬂl). c(H'—EHYs

k k
= ;Ic)}]—lﬁ»r) , C(/,(.k)= ,
= 5%
the order of factors in (5) being immaterial.

Here I must record may indebtedness to Dr. Jakimovski who has
pointed out an implication of the first part of (5), namely, that
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()50 = D S stmpmmrsos,

Y T

where S™ are Stirling’s numbers of the first kind ([1], p. 142, (3)).

Proof. The relation between s, and ¢, is proved directly, starting
from

at= 3 (= ()t

and showing that substitution for ¢, from (3) leads to (1) with the {g,}
in (4).
Equation (5) follows from the fact that (4) can be written:

S (LA S S

Now the factors (n+1)f, 1—(n+1)"', 1-2(nr+D", ---, 1—k(n+1)7,
taken successively instead of g, in (1), make the {¢,} of {1} the Haus-
dorff transforms of {s,} corresponding to the operators H-*, H —H’,
H'—-2H*, ..., H'—kH"' respectively. Hence the {¢,} of (8) is the pro-
duct of the several Hausdorff transforms last mentioned multiplied by
(—1)¥/k!. We thus have the representation in (5) of the {¢,} in (8),
and we can take the factors in this representation in any order since
Hausdorff transformations are commutable.

Lemma 2. If {s,} is such that nd's,.,=0Q), then, for x=1-n"",

n =3
lim supi >, 4's,.,— >, L's, 2"
7=0

n—>cc Yr=0

<7 lim sup |nd's, |
N—r00
where t is the ‘¢ Tauberian constant’ :

r=C+ Zre"”x“ dx , C=Euler’s constant.
1

This result, due to Hadwiger ([J2], inequality (15)), is a particular
case of a more general result (e.g. [2], case a=1, 1,==n, ¢*(u)=e* of
Theorem 2(b)).

Proof of Theorem 1. (a) We may suppose without loss of gene-
rality that [=0. For, we have only to consider, instead of {s,}, the
new sequence {s,—!} which is clearly subject to hypothesis (i) with
{=0 and also hypothesis (ii).

First, we take 4*s,_, instead of 4'%,_, in Lemma 1 and obtain, for
x=1—n"1,



958 C. T. RAJAGOPAL

(6) lim sup (1—az)**| 3 d's,_,— 3 4's, 7| < z lim sup (1—z)~**!|nds, |
nN->oc0 r=0 r=0 n—>oco

=t lim sup [r¥4*s,_,]| .

N0

Next, we take p=Fk in (2) and get
(7) (—1)4(1L— )%+ ioms,._er=(1-—x) Ssar=o(l), @—1-0,
r= r=0

as a result of hypothesis (i) where (=0 according to our supposition.
Using in (6) hypothesis (ii) and (7) with x=1—»"", we obtain

REIA g, = — (L— )~ * S ¥, —o(1), n— oo,
=0

If k=1, we infer at once that s, converges to 0. If k> 2, we repeat
the foregoing argument with £—1, k—2, .--, 1 successively in place of
k and find that n?4¥s,_,=o(1) for p=k—2, k—38, ..+, 0, thus finally
drawing the same inference as before. After this we use the fact,
following from n*4’s,_,=o(1), 1 < p <k, taken along with (5), that

(8) (-.—;)_})I-‘H"’(H”—Hl)(ﬂ"——ZHI)- <« (H"— pHY)s E<Z>A”sn_p=o(1)

as n—> o for p=1, 2, --., k, and prove successively that H's, H7’s,
««., H*s all converge to 0={.

(b) If {s,} is summable (H, —k) to{, then H %s, p=k, k—1,---, 0,
are obviously each convergent to/ and (8) necessarily holds for p=Fk;
also {s,}, being convergent to I, is necessarily summable (A) to /.

3. Remarks on other theorems in [J]. It may be pointed out how
(5) in conjunction with the notation of this note simplifies the presenta-
tion of Jakimovski’s main theorems ([J], Theorems 3,5) restated in this
notation as Theorems 2,3. The simplified presentation, like the one
given by Jakimovski, depends only on the results of the preceding sec-
tion, O. Szasz’s theorem for the product of a regular Hausdorff method
of summability and (A) summability ([J], Theorem D, generalized by
Rajagopal in [3], Theorem I), and finally an idea whose simplest ex-
pression is the lemma which follows.

LEMMA 8. If {s,} is summable (A) to | and the sequence denoted by
H®s, where a is any real number, is bounded on one side, then H**'s is
convergent to .

The case «=0 of Lemma 4 is classical, The case a =40 is includ-
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ed in one of Jakimovski’s theorems ([J4], Theorem (9.6)). However, it
is best to deduce it from the case a=0 by means of the following
observation. If « >0, then H% is summable (A) to [ by Szasz’s
product-theorem referred to above; while, if « <0, H% is again sum-
mable (A) to ! since it is summable (H, —a+1) to I as a result of
s==H"%(H"s) being bounded on one side and summable (A) to {.

In Lemma 3 we extend a Tauberian theorem for sequences s sum-
mable (A) by replacing s by H% in the Tauberian hypothesis and the
conclusion. The method of extension shows that, in Theorem 1 (a), we
may replace s by H%, or, a being any real number, replace s by
H***s, in hypothesis (ii) and the conclusion. The result of the replace-
ment of s by H%**s is stated below.

THEOREM 2. (a) If (i) the sequence {s,} is summable (A) to 1, (ii)
Jor a real number o and a positive integer k, the sequence H®**t is null,
where t = {t,} is defined by (8) or (5), then {s,} is summable (H, «) tol.

(b) Conditions (i) and (ii) are also clearly mecessary for {s,} to be
summable (H, a) to .

An immediate deduction from Theorem 2 is the next.

THEOREM 3. If, in Theorem 2(a), condition (ii) s 7'ej)laced by the
condition that H***t is bounded on one side, the conclusion will be that
{s.} s summable (H, a+1) to .

Proof. By Szasz’s product-theorem, H*t is summable (A) to 0.
Hence, by Lemma 3 with H*¢ instead of s, H**'**% is a null sequence,
and the conclusion follows from Theorem 2(a) with a+1 instead of «a.

4. Addition. (November 23, 1956.) Szisz ([4], p. 1019, Lemma 5)
has proved the following theorem.

THEOREM X. Let {s,} be a sequence which is (i) summable (A) to I,
(ii) bounded below and quasi-monotonic-decreasing in the sense that there
%8s a constant ¢ > 0 such that

Sn+1 —<:, (1 +C/?Z)Sn ’ n :> nO(C)'

Then {s,} s convergent to [.
Appealing to Lemma 3, we can replace s=={s,} by H% in the
hypothesis (ii) and the conclusion of Theorem X, and obtain the follow-

ing theorem.

THEOREM Y. Let s be a sequence such that (i) it is summable (A) to
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I, (ii) its transform H"s is bounded below and quasi-monotonic-decreasing
according to the definition in Theorem X. Then s is summable (H, «)
to 1.

The cases a=0, a=~1 of Theorem Y have applications to trigono-
metric series ([4]: p. 1020, Theorem 3 and p. 1031, Theorem 8).
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A CONGRUENCE THEOREM FOR TREES

PauL J. KELLY

Let A and B be two trees with vertex sets a4 @, --+, @, and
b, b, -+, b, respectively. The trees are congurent, are isomorphic, or
‘““are the same type”’, (4 == B), if there exists a one-to-one correspon-
dence between their vertices which preserves the join-relationship be-
tween pairs of vertices. Let c(a;) denote the (n~—1)-point subgraph of
A_obtained by deleting a, and all joins (arcs, segments) at a;, from A.
It is the purpose here to show that if there is a one-to-one correspon-
dence in type, and frequenecy of type, between the sub-graphs of order
n—1 in A and B, that is, if there exists a labeling such that ¢(a;)==
cb,), i=1,2, --+, n, then A~ B. It is assumed throughout, therefore,
that there is a labeling of the two trees 4 and B such that c(a;)=c(b,),
i1=1, 2, +--, m, where n > 3. '

Some lemmas to the main theorem are established first. Let T
denote a certain type of graph of order j, where 2 <j<'n, which oc-
curs as a subgraph « times in A and # times in B. If «, is the num-
ber of T-type subgraphs which have a, as a vertex, then,

() o
Y

where b, is the number of T-type subgraphs having b, as a vertex.
Because c¢(a;) =~ c(b;), the number of T-type subgraphs which do not
have a, as a vertex is the same as the number which do not have b,
as a vertex. Thus '

Similarly,

a'—az:ﬂ—ﬂi s 71:11 21 R (2

Therefore
S (@—f) =S @—F)

80 n(a—f)=j(a—p), which implies a=p. This, in turn, implies a,=p,,
1=1, 2, .-+, n, and the lemma is established.
LEMMA 1. Every type of proper subgraph which occurs in A or B
" Received December 16, 1955.
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occurs the same number of times in both, and a, and b, are vertices in
the same number of these subgraphs, i=1, 2, -+, n.

The case j=2 gives a special result.

LeMMA 2. The vertices a, and b, have the same degree, 1=1, 2, +- -, n.

Next it is clear that if either A or B consists of just a path between
two end points then the other is also a path of the same length. If
neither is just a path, then their maximal-length paths are proper sub-
graphs and have the same length because of Lemma 1.

This proves the third lemma.

LeEMMA 3. The trees A and B have the same radius r and both
trees are central or both are bicentral.

A correspondence between c(a;) and c(b,), under which c(a;) =~ ¢(b,),
will be called an a,-mapping (or b,-mapping), and the main theorem is
obtained by using these submappings to define a congruence of A and
B. Because such a congruence is more easily obtained when the trees
are central, the proof will be carried through for bicentral trees only,
with the simpler proof implied by analogy. It is supposed therefore

that A has bicenters a, and @, and that B has bicenters &, and b, (where
a, is not necessarily a,).

Let F' be a component in the graph obtained by deleting from A4
the bicenters and all joins to them. There is a point of F' joined in A
to one bicenter, say a,, and no point of F is joined in 4 to a,. By
(@ \J F) is meant the graph, which has for its vertices @, and the vertices
of F', and whose joins are the same as they are in A. The graph (a,\J F)
is a limb at a,. It is a radial or nonradial limb according as it does
not possess an r-point, that is, a point whose distance in A from the
nearest bicenter is . An easy consequence of Lemma 1 is that a; is an
r-point if and only if b, is an r-point.

Some special subgraphs of A and B are now defined. At a, the
radial limbs are

Ay Apy voey Aim, s
and the non-radial limbs are

Cisy Cizy +++, Cis,
while at b, the radial limbs are

Bils Bi21 ) Bmz
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and the non-radial limbs are
Dy, Dy, +++, Dy, =1, 2.
Next,
A=A U 4\ -V Aw), B=B,UB,\U:---UBy),
Ci=(Cu U CuU -+~ U Cu),

and
Di=Du\U Dy, \J +-- U Dy), i=1, 2.
Finally,
A=A U 4), B,=(B.U B), C=(C:U G,
and

D‘:(DL \./" Dz) .

In obtaining congruences for these special subgraphs, an important
role is played by center preserving mappings, that is, those which pair

@, and @, in some order with b, and b5, It is useful, therefore, to
define a vertex a, to be a mnonessential point, (n.e. point), if it is of
degree one (is an end point) such that c¢(a;) is a bicentral tree of radius
r. Every end point, which is not an #-point, is an n.e. point. An
r-point is nonessential if it belongs to a limb with more than one »-
point, or if the bicenter to which its limb belongs has more than one
radial limb. If @, is an n.e. point then b, is an n.e. point and every
a,-mapping is center preserving. The following fact is also useful.

LEMMA 4. If a, ¢s an n.e. point of A in A, then b, is an n. e. point
of B in B,.

Proof. Assume b,€ B,, that is, b,€ D. Any a,-mapping must pair
the remainder of A, (without a;) with all of B,, so the order of A, is
one greater than that of B,. If A had a nonradial limb it would have
an n.e. point in C, say a;, and an a,-mapping would have to pair A4,
with all or part of B,, which is impossible. Therefore A has no non-
radial limb and b, is the only point of B not in B,. The sum of the
degrees of @, and a, is therefore smaller than the sum of the degrees

of b, and b,, If B had an n.e. point b,, distinct from b, the sum of

the degrees of b, and b, would be the same in ¢(b,) as in B, and there-
fore a b,-mapping could not be center preserving. From this it follows
that @, and b, are the only n.e. points in A and B respectively. Thus
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A consists of a (2r+1)-path and one extra point «; joined to a point
a,, which is not a center, while B consists of a (2r+1)-path and one
extra point b, joined to a center. This center is b, since a, is the only
point in A of degree three. But now it is clear that ¢(a,) has a com-
ponent which is a path of greater length than any in ¢(d,), which con-
tradicts c(a,) = c(b;). The assumption that b, is in D is therefore false
and Lemma 4 is established.

THEOREM. If A and B are trees with wvertices a,, @, -+, &, and
b, b, -+, by, n =3, respectively, and c(a,) = &(by), 1=1,2, -+, n then
A= B.

Proof. As previously indicated, the details will be given only for
the case where 4 and B are bicentral.

Case 1. One of the trees, say A4, has a nonradial limb. Then A4
has an n.e. point @, in C and, from Lemma 4, b, is in D. An a;-
mapping, therefore, pairs A, with B,, so

(1) A ~B,.
Next,

(2) There is a congruence of C and D which pairs @, a, in

some order with b, and b, .

Consider the n.e. points of A in 4,. First, suppose the limb to which
one of these points a, belongs is still of length + after a, is deleted
from it. Then an a,mapping cannot take this sub-limb into D, and so
must pair the remainder of A4, with the remainder of B,. It therefore
pairs C with D as stated in (2). Next, suppose every n.e. point which
belongs to A, or B, is the end of an r-path limb. If a, and b, are
such points, then deleting them from their limbs produces two (r—1)-
path limbs. Since these sub-limbs are congruent, an a,-mapping either
pairs C and D as stated in (2) or else can be redefined to do so. The
only remaining possibility is that no n.e. point occurs in either A4, or
B,, so eachis a (2r+1)-path. Let ¢, be the 7-point in 4, and b, be the
r-point in B;, i=1, 2. Since C(a,) is a tree of radius » and center a,

and c(b) is a congruent tree with center b,, an a,-mapping pairs @, and
b,. It must also pair the nonradial limbs of A4 at @, with the nonradial
limbs of B atbh, and hence C,~ D, By the same reasoning, an a,-

mapping establishes a congruence of C, and D, which pairs @ with &,
so there is clearly a congruence of C and D satisfying (2).
If a congruence of C and D, satisfying (2), and a congruence of
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A, and B, both pair the bicenters in the same order, then clearly 4 =~
B. Assume, on the contrary, that every congruence of 4, with B, pairs

the bicenters in one order, say @ with b, and a, with b, while every
congruence of C and D, satisfying (2), pairs the bicenters in the op-
posite order, namely @ with b, and a, with 5,. It will be shown that
this leads to a contradiction and hence that A =~ B under Case 1. First,
from the assumption about the congruence of A4, and B,, it follows that
each is not just a (2r+1)-path. Therefore 4 has an n. e. point a, in A4,,
and it may be supposed that a,€ 4,. Since an ¢;,-mapping implies a
congruence of C and D satisfying (2) it must pair &, and @, with b, and
b, in that order. By assumption, 4,2~ B, and 4, >~ B,, so b;e B, would
imply that an a,-mapping pairs 4, with B;. But then A, =~ A, >~ B, = B,
would contradict the unique mapping of bicenters in any congruence of
A, with B,. Therefore b,e B,. Let f; be the order of A, and B, and
f5 be that of 4, and B,. An g,-mapping shows f,=fi—1. Suppose A
has an n.e. point @, in 4,. Then an a,-mapping pairs @, and b,, so it
pairs A, with all or part of B,. But this is impossible because f, > f,.
Therefore there is no n.e. point of 4 in A,, and, by the same reason-
ing, there is no n.e. point of B in B,. Thus A, and B, are paths of
length », and A and B each have just two end points in A4, and B,
respectively.

Now consider nonradial limbs. At least one exists so, from Lemma
4, at least one each exists in each tree. Suppose there is a nonradial
fimb at a,, and let a, be an end point of A in this limb. Then b,¢€ D,
Because an a;,-mapping includes a congruence of 4, and B,, it pairs g,
with b, and @, with b, If b, were in D, such a mapping would imply
C,~ D,, and this, with C, =~ D, and C,~ D,, would yield C,~C,=~ D,
2~ D,, contradicting the unique center pairings in a congruence of C and
D. Therefore b,e D,. Let f; be the order of C, and D, and f, by the
order of C, and D,. An a,mapping shows that f;—1=f,. Therefore
there is no n.e. point in C, and none in D,. For if a, in C, were an
n.e. point, an a,-mapping would pair @, with b, and therefore would
pair C, with all or part of D,. This is impossible because f; > f..
There are, therefore, no nonradial limbs at @, or b, and there is just
one nonradial limb at @, and at b, each of length one. The center @,
and b, are of degree three and @, and b, have degree two. Let a, be
the end point of A in A,. The tree c¢(a,) has only one center, namely
a;, of degree three. If the r-point b, were in B, the center of c(b,)
would have degree two, contradicting c(a;,) =~ ¢(b). So b, eB,. Also b
is the only r-point in B,, for otherwise ¢(b,) would be a bicentral tree.
If a, and b, denote the other r-points of 4 and B respectively, it fol-
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lows that c(a,) and c¢(b,) are central trees and that @ and b, are their
respective centers. But in ¢(a,) the radial arm to a, is a path in ¢(b,)
both radial arms branch, and this contradicts ¢(a,) = ¢(b,). The supposi-
tion that a nonradial limb exists at @, rather than @, leads to the same
kind of contradiction, hence 4 =~ B under all the possibilities of Case 1.

Case 2. There are no nonradial limbs but one tree has at least
three radial limbs. Suppose there are at least two radial limbs at a,

and now let @,=a, and b,=b,. One and only one component of c(a,) is
a central tree of radius ». Its center is @, and all of its limbs are
radial. Let b, be the center of the corresponding, congruent tree in

e(b). If b, is neither b, or b, then b; is a non-end point of B in some

limb of B, say a limb at ;. There is a path P from b,, to b; and there
also exists a path P’ starting at b; and having no join in common with
P. Since the length of P’ must be less than », all the limbs of the
tree centered at b cannot be radial. The supposition that b, is neither

b, or b, is therefore false, and b, may be taken to be . Then A, B,
is implied by an a,-mapping.

If there are at least two radial arms at either a, or b, the same
reasoning shows that 4, = B, and this, with A,~ B,, implies A =~ B.
Suppose, then, that A, and B, are the only limbs at a, and b, respec-
tively, and let the order of A, be at least as great as that of B.
There is an r-point @; in A, and it is an n.e., point. An a,mapping
must pair @, with b, because these are of degree two while @, and b,
are of degree at least three. The mapping therefore pairs A4, with all
or part of B,;, and since the latter case is excluded by the orders of
A, and B, it follows that A, =~ B,,. This, with 4, = B,, implies A = B
and completes Case 2.

Case 3. FEach tree has exactly two limbs. Let »; be the order of
A; and n; be the order of B,, ¢=1, 2. Assume that the pair n,, n, is
not the pair n;, n; in either order. Then, because n,+n,=n;+n;, one
of the four numbers is a strict maximum. Suppose n, > max (n,, %, n;).
Then A, is not congruent to B, or B, or any of their subgraphs, and
therefore A4, has no n.e. points. It is therefore a path with one r-
point of A, say a,. Then vertex b, is an r-point and is the only »-point
of its limb because a; is not an n.e. point. The tree c(a;) is central,
has radius r, and @, is its center, so its two radial limbs have orders
n, and n,. The center of c(b;) is either b, or b, but in either case the
two limbs have orders »n{ and n;, so a congruence of c¢(a;) and c(bs) is
impossible. From this contradiction it follows that =, and =, are in
some order the numbers n; and n; and it may be supposed that n,=n;
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and n,=n; .

Now consider the n.e. points. If none exist, then both trees are
(2r +1)-paths and hence are congruent. If, on the other hand, a, is an
n.e. point of A, then b, is an n.e. point of B and the following ap-
plies :

(3) If a;, and b, are n.e. points, with «, in 4, and b, in B, (or
a; in A, and b, in B,), then A >~ B,

For, suppose a;€ A, and b, € B,. Then because of the orders of the limbs,
an a,-mapping pairs A, with B;, so 4,2 B, and n,=n,. If there is no
n.e. point of 4 in A4, then 4, is an r-path and so is B, because it is
congruent to A,. But then, because n,=mn,, both A, and B, are also »-
paths, which is contradictory. Therefore, there exists an n.e. point @,
in A,. Because n,=mn,, an a;mapping pairs A, either with B, or with
B,. The first case, together with A, >~ B,, implies A =~ B directly. The
second case implies A; >~ B, =¥ A,, and from this it follows that there is
an n.e. point, say b,, in B,. Then a b,-mapping pairs B, with either
A, or A,. Therefore all the limbs are the limbs are the same type and
Az B.

Because of (3), it is now only necessary to consider the case a, € 4,
and b, € B.. There are two sub-cases.

Case 3.1. There is no n.e. point in either A, or B,. Then A, = B,
since they are both r-paths. Let the end point of A, be a;. Then
c{a;) is a central tree, of radius », whose center is a,. From
e(as) = e(by), it follows that b, is the only #-point of some limb in
B. Assume b,e B,. Let b, be the r-point of B in B,. Then a, is the
only r-point of 4 in A4,. An a,-mapping pairs a, with b, and also pairs
the limb of c¢(a,) which is not a path with the limit of e¢(b,) which is
not a path. It therefore pairs a, with b,;,, the first point in the limb
B,. Because a, is of degree two, the point b, is of degree two and so
is joined to a well defined second point in B, say b,. An a;-mapping

pairs b, and @, and, by the same reasoning as before, pairs 6, with the
first point, say a,, in 4;. Then a, is of degree two and so is joined
to a well defined second point @,, in 4;,. An a-~mapping must, then,
pairs a,, with b, so b, is of degree two and joins the third point in
B,. Alternating this way between the @, and @, mappings, it follows
that all points of 4, and B, are of degree two, which is absurd. The
assumption that b, is in B, is therefore false, so b,€B,. Now an a,

mapping must pair @, with b, and must also pair the branching and

non-branching limbs at @, and b,. Therefore A4, ~ B,, and this, with
A, 22 B,, implies 4 =~ B.
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Case 3.2. There is an n.e. point in A4, or else there is one in B,.
Suppose a;€ A, is nonessential. If b, is in B,, then, from (8), A~ B,
so suppose b,e€ B,. If an a,-mapping pairs A, with B, and an a,-mapping
pairs A; with B, then clearly A =~ B. So suppose an a;-mapping pairs
A, with the remainder of B, (without ;). Then n,=n,+1 and because
of this an a;-mapping pairs A, with B,, hence 4, >~ B,. Let a, be the
point of A, paired with b, in an a,mapping. Then A, minus a,, that
is the graph obtained from A, by deleting @, and all joins to a,, is
congruent to B, minus b,. But an a;-mapping pairs 4, with B, minus
b,. Therefore c(a;) is a bicentral tree both of whose limbs are con-
gruent to 4,. From Lemma 1 there is a subgraph of the same type
in B and hence B, A,. This, with 4, ~ B,, implies A ~ B and com-
pletes the proof.

It is natural to wonder if any two graphs must be isomorphic when
they have the same composition in terms of (n—1)-point subgraphs.
The author has considered the question for graphs having at most one
join for any pair of points, with no point joined to itself. Actual in-
spection shows that the theorem is valid for all such graphs up to order
seven. It also holds for any two such graphs of general, finite order
if either is disconnected or its transpose is disconnected. (The trans-
pose is obtained by reversing the join relationship between every pair
of vertices.) However, the author was unable to prove or disprove the
general case. As a final comment, it is not true that the same com-
position in terms of (n—2)-point subgraphs implies isomorphism.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA COLLEGE.
INSTITUTE FOR ADVANCED STUDY, PRINCETON, N.J.



ON THE MEASURE OF NORMAL FORMULAS

ROBERT MCNAUGHTON

1. Introduction. Quine has recently found (in {1}, [2] and [3]) a
reasonably practical method which yields the simplest normal equivalent
of a given truth functional formula. The problem of this paper is to
find a practical method which yields the simplest normal formula with
a given measure. Roughly, the measure of a formula is the number
of T's in the column under the formula in a truth table which has
2! rows; these rows represent all possible assignments of 7"s and F's
to d letters including all the letters of the formula and perhaps others.
The problem, which is rather difficult, arises in the design of certain
networks in digital computers (described at the end of §2) as part of
a more general problem which is all the more difficult. Networks,
however, are not discussed at all in the remainder of the paper, where
the main problem is attacked as a problem in pure logic. I have had
no success in obtaining a method which is generally satisfactory, but
have succeeded in proving a few theorems which will probably be in-
dispensable in any future attack on the problem.

2. The problem and its origin. Most of the terminology which I
shall use is Quine’s, Where it conflicts with Quine’s terminology of [1],
[2] and [3] I shall explicitly say so; on the other hand, I shall not pre-
suppose that the reader is familiar with any of these papers. An
italicized word appearing in a sentence of this paper is deﬁhed in that
sentence. In this section a sentence without an italicized wﬁ}[ord is often
a theorem which is either well known or obvious.

A formula is made up in the usual manner from the letters A4,, ---,
A, by means of negation, conjunction and disjunction (or alternation).

For any formulas @,, «++, @,, n>2, @, is the negation of @, @0, -+,
is the conjunction of @, ---, ®, {these being conjuncts), and @ \/@,\/« -
\/®@, is the disjunction (called ‘alternation’ by Quine) of @, .-+, @,
(these being disjuncts). (I assume that the reader is familiar enough
with the general literature to see how the circularity of definition in
the last two sentences can be avoided.) A letter or its negation is a
lLiteral. If a formula is a disjunction, then the disjuncts are clauses;
if it is not a disjunction, the formula itself is its only clause. A for-
mula all of whose clauses are literals or conjunctions of literals is a
normal formula. (For Quine a clause of a normal formula cannot have

Received January 30, 1956. This paper is an abridged version of report No. 1, con-
tract DA-04-200-ORD-436 (Applied Mathematics and Statistics Laboratory, Stanford, Cali-
fornia), sponsored by the Office of Ordnance Research.
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repetitious letters.)

A formula is comsistent if it comes out true under some interpreta-
tion of its letters. An inconsistent normal formula, then, must be one
in which every clause is inconsistent; a clause of a normal formula is
inconsistent if and only if there is a letter appearing both with and
without a bar. An inconsistent clause can be omitted from any con-
sistent normal formula and the resulting formula is equivalent to the
original. A clause of a normal formula subsumes another if every literal
of the second is a literal of the first. Any clause which subsumes
another in a normal formula can be omitted and the resulting formula
is equivalent to the original. A literal which has occurred previously
in the same clause can be omitted and the resulting clause is equivalent
to the original clause; hence, the resulting formula is equivalent to the
original formula. A normal formula in which no clause subsumes ano-
ther, no clause is inconsistent, and no clause contains a repeated literal,
is an apparently trredundant normal formula. An irredundant normal
formula is one in which no literal or clause can be omitted without
sacrificing equivalence. Some apparently irredundant formulas are not
irredundant as example 1 or example 2 of [1] is enough to show. An
interclausally consistent formula is one in which the conjunction of any
two clauses is consistent. A normal formula is interclausally consistent
if and only if no letter appears in it at least once with a bar and at
least once without a bar.

A normal formula is developed with respect to the letters A4,, ---,
A, if every clause has one and only one occurrence of each of these
letter. Every consistent formula @ containing no letters other than A4,

, A; can pe transformed into an irredundant normal formula which
is developed ‘with respect to the letters A4, ---, A,; the number of clau-
ses in the letter is the measure of @, or m((D). If @ is inconsistent,
then the measure of @ is 0. In general m(®) depends on d, but there
is no need to make this dependence explicit in the notation in most of
this paper. Where the notation m(®) is used, it is assumed that @ con-
tains only (perhaps not all) the letters A4, --., A,. If a truth table is
constructed for @ with 2% rows, representing the 2? assignments of truth
values to 4,, ---, 4,, then there will be m(®) T's in the column for @.

Two formulas @ and ¥ are isomorphic if there is a one-to-one map-
ping f of the set of literals of @ onto the set of literals of ¢ such that,

if both 4; and A, occur in @ and if f(A4,)=A, then f(4,)=A, and if
f(A)=A, then f(A))=A,; and such that a formula ¥’ can be obtained
from @ by replacing each literal by its image under f, and ¥ can be
obtained from ¥’ by changing the order of conjunts of zero or more
conjunctions and changing the order of disjuncts of zero or more dis-

junctions, Thus A,4,\/A4,4,4,.\/A,A,A; is isomorphic to A,4,4,\/A.A;A,
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\/A4,4;; here f is the mapping such that f(4)=A4,, f(4)=A,, f(4,)=A,,
AA)=A4,, f(4;)=A, If no letters except A4, ---, A, occur in @ and 7,
and if @ and ¥ are isomorphic, then m(@)=m(¥). (If this fact is not
obvious enough to the reader, it is proved for the case in which @ and
¥ are normal formulas as Theorem 2.4.)

For the purposes of this paper the word ¢ simplicity ”’ need not be,
and is not, defined precisely. Let us understand merely that simplicity
of a normal formula depends on the number of clauses and the number
of literals in each clause.

A practical solution to the problem of finding the simplest normal
formula with a given measure would have some application to the de-
sign of certain parts of digital computers. Dr. Montgomery Phister,
Jr. of the Ramo Wooldridge Corporation has suggested the following
problem which was the initial stimulus for the research for this paper.

Suppose that one is to devise a circuit with n outputs in such a
way that in each of m given time intervals each output is to be in
state 1 or state 0 as specified. The circuit engineer can select his in-
puts in any way he chooses, so that each input is either 0 or 1 in each
interval. But he must do so in such a way that each output is a func-
tion of the inputs and the circuit is the most economical. If certain
kinds of diode circuit are used, then the part of the circuit which
relates any output to the inputs must be constructed as a normal
formula.

The problem of finding the simplest normal formula with a given
measure is relevant to this problem, even though a practical solution to
the former would not necessarily mean a practical solution to the latter.
If the number of intervals is between 2-'+1 and 2¢ inclusive and if
each time interval itself is to be a unique function of the inputs, then
there must be d inputs. With these assumptions, a practical way of
choosing inputs so as to minimize the circuit for just one output is
easily obtainable if there is a practical way of finding the simplest nor-
mal formula with a given measure. For example, if there are 16 time
intervals and there is to be one output in state 1 in exactly 5 intervals,
then it is necessary to find, for d=4, a simplest formula whose measure
is 5; in this case, A,4,\/4;4;A, seems to be a formula.

3. Calculation of the measure of a formula. There is a straight-
forward way of calculating the measure of a normal formula which is
somewhat simpler than actually expanding it into a developed normal
formula. At the basis of this method is an easily proved theorem relat-
ing the measures of two formulas, their conjunction and their
disjunction,

THEOREM 3.1, For any formulas @ and ¥



972 ROBERT McNAUGHTON
m(O\/ ) =m(D) +1m(T)-- m(OY)

Proof. Consider the developed normal formulas with respect to d
variables equivalent to the four formulas concerned, @*, ¥* (@\/¥)*,
(@¥)*. The number of clauses in (@\/%)* can be counted by counting
the number of clauses in @* (which is assumed to be 0 if @ is incon-
sistent) and then counting the number of clauses in ¥*, remembering
that any clauses which these have in common have been counted twice.
But the number of clauses which @* and ¥* have in common is pre-
cisely the number of clauses in (@%)*, or 0 if @¥ is inconsistent, which
in either case is m(®@¥). Hence Theorem 3.1 follows.

THEOREM 3.2. If @ is a conjunction of j distinct literals, no two of
which are of the same letter, then m(@)=2%7,

This theorem follows readily from well known properties of truth
tables or developed normal formulas.

For the remainder of this paper let @ be a normal formula. Let
@, «-+, ¢, be the clauses of @ in the order of their appearance in @.
Let @,, 1 <wx <k, be the normal formula ¢,\/¢,\/---\/¢,. Thus @, is
@. Let C(®) be the set of all clauses of @. For any S < C(@) let js
be the total number of distinct letters appearing in the clauses of S.
Let 45 be 0 if at least one letter appears in at least one clause with a
bar and in at least one clause without a bar, that is, if the conjunction
of all the clauses of S is inconsistent. If there is no such letter, let
is be 1 if there are an odd number of clauses in S or —1 if there are
an even number of clauses in S,

THEOREM 3.3.

m(@)= >, 2% s,

S=C(P)

the summation being taken only over nonempty subsets S.

The proof is by induction on the number k of clauses in @. If k&
=1, then there is only one S to be considered, namely, the unit set of
the one clause. If there is a letter which appears both with and with-
out a bar, ¢g is- 0 and so is m(®). If there is no such letter, then
m(®)=2%Js, by Theorem 3.2.

Suppose that % >1 and suppose that Theorem 3.3 holds for all
formulas having fewer than % clauses. By Theorem 3.1,

(1) M(P)=m(P 1) + (@) — (Pr-1¢)
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Now @,_,¢, is not a normal formula unless k—1=1. If k=1 >11let ¥
be the normal formula which is equivalent to @,_,¢, obtained by dis-
tributing the conjunct ¢, over the clauses of @,_;, and if k—1=1, let ¥
be @,_¢,. Thus ¥ will have k—1 clauses and, for each 2 <k—1, the
B clause of ¥ will have the literals of the 4™ clause of @,_, and those
of ¢,, but no others. Now since ¥ is equivalent to @, ¢y,

(2 ) m(w)=m($k—l(lpk) .

By the inductive hypothesis and Theorem 3.2,

(3) Mm@ )= 3, 028
SCO(@, 1)
(4) M) =i 20,
and
(5) m()= 3, 207,
scoey)

where in each case only nonempty subsets S are considered.
Making substitutions in (1), justified by (2), (8), (4) and (5), we get

(6) m(@)= S, 2% s +'i'7<wk)2d—jow")— S 4200,

Y SE0CH

It remains only to show that we can equate the expression SCEC](D) 152477
with the right side of (6). But these expressions are equal=, term by
term, as can be seen as follows. For every S in C(@), either S does
not contain ¢, (case I), S contains ¢, and other clauses (case II), or S
contains ¢, only (case III). In case III, the summand ¢:2*’s is the
middle term of the right side of (6). In case I, Se C(@,-,) and so the
summand ¢,2%"’s occurs as a summand in the first term on the right
side of (6). In case II, finally, suppose S contains besides ¢, the ¢,
«eo, g2 clauses of @. Then consider S’, the set containing the ¢t ---,
9™ clause of ¥. The literals appearing in these clauses are exactly the
literals appearing in the clauses of S. A letter will appear both with a
bar and without a bar in S if and only if it does in S’. Hence, 25=0
if and only if ¢;=0. There an odd (even) number of clauses in S if
and only if there are an even (odd) number in S’ since S has just one
more clause than S’. Hence the summand 2% 7s occurs negatively as
a summand in the third term of the right side of (6). It is easy to
see that this correspondence is one to one and that the equality of the
two expressions is established.

THEOREM 3.4, If @ and ¥ are normal formulas, and if @ s iso-
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morphic to ¥, then m(P)=m(¥).

Proof. The corresponding clause in ¥ to a clause ¢ in @ is the
clause which contains those literals into which the literals of ¢ are
mapped. Consider any set S of clauses of @ and the corresponding set
of clauses S’ in ¥. The total number of distinct letters of S equals the
total number of distinct letters of S’. There is a letter appearing with
a bar and without a bar in S if and only if there is such a letter
appearing in S’. And, of course, the number of clauses of S is the
same as the number of clauses of S’. Thus the expressions for m(®)
and m(¥’) as given by Theorem 3.3 will be the same, term by term.

The formula ¥ implies I if every assignment of truth values which
makes ¥ true also makes /I true. As is well known, ¥ implies " if
and only if every clause of a developed normal formula equivalent to
¥ is a clause of a developed normal formula with respect to the same
variables equivalent to I". The formula ¥ is equivalent to I is ¥ im-
plies I" and I" implies ¥. The formulas ¥ and I’ are equivalent if
and only if they are equivalent to a common developed normal formula.
Theorems 3.5, 3.6 and 3.7 are direct consequences of these remarks.

THEOREM 3.5. For any formulas ¥ and I", m(T\/I") = m(¥). The
equality holds when, and only when, I' implies V.

THEOREM 3.6. m(¥ ") < m(¥). The equality holds when, and only
when, ¥ tmplies I,

THEOREM 3.7. If I' implies ¥, then m(I") < m(¥). The equality
holds when, and only when, I' and ¥ are equivalent.

4. Bounds on the measure of a formula with a given structure.
If 5, <5, < -« <4, then a formula has the structure <ji, 4y -+, Ji >
if and only if it is an apparently irredundant normal formula with %
clauses which have, in the order in which they appear in the formula,
71, =+ -, 7, literals. Note that a formula has some structure if and only
if it is normal, it is apparently irredundant, and its clauses are in order
of nondecreasing length. In finding a simplest normal formula we need
only consider formulas which have some structure; for every normal
formula which does not is equivalent to, and is no simpler than, a
normal formula which does. In this section I shall give an upper bound
and a lower bound on the measure of formula with a given structure.
This result will be convenient in some cases where one is trying to
determine a simplest formula with a given measure.

THEOREM 4.1. If @ has the structure < ji, ++-, jx >, then
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m(@)g 2¢-I1 4 ... _|_2d—]k .

The proof is by induction on k. For k=1, if @ is of structure < j, >,
then since @ is apparently irredundant, m(®)=2%' by Theorem 2.2. I
shall assume that Theorem 4.1 is true about all structures whose for-
mulas have less than % clauses, and show that it is true about the
structure <7j;, -++, 5, >. If @ has the structure <j, ---, s, >, then,
by inductive hypothesis, m(@;_;) < 2% %+ ..+ +2% %1, and m(g,)=2.
But, by Theorem 3.1,

(D) X MUD_r) +m(Pr) < 2814 oo + 2071 42070,

(Note that, for any formula @ with structure <7, «--, j, >, m(@)=2%""
+++++2%% if and only if the conjunction of every pair of clauses is
inconsistent. It can be proved that such a formula exists if and only
if 204 ..o 200 < 2%)

Theorem 4.2, 4.8 and 4.4 are, in effect, lemmas to Theorem 4.5
which establishes a lower bound on formulas with a given structure.

THEOREM 4.2. If @ s not interclousally consistent, if the number
of distinct literals of @ does not exceed d, and if @ has some structure,
then there is an tnterclausally consistent normal formula with the same
structure as @ but with no greater measure.

Proof. If @ is not interclausally consistent, then there is at least
one letter in @ appearing both with and without a bar I shall prove
Theorem 4.2 by proving that there is a formula @’ with the same struc-
ture as @ with exactly one less letter appearing both with and without
a bar, such that m(@’) < m(®@). Suppose A4, appears both with and
without a bar in @. Let @ be @ with every occurrence of 4, replaced
by a variable 4, with does not appear in @. Since @ has some struc-
ture, it is apparently irredundant, and so A4, never appears both with
and without a bar in any one clause of @. Hence @ is equivalent to
A PN/ A, I\/Q and @ is equivalent to A,¢\/A,I"\/2, where ¢, I', and

Q are normal formulas in which A4,, 4,, and A, do not oceur. By
Theorem 2.1, then, the following hold.

(D) =1m( A, ") +m( A\ D) —m( A, T (A, 9N/ D)
m(@")=m(A,") +m(A,$\/ Q) —m(A, " (4,¢\/2)) .

We have, m(A4,")=m(A4,") since A,I" and A,I" are isomorphic and can
easily be converted into isomorphic normal formulas. Therefore we can
concentrate on the last term of each equation. A,I'(4,4\/2) is equi-
valent to 4,I'2, and A,I'(4,¢\/2) is equivalent to A,A4,['¢\/A,I'Q.
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Also m(A,'Q)=m(A,'2), the formulas being isomorphic. Finally
m(A, ') < m(A4,4,'Y\/A,'2), by Theorem 3.5. Thus m(@") < m(P),
@' has the same structure as @, and the number of literals of @’ equals
the number of literals of @.

Now if @' still has at least one letter with and without a bar, I
construct @', related to @’ as @' is to @, and so forth. Eventually I
shall obtain a formula @ which has no letters appearing both with
and without a bar, has the same structure as @ and has demonstrably
no greater measure. It is obvious enough that the number of variables
in @@ will not exceed d if the hypothesis of the theorem is satisfied.

(Two things can be noted. First the formula @@ can easily be
constructed from @ as follows: supposing (without loss of generality)
that A4, --., A, are the variables which appear both with and without

bars and A,., -+, 4, are the other variables of @, replace A4, ---, 4,
by A4,., -+, A,., respectively. Second, if we prefer, we can delete all
the bars from @@ and the resulting formula will have the same mea-
sure, being isomorphic to @@, In summary, then, given a formula @
which satisfies the hypothesis of Theorem 4.2 it is an easy matter to
write down another formula without bars, with the same structure and
with the same structure and with no greater measure.)

THEOREM 4.3. If ¥, I' have no letters in common, then

m(?lfl‘)zm(w?z;m([ ) ,

Proof. Suppose (without loss of generality) that A4,, ---, A, are the
letters occurring in ¥; then every letter appearing in I” is one of the
letters A4,.,, +--, A;. From well known logical laws, the developed normal
equivalent ¥’ of ¥ with respect only to the letters A4, ---, 4, has
m(¥)/2¢" clauses. And the developed normal equivalent 77 of I with
respect to the letters A4,.,, ---, 4, has m([")/2" clauses. ¥I" is equi-
valent to ¥'I"’; the developed normal equivalent of these can be obtain-
ed from the latter by the distributive law for disjunction over conjunc-
tion; the number of clauses will be the product of the number of clauses
of ¥/ and 77, which is m(¥)m(I")/2°. Since this last formula is the
developed normal equivalent of ¥'I" with respect to A4,, ---, 4, this
number is the measure of ¥I'. (For example, if d=5, ¥ is 4A,\/4, and
I' is A\ A;, then n=2, ¥’ is A,A\/AAN/AA, and ' is A,AA;\/A,A A,
The result of ‘‘ multiplying out’’ ¥’ and [’ yields the developed normal
equivalent with respect to A4,, ---, 4; of ¥I".)

THEOREM 4.4. If k<_d, the formula A\/A\/---\/A, has the
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maximum measure 201+ 2424 oo +29°F of qll snterclausally consistent
normal formulas having exactly k < d clauses; the formula A\/A,\/---
/A4, has the maximum measure 2071+ 2424+ ... +2° of all interclausally
consistent normal formulas having d or more clauses.

Proof. The formula mentioned in the second part of the theorem

is equivalent to —(A4;4,--+4,). Therefore its developed normal form has
all the 2, clauses except one, and therefore its measure is 2*—1. This
measure is a maximum for all interclausally consistent formulas since
the one higer measure, 2%, is that of a tautology, which is never inter-
clausally consistent.

The formula of the first part of the theorem, when developed with
respect to A4, .-+, A,, has 2°—1 clauses (by the first two sentences of
the above paragraph with ‘%’ for ‘d’). From this we obtain an equi-
valent formula developed with respect to all d letters by developing
each clause into 2%-* clauses. The measure of the formula, therefore,

is
2d—k(2k_1)=2d__2d—k=2d—l+2d-2+ R 2

Now every interclausally consistent formula with % clauses not isomor-
phic to A4,\/---\/A4, either has at least one clause with more than one
literal or has one literal in every clause with some repetitions of clauses.
In the latter case, the formula is equivalent to A4,\/---\/4,, for some
j <k, whose measure is 27429 4 ... 42979 <204 ... 4 20°% ] dispose
of the former case by showing that, in an interclausally consistent for-
mula, if every clause containing more than one literal is replaced by
just one of its literals then the measure of the formula is not decreas-
ed. Suppose the formula ¥ \/Ah%l\/'”\/Ain%n is thus replaced by
!If\/Ail\/---\/Ain. The latter is implied by the former and hence, by
Theorem 8.7, its measure is no smaller than that of the former.

(It is easy to extend this method of proof to prove that a formula
with % clauses in which no letter appears both with and without a bar
has this maximum measure if and only if each clause has one literal
and no literals are repeated or, equivalently, no clauses are redundant.)

THEOREM 4.5. If @ has the structure < j,, «++, j. >, then
@) == 20428 e a0 20Tk (D)

I prove first that Theorem 4.5 holds where @ is interclausally con-

- sistent. The proof is by induction. If @ is of structure < j, >, then

equality holds. Assume, as an inductive hypothesis, that the measure
of any formula " of strueture < j, «--, j,_, > satisfies
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m([') :>_: Qa-J; 1. 9a-i,=1 1 ... +2d—jh_l—(h—2) .
Where @, is of structure <7j, «--, 5, >,
m@,) =Py, 1) +1($1) —M($n D, -1) -

The formula @,_, has structure < 7, ---, 7,-, > and so, by inductive
hypothesis,

M(D),y) == 28I+ 287 o 4 28Ty m (D)
Also m(¢,)=2%7». Therefore, it remains to prove that
M@y 1) < 2379071 207072 oot 4 2070, (D)

The formula ¢,@,_; is equivalent to ¢,¥, where ¥ is obtained from @,_,
by deleting literals which appear in ¢,; we know that there must be
at least one literal in each clause of ¢,_., which does not occur in ¢,,
for otherwise ¢, would subsume another clause of @ contrary to the as-
sumption that @ has structure <7, ---, 7, > and is therefore apparent-
ly irredundant. Therefore ¥ has A—1 clauses and has no literals of ¢,.
Since @ is interclausally consistent, it has no letters both with and without
bars; it follows that, since ¥ has no literals of ¢,, it has no letters of
¢,. Thus,

m(gpn!ﬁ)———%‘{m({ph) m(¥) =2; n m(¥)

by Theorems 4.3 and 3.2. Since ¥ has ~A—1 clauses and since no letter
appears both with and without bars in ¥, it follows from Theorem 4.4
that, regardless of the value of A, m(¥) < 2% 14 2472 4 ... 4 20-h-D)
Therefore,

2(2:1—1_*_211—2_*_ cee J92-(-D

24~
m(¢h¢lb—l)= m((ﬂh!p.) ___<_: 71

=20 L 20 e 2070, (D)

which is what had to be proved.

To show that Theorem 4.5 still holds when @ is not intercluasally con-
sistent, I must discuss what happens to a formula when d varies. I
shall use the notation m,(@) here (and only here) to denote the measure
of @ for a given d. From the definition of measure, it can be seen
that my(@)=m.(2)-2%-%, assuming that @ has at most min (d, d’) letters.
Let @ be a formula of structure <'j;, -+, 7, > which is not interclau-
sally consistent. I have to prove that, for any d not less than the
number of distinct letters appearing in @,

Mg(P) = 27791420071 oo o 4207 0k= (B-D)
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Let ¢ be the number of letters appearing both with and without bars
in @; then mg, (P)=my(®)2°. There are at most d+e¢ distinct literals in
@, and so, by Theorem 4.2, there is an interclausally consistent @’ of
structure < g, ---, 7, > (with at most d+e letters) such that mg. (@)
< Mase(®@). But from what has been established it follows that

Maro(@') = 20107142040 Iy~ o e 4 Qdte-dg= (k1)
which must now be true for m,.,.(?). Therefore,
M(@) = 249142871 o0 - 200 (B-D) |

This observation completes the proof of Theorem 4.5.

For j,+k <d+1, a formula with structure <(jj, +++,j: > which
has the minimum measure 2% 142% %14 ... £ 24 7% *-D has been ex-
hibited in the literature, namely in Quine’s paper [2]. Quine does not
discuss the measure of formulas, but proves, in his Theorem 2, that his
formula has the value truth in just the first 2¢ 14 ... + 2%~ =D rowg
of the conventional truth table. By the well known connection between
truth tables and developed normal formulas it follows that the measure
of Quine’s formula is this number. The construction of this formula
which has no bars can be described as follows: the first clause has 7;
distinet letters, and, in general, the 2™ clause has all the letters of the
(h—1)" clause except the last and enough letters which do not appear
in any previous clause (at least one, since j,_, <j,) to make a total of
7, distinct letters; the last letter of the A™ clause is a letter which has
not appeared previously. It follows that the last letter of any clause
of Quine’s formula appears in that clause only. For example, if d=10,
the Quine formula of structure <(1,1, 3, 3, 6 > whose measure is
0428425420420 is

AN AN AAAN AA AN A A A AAA,

(It is possible to exploit the method used in proving Theorem 4.5
to prove that, for j,+k<d+1, the only formulas with structure
<Ji *+*, J» > and measure 2% 14 ... 429k (E"D gre those isomorphic
to Quine’s formula. The key property of Quine’s formula is the fact
that each clause ¢ contains a literal, say A,, such that A, is not in any
other clause of the formula and all clauses followings ¢ contain all the
literals of ¢ except 4,. In Quine’s formula A, is the last letter of the
clause. This property is necessary, as well as sufficient, in order to
insure that the formula ¥ in the proof of Theorem 4.5 has exactly 2—1
clauses of one letter each, these letters being different from each other.)

One method of finding, for a given d and for a given measure
m < 2%, a simplest normal formula whose measure is m is to construct
some normal formula of measure m and then calculate the measure of
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all simpler normal formulas. This method is impractical (although ef-
fective) unless there is some way of limiting the number of formulas
whose measure must be calculated. A method of constructing a for-
mula due to Quine was described two paragraphs above; from what
Quine shows, it follows that for any given measure such a formula can
be constructed. Although Quine’s formula is not always a simplest
formula with that measure, it can serve to start the search for such a
formula. Then the bounds on the measure of formulas with given
structures established in this section serve to limit the number of for-
mulas among which the search is to be made, (although not enough to
make this method practicable). Only formulas having some structure
need be examined; normal formulas without any structure are not ap-
parently irredundant and have shorter equivalent formulas or can be
converted to a formula with structure by changing the order of dis-
juncts. Needless to say, once a formula has been examined, formulas
isomorphic to it need not be. The following theorem will be of some
help in the search, although not enough to make it practicable in all
examples.

THEOREM 4.6. If a formula with some structure and with o least
h+1 clauses, where h+1 <k, has measure

2d_jl+ 2d—j2—1+ oo +2d—jk—(k—1)

and if the first h clauses of it have exactly 3., - -+, 3,, respectively, letters,
then the (h+1)* clause has at least j,., letters.

Proof. A formula @ of structure <7, +«+, Ja, Jns1y Jnsz, = ++>, Where
Jne1 < Jn+1, has a measure which satisfies, by Theorem 4.5,

D) = 2871+ e 20D L 20T
> 20 e 200 (D QAT e 20T (R

The last inequality is justified by the fact that the two expressions are
each sums of powers of 2 with descending indices. As is well known
about such expressions, since equality holds for the first 2 terms, the
inequality of the (A+1)* term is decisive.

5. Conjectures and a counterexample. The results of the previous
sections lead to no practical method of findining a simplest formula
with a given measure. But there are two conjectures which, if they
are true, would be of some significance. Another conjecture which sug-
gests itself rather naturally turns out to be false, as a counterexample
of mine will show. (I must admit that these conjectures may turn on
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’

the definition of *‘ simplicity ”’ which has not be given precisely in this

paper.)
A one-clause formula with j literals, no two of which are of the
same letter, has a measure 2%/, Any formula with at least two non-

contradictory clauses having this measure cannot have a non-contradic-
tory clause with less than j+1 literals (by Theorem 4.1). Thus a one-
clause formula is simpler than any formula with more clauses but with
the same measure. My first conjecture, in its strong form, is that any
normal formula @ is simpler than any formula with the same measure
but with more clauses. The weaker form is that @ is at least a simple
any such formula. I have no conterexample to either of these proposi-
tions, nor do I have any good reason to believe that either of them is
true in general.

Let r be the number of distinet letters of @. Then » <{d, and
m(®@) is divisible by 2¢-7. If. 2%” is the largest power of two which
divides a given number m, then it is possible to find a formula with
measure m with just z distinct letters. One example is Quine’s formula
with that measure (described near the end of §4 of this paper). But
for some @, m(@) is divisible by a power of two greater than 227,
For example, for d >3, m(4.4,\/4,4;\/4;4;)=2%". In this example
there is a simpler formula with the same measure, namely 4,. My
second conjecture is that for any measure m, for any simplest formula
@ with measure m, m is divisible by 2¢". A weaker form of this con-
jecture is that, for any measure m, there exists a simplest formula @
with measure m such that m is divisible by 2%-7,

A formula with two clauses which are each consistent but which
contradict each other (because a letter appears with a bar in one and
without a bar in the other) has a measure 2°+2°, if there are d-a and
d-b distinet literals in the respective clauses. If a=b then a single
clause formula with d-a-1 literals, no two of the same letter, has the
same measure and is simpler. If @ > b, then Quine’s formula of mea-
sure 2°+2° has two clauses with d-a and d-b-1, respectively, letters
and is, therefore, simpler. A third conjecture that suggests itself is
that, for any formula in which some letter appears both with and with-
out a bar, there is another formula in which no letter appears both
with and without a bar, which has the same measure and which is no
less simple. However, for d=6 the formula

A AN AAAN A A4,

is simpler than any formula which has the same measure and which
has no letter appearing both with and without a bar. (To verify this,
the reader should note that Quine’s formula with that measure has
structure <2, 2, 3, 3 >>. Using Theorems 4.6 and 4.1 the only possible
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structures for formulas which have the desired measure and are at least
as simple as the displayed formula are <2, 2,8>, <2, 2 4>,
<(2,38,3>, and <2,2>. Since the desired measure is not divisible
by two, and since d=6, there must be exactly six distinct letters in
any formula with that measure: for there are at most six, since d=6;
and there are at least six, by an observation made in this section.
Therefore, the structure <2, 2> is excluded. Any formula with
exactly six distinct letters in which no letter appears both with and
without a bar is isomorphic to 4,4,\/A4,4,\/A.A;4; or A, A,\/A;A,\/ A A4,
if it has the structure < 2, 2, 3 >, is isomorphic to 4,4,\/4,4,\/A;4;4:4,
or A,4,\/A,A,\/A,AA;As or A AN/ A AN/ AAAA; if it has the structure
<2, 2,4>, and is isomorphic to 4,4,\/A4,4;4,\/ A, 44, or A,A,\/A A4,
VVAA:46 or A AN/ A AAN AA:As or A AN AAAN A A4, or A A,
\VA4,4,\/A;A,As if is has the structure <2, 8, 3>. But none of
these formulas has the desired measure.)
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DISTRIBUTIVITY IN BOOLEAN ALGEBRAS

R. S. PIERCE

1. Introduction. Let « be an infinite cardinal number; suppose B
is an a-complete Boolean algebra, that is, every subset of B which con-
tains no more than « elements has a least upper bound in B.

DEFINITION 1.1. B is a-distributive if the following identity' holds
in B whenever S and 7T are index sets of cardinality <« :

( 1 ) /\ GES(\/TETa‘u"r):\/¢EF(/\D'esa/o'<p(o)) ’ Where F: TS .

This paper studies a-distributive Boolean algebras, their Boolean
spaces and the continuous functions on these Boolean spaces. A survey
of the main results can be obtained by reading Theorems 6.5, 7.1, 8.1
and 8.2.

2. Notation. Throughout the paper, « denotes a fixed infinite
cardinal number. The term «-B.A. is used to abbreviate a-complete
Boolean algebra. Only «-complete algebras are considered, although
some of the definitions apply to arbitrary Boolean algebras. We speak
of a-subalgebras, a-ideals, a-homomorphisms, «-fields, etc., meaning that
the relevant operations enjoy closure up to the power «. For example,
an «a-field is a field of sets, closed under a-unions, that is, unions of «
or fewer element.

The lattice operations of join, meet and complement are designated
by , ~ and (') respectively. The symbols 0 and u stand for the zero
and unit elements of a Boolean algebra. Set operations are represented
by rounded symbols: \J, N and < respectively denote union, inter-
section and inclusion. If A and B are sets, B—A is the set of elements
of B which are not in 4; the complement (in a fixed set) of A is de-

signated A°. The empty set is denoted by 0. The symbol A stands for
the cardinal\ity of the set A. Finally, for typographical reasons, we use
the symbols 2* and exp («) interchangeably.

Received February 17, 1956. The research in this paper was done, in part, while the
author was a Jewett fellow of the Bell telephone laboratories.

! The notion of «-distributibity was introduced in [1]. It is assumed that the least
upper bound an the right side of the equality (1) exists. However, by Corollary 3.4 below,

it would suffice to make the equality in (1) contingent on the existence of this least upper
bound.

983
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3. Alternative characterizations of a-distributivity.

DEFINITION 3.1. A subset 4 of an a-B.A. B is called a covering of

B if l.u.b. A=u. The covering A is called an «a-covering if Zg a. A
binary portition of B is a pair consisting of an element of B and ifs

complement. If A and A are coverings of B, then A is said to refine
A if every e A is < some aeA.

PROPOSITION 3.2. Let B be an «-B.A. Then the following are equiva-
lent properties of B :

(i) B s a-distributive ;

(ii) of {A,JoeS} is a set of a-converings of B and §_§_a, then
there exists a covering A which refines every A, ; _

(iil) 4f {A,loe S} is a set of binary partitions of B and S < a, then
there exists o covering A which refines every A,.

Proof.? (i) implies (ii). Indeed, if we index each A4, by a set T
of cardinality <a«, say A,={a,|reT} (allowing repetitions), then
{/\ cesloucr|@ € TS} is a covering which refines every A,.

(ii) implies (iii), obviously.

(iii) implies (i). Let A,,={a,., (a.,)’} for all seS, reT . Because
the cardinality of Sx 7T is < «, there exists a covering A which refines
every A,,. Suppose 0545 < NA,es(\V/rerly,). Since lLu.b. A=u, there
exists @ e A such that @ ~ b%40. Then for each o€ S, we can find re T
such that @ A a,,550. Denoting this = by ¢(o) defines ¢ € F=T*. But
A refines A,y oy, 50 @< a0 for all . Hence, a < Ajesllopr. 1t fol-
lows that b ~ (Nses@oprr) 0. Since b can be arbitrarily small,
Noes(\Voe10,,) is the least upper bound of the set {/\,es@ople € F'],
that is, (1) is satisfied.

COROLLARY 3.3. An «-B.A. is a-distributive of and only <f (1) is
identically satisfied under the conditions S <<a, T=2 and a,=(a,).

Proof. By the argument that leads from (i) to (ii) in 3.2, the
hypotheses of 3.8 imply (iii) of 3.2.

COROLLARY 8.4. Let B be an «a-B.A. which is not a-distributive.

2 The referee has pointed out that there is overlap between the first part of this paper
and the independent work of Smith and Tarski [5]. In particular, 3.3 and 3.4 appear in {5]
as Theorems 2.5 and 2.2, while our Corollaries 6.5 and 6.6 are special cases of Theorem 3.6
in [5]. It is a pleasure to acknowledge the contribution of a conscientious referee to the
improvement of this paper.



DISTRIBUTIVITY IN BOOLEAN ALGEBRAS 985

Then there exists b=£ 0 in B and a set of pairs {[c,, ¢.] = Bloe §, S<La}
SUCh that €y ~ Cp=0 and ¢, €., =b for all o€ S and /N\cesCopry=0 for
all o TS (T=[1, 2]).

Proof. By 3.3, if B is not a-di_s_tributive, there exists a set of

complementary pairs {[@., ¢o]lo€S, S< a} such that the unit of B is
not the least upper bound of the set of elements N, es@epwr, ¢€T7°.
Thus, there exists 540 in B such that b ~ (Asestlosrr)=0 for all ¢ e T%.
Then ¢,,=b ~ a, and c¢,,=b ~ a,, have the required properties.

4. Examples of a-distributive Boolean algebras. Every a-field of sets
is a-distributive. Moreover, from Definition 1.1.

(4.1) Every a-subalgebra of an a-distributive B.A. is a-distributive ;

(4.2) Every 2*-homomorph of an a-distributive B.A. is a-distributive.

Using (4.2), it is easy to construct a-distributive algebras which are
not a-fields of sets (following Horn and Tarski [2, p. 492], or Sikorski

[4, p. 258]): let B be the B.A. of all subsets of a set X with X=
exp (exp («)). Let I be the «-ideal of all subsets M of X such that

M < exp(a). Then (see Tarski [8], or the remarks following 6.6 below),
there exists no prime a-ideal of B which contains I, and consequently
B|I has no prime «-ideals. Hence, B/I is not an «a-field. On the other
hand, by (4.2), B/I is «-distributive.

It is easy to see that (4.2) cannot be strengthened to assert that
every «-homomorphic image of an a-field is a-distributive. In fact, by
the theorem of Loomis (see [3]), every %-B.A. is the &,-homomorph
of an ¥ -field. But not every ¥%,-B.A. is ¥-distributive: an atomless
measure algebra in which all nonzero elements have positive measure is
not ¥&--distributive,

5. The representation of a.distributive algebras. In this section,
we show that every «-distributive B.A. is the a-homomorph of an «-
field. If a=2f then by (4.2) any a-homomorphic image of an a-field is
f-distributive. This shows (as Sikorski observed in [4]) that the class
of «-homomorphs of a-fields is rather elite when o 2> exp ().

For any Boolean algebra B, let X(B) denote the Boolean space of
B, Then the points of X(B) are the prime ideals of B and the topology
is imposed by taking all the sets X(a)={Pe X(B)|a ¢ P}, with ae B, as
a neighborhood basis. As Stone [6] has shown, X(B) is a totally dis-
connected, compact, Hausdorff space and the correspondence a - X{(a) is
an isomorphism of B onto the Boolean algebra of open-and-closed sets
of X(B).

DEFINITION 5.1, A set TS X(B) is called a-nowhere dense if there



986 R. S. PIERCE
is an «a-covering A of B such that T'=(1J,e,X(a))*= NaeX(@).

(5.2) A closed set T'S X(B) is topologically nowhere dense in X(B)
(that is, T contains no open subset of X(B)) if and only if there is a
covering 4 of B such that T'=(\J,,X(a))’. In particular, the a-nowhere
dense sets are just the closed, nowhere dense sets which are a-inter-
sections of open® sets.

LEMMA 5.3. If B is an a-distributive B.A., and iof {T,lc€S} is a

set of a-nowhere dense sets in X(B) with § <L a, then \J,esT, s nowhere
dense in X(B).

Proof. By 5.1, Tc,=(UaEAUX(a))°, where A4, is an a-covering of B.

By 3.2, there is a covering A which refines every A,. Then T=
(UeesX(a))® is a nowhere dense set (by (5.2)) which contains every 7',.

THEOREM 5.4. If B is an «-distributive B.A., then B s the a-
homomorphic 1mage of an a-field of sets.

Proof.* Let F be the «-field generated by the open-and-closed sub-
sets of X(B). Let I be the «-ideal of F' generated by the «-nowhere

dense subset of X(B). Consider the collection ' of sets in F which are
congruent modulo I to some X(a) with a € B. The «a-completeness of B
implies that F is an a-field; since F' contains every X(a), F=F. By
5.8, X(a)e I only if a=0. Hence, F'/I is isomorphic to B.

6. Quotients of a-distributive algebras. We wish now to character-
ize the ideals I of an a-distributive B.A. for which B/I is «a-distributive.

suppose A,={a,,|reT} is a subset of the a-B.A. B. Denote
(2) TloesAr={ Avestoprlp € T} {0} .

The sets £ <= B which are of the form [[.,es4., with each A, a disjoint
pair of elements of B, are called P, subsets of B.

PROPOSITION 6.2. Let B be an a-distributive B.A. and suppose I is

3 Note that since X(B) is compact, every closed set which is an a-intersection of
open sets is also an a-intersection of open-and-closed sets.

4 This theorem is a special case of known results. (See [1] and the following abstracts
from B.A.M.S. vol. 61 (1955): Smith 210, Chang 579, Scott 675 and Tarski 677.) We in-
clude the proof for the sake of completeness. The argument is the same as the topological
proof of Loomis’ theorem, given, for instance in Halmos’' Measure Theory, p. 171,
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an a-ideal of B. Then B[I is a-distributive if and only if every P, sub-
set of B which is contained in I has a l.u.b. in 1.

Proof. Suppose B/I is a-distributive. Let E=][,esd, be a P, set
with £ <I. Then

E={e,lpe F=T"}\J {0} .
where e,= \,esQoucryy T=[1, 2]. Let a — a be the natural homomorphism
of B onto B/I. By the a-distributivity of BJI,

/\a ES(&'dl\/a’a‘z) = \/we Fe—<o= 6

and hence

\/(/)EFe(o < Noes(@orna,0) €T .
Conversely, suppose B/l is not a-distributive. Then by 3.4, there exists
040 in B/I and |

(C,= B/I|seS, S<a}

such that

Ca':[aa'ly caz]
with €, ~C,=0, Cor Cnr=b and

]:[H’ESEU= {0} )

Choose an element be B whose image in B/I is b. Next, pick counter-
images

[caly Co'z] g B

of the pairs C, in such a way that ¢, ~cn,=0 and ¢, ¢,,=b. Then
HoesCo is a P, subset of B which 1s contained in I and whose least
upper bound is b (since B is a-distributive), which is not in I.

PROPOSITION 6.3. Let B an «-B.A. Then o subset E of B is a P,
subset if and, assuming B is a-distributive, only if

(a) OekE,

(b) the elements of E are disjoint,

(¢) Lu.b. E exists in B,

(d) there exists E, = E defined for each o in an index set S with

S <w«, such that lu.b. E, exists for all ¢ and the sets E, distinguish
the nonzero elements of E, that is, if es~¢€ are nonzero elements of E,
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then there is an E, which contains e or &, but not both.

Proof. The necessity of (a)-(c) is clear from 6.1. The subsets E,
of (d) are obtained by letting E,=[ec Fle <a,]. Evidently, lu.b.
E,=a, ~(l.u.b. E).

To show that (a)-(d) are sufficient, let a=l.u.b. E, a,,=lLu.b. E,
and a,.=lLub. (E—~E,). By (b), an=a(a,) and for ecE, either
e< a, and e d,,=0, or vice versa. We prove that E=[],cs4..

Suppose ¢ € F' and ee€ E satisfy

e/\/\aesawp(tr) ‘74“ O .

Then e, ¢,,, 70 for all s€S, so e <a,,.,. Consequently,

ez/\tre.?a’d(ﬂ(a)
(by (b) and (d)). Thus, [lsesds = E. On the other hand, for ez~£0 in
E, define ¢ ¢ F' by ¢(s)=1 if ec E,, ¢(c)=2if e E—E,. Then 0#e=
€ ~/\veslopor, and therefore e= /A, ecslepey. Hence, E < [l el .

COROLLARY 6.4, Let B be a 2*-B.A. Then E< B is a P, subset if

Proof. The necessity is clear. To prove the sufficiency, observe

that since E < 2% it is possible to find a one-to-one map 2 of E into
the set of all two-valued functions on a set S of ecardinality <«a. For
each o€ S, let

E,={ee E|[Ae)l(s)=1} .

It is clear that the system {E,|s<S} satisfies condition (d) of 6.3.

COROLLARY 6.5. Let B be a 2*-B.A. which is «-distributive. Let I
be an «a-ideal of B. Then B/I is a-distributive if and only if I is a 2°-
edeal.

Proof.* If C< I satisfies "E'gzw, then using Zorn’s lemma, it is
possible to find a set E of disjoint elements such that E<C, lub. E
=l.u.b. C and every ee E is contained in some ce C (so that £ < I).
By 6.4, E\/[0] is a P, subset of B. By 6.2, Lu.b. (£\/[0])eI. Thus,
lLub. Cel

5 See footnote 2. As noted in Smith and Tarski [5], the assumption that B is a-
distributive in 6.6 is unnecessary. This condition was used only to prove the sufficiency
in 6.2.
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COROLLARY 6.6. Let B be a 2*-complete, a-distributivite B.A. Sup-
pose « 1s weakly accessible from the infinite cardinal . . Let I be a f3-
ideal of B such that B/I is «a-distributive. Then I is a 2%-ideal.

Proof TFirst, observe that if & is a singular cardinal and I is an
y-ideal for all < ¢, then I is a ¢é-ideal. Using this fact, 6.6 follows
from 6.5 by transfinite induction on «.

It should be remarked that the methods and results of this section
are related to the circle of ideas developed by Ulam and Tarski in [9]
and [8]. For example, it follows directly from 6.6 that if B is a 2%
field, where « is weakly accessible from 3, then any prime p-ideal is
also a 2*%-ideal (see [8], Theorem 3.19).

7. The lattice of continuous functions on X(B). Stone has proved
(see [7], p. 186) that a Boolean algebra B is a-complete if and only if
the lattice of real valued, continuous functions on its Boolean space is
conditionally a-complete. This result immediately suggests the

THEOREM 7.1. Let B be a Boolean algebra. Then B is a-distributive
of and only of the lattice C(X(B)) of real valued, continuous functions on
the Boolean space of B is a-distributive’.

Proof. Assume first that C(X(B)) is conditionally a«-complete. Then
the set of all characteristic functions of open-and-closed subsets of X(B)
form an «-sublattice of C(X(B)) which is clearly lattice isomorphic to B
(see the proof of Theorem 12 of [7]). Consequently, if C(X(B)) is a-
distributive, so is B.

Conversely, suppose B is a-distributive (and a-complete). Then by
Stone’s result, cited above, C(X(B)) is conditionally a-complete and we
have only to verify the relation (1) of 1.1.

First consider the special case where each function a,, takes only
finitely many real values. Let A,,= {bss|n=1,2, ---} be a finite set of
disjoint elements of B such that \/,b,,,=% and a,, is constant on each
set X(b,.,). By 8.2, there is a covering A4 of B such that A refines
every A,.. If be A, then every a,, is constant on X(b). Since a—
(a|X(d), a|X(b)) is a direct decomposition of C(X(B)), the restriction
homomorphism 7,: @ — a|X(b) preserves arbitrary joins and meets. More-
over, m, sends all a,, into the conditionally complete sublattice of constant
functions on X(b). This sublattice, being isomorphic to the chain of
real numbers, is evidently «-distributive. Hence,

¢ That is, C(X(B)) is a conditionally a-complete lattice which satisfies the identity (1)
of Definition 1.1 when the elements a,, are functions which have a common upper bound
and a common lower bound.
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/\aEs\/reT”r;(UJw):\/wez«', UESﬂh(a’w(o)) .

Using this remark, we show that /\,\/,a,, is the least upper bound in
C(X(B)) of the set {N\jes@ruole €T},

Suppose f = Nolloyr, for all ¢. The if be A, 7,(f) = Nomt(@opior)
for all ¢, so

m(f) = \/V’/\anb(ad(o(d)) =/N\o V(A )= ”1)(/\v\/ram) .

Thus f(P)=(/\,V.%)(P) pointwise on the dense set \J,c,X(b) and
therefore, by continuity, f > /A\,\V.t¢.,. By definition of the least upper
bound, Ao\V.%.=\ o/ \oGopo -

Now consider the general case of arbitrary funections a,,. Since
X(B) is compact and totally disconnected, the Stone-Weierstrass theorem
guarantees the existence (for each s €S, re€ T and integer n) of functions
Sor, taking only finitely many real values, such that |f,,—a..|<1/n.
Suppose f e C(X(B)) satisfies f = /\oGooey for all o€ T%, Then

S Z Nl fopcrr—1/n)

for all ¢. Hence, by the result of the special case,

I Z VoAl foor—1n)=(o/\of so) =1 n=(\o\/sf o) =1/
.—>: (/\cr\/‘r(a’mr - 1/”)) - 1/%=(/\ 7\/7a7r) - 2/n .

Since = can be arbitrarily large, f > A,\V.%. Thus, A,\,0c=
\/«/f/\vao'cp(a)'

8. The continuous functions on X(B). In this section we consider
the individual continuous functions on the Boolean space of an &~
distributive B.A.

LEMMA 8.1. Let B be an {,-distributive B.A. Let X(B) be the
Boolean space of B. Let Y be a separable metric space. Then any con-
tinuous mapping f of X(B) into Y s locally constant on a dense subset
of X(B), that is, the set of points P of X(B) such that f is constant
on some neighborhood of P is dense in X(B).

Proof. Let {N,, N,, «+«, N,, -+-} be a countable neighborhood basis
of Y. Set M,=f"'(¥V,). Since Y is a metric space, N, is an open F',
(that is, a countable union of closed sets). By the continuity of f, so
is M,. But X(B) is the Boolean space of an -B.A., so the closure
of any open F, in X(B) is open (see [5], Theorems 17 and 18). Hence,
elements b, € B exist so that M;=X(,).

Let A,=[b,, b,]. Then there is a covering A of B which refines all
A,. By 5.2, Uy.X(a) is dense in X(B). It will be sufficient to prove
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that f is constant on X(a) for each ae A.
Suppose f(P)z~ f(Q). Then there exists N, such that f(P)e N,,
f(Q) ¢ N;. Thus Pe M, < X(b,), but Q€ M, since f(M,) = N,. Hence,

Qe X(b,). Consequently, P and @ cannot lie in the same set X(a) with
ac A. In other words, f is constant on each X(a).

THEOREM 8.2. Let B be an {-B.A. and let X(B) be the Boolean
space of B. Then a mecessary and sufficient condition that B be &Ky
distributive s thot every real wvalued, continuous function on X(B) be
locally constant on o dense subset of X(B).

Proof. Necessity is a special case of 8.1. Suppose then that every
real valued continuous function is locally constant on a dense set. Let
A,=[a,, a,] be a countable set of binary partitions of B. Let ¢,¢
C(X(B)) be defined by ¢.(P)=0 if Pe X(a,), ¢.(P)=2 if Pe X(a,). Set
f(P)=w0(P)/3". Then f is continuous on X(B). Note that f(P)=
f(Q) if and only if ¢,(P)=¢,(Q) for all n (because the points of the
Cantor set have unique representations in the form >.7.,6,/3" with §,=
0, 2). By assumption, f is locally constant on a dense set. Thus, there
is a subset A of B such that \J,,X(a) is dense in X(B) and f is con-
stant on each X(a) with ae A. This implies 4 is a covering of B and
every ¢, is constant on each X(a), so that A refines every 4,. By 3.2,
B is {-distributive.

9. Unsolved problems.

(9.1) What properties of the Boolean space of B characterize «-
distributivity ? One can deduce from 3.4 the following result, which,
seemingly, is only slightly weaker than the converse of 5.3: if B is
an «-B.A. which is not «-distributive, then there is a nonempty open
subset of X(B) which is contained in a 2%union of «a-nowhere dense
sets.

(9.2) Is the completion by Dedekind cuts of an a-field (or more
generally, and «-distributive B.A.) itself a-distributive?

(9.3) Is every 2%complete, a-distributive B.A. the 2*homomorph
of a 2*-field? By 6.5, it would be enough to prove that every a-distri-
butive, 2*-B.A. is the a-homomorph of a 2%field.
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CONTINUOUS SPECTRA AND UNITARY
EQUIVALENCE

C. R. PurNam

1. Introduction. In the differential equation
(1) (p') +(A+ f(E))x=0,

let 2 denote a real parameter and let p(t) (—>0) and f(t) be continuous
real-valued functions on 0 <{#<“oo. Suppose that (1) is of the limit-point
type, so that (1) and a linear homogeneous boundary condition

(2, 2(0) cos a+2'(0) sin a=0 , 0<alnr,

determine a boundary value problem with a spectrum S=S, on the
half-line 0 << t < oo ; ef. [7]. The continuous spectrum C, (if it exists)
is determined by a continuous monotone nondecreasing basis function
p(4). It is known that the set of cluster points, S’, of S, is independent
of «, [7, p. 251]; the question as to whether the corresponding assertion
for C, is also true was raised by Weyl [7, 7. 252] but is still undecided.

Consider the self-adjoint operators Hw=S1dEw(2) (all of which are

extensions of the same symmetric operator) belonging to the various
boundary value problems determined by (1) and (2,); cf. for example,
[2]. The object of this note is to shown that any two H, possessing
purely continuous (hence, in view of the above remark concerning S’,
necessarily identical) spectra are unitarily equivalent, at least if certain
conditions concerning the nature of the sets C, and the basis functions
(1) are met. In fact there will be proved the following.

THEOREM (*). Suppose that there exist two (distinct) values «, and
a, (0 a,<zm) such that, for each of the two boundary value prcblems
determined by (1) and (2,,), the following three conditions are satisfied:

(1) Swlc:#(’_oo’ OO),

(ii) the point spectrum is empty, and

(iil) p.x(R) 7s absolutely continuous. Then H,, and H,, are unitarily
equivalent.

The condition (i) of (*) surely holds if, for instance, f is bounded
or even bounded from below on 0 <t < o. It should be noted however
that every (real) 1 belongs to an S, for some a (depending on 2); [1].

For other results on the continuous spectra of boundory value pro-

Received April, 1956. This work was supported by the National Science Foundation
research grant NSF-G481.
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blems with absolutely continuous basis functions (on certain intervals),
see [4].

The proof of (*) in § 2 will depend upon the following result of M.
Rosenblum [5] concerning perturbations of self-adjoint operators: Let

the self-adjoint operators AkzgxdE(x) (for k=1, 2, 8) satisfy A,— A,— A,.
Suppose, in addition, that A4; is completely continuous and such that
S[MdEa(X) has a finite trace while (Ex, y) and (F.z, y) are absolutely

continuous functions of 1 for arbitrary x and y in Hilbert space. Then
A, and A, are unitarily equivalent.

2. Proof of (*). In the sequel, the index «, will be replaced by
k. It is clear from the assumptions that there exists some real value
A=2* not belonging to S, for k=1, 2. Consequently, since f(f) can be
replaced in (1) by f(t)+2*, it can be supposed without loss of generality
that A=0 is not in either of the sets S,. Then the operators H;',
where

= "aBm={arw  FE@=E&Y)

are bounded, self-adjoint integral operators with kernels G,(s, ) on
0<s, t< o ; cf. for example, [2], [7]. Furthermore,

Gi(s, 1)—=Gy(s, t)=cy(s)g(t) ,

where ¢ denotes a constant and g(¢) is a function of class 1[0, «); cf.
[7, p. 251]. Thus (Hi*— H;Yx is a multiple of g for every element z
of class I7[0, ). Hence H '~ H;* is a multiple of a one-dimensional
projection operator ; in particular, H; — H,*, corresponding to A,, satisfies
the trace condition on that operator mentioned at the end of § 1.

In view of the assumptions (ii) and (iii) of (*), it follows from the
formulas relating the basis functions p,(1) to the projections E,(2) (cf.,
for example, [2]) that ||E(2)x] is an absolutely continuous function of 2
for every x in the Hilbert space; therefore (E.(A)x, y), hence also
(F.(Dzx, y), is absolutely continuous for every pair z, ¥ of this space.
According to the above mentioned theorem of Rosenblum, it now follows
that the operators H;' (hence also the H,) are unitarily equivalent, and
the proof of (*) is now complete.

3. Consider the special case of (1) in which f=0. It is readily
seen that there are no eigenvalues for either of the boundary value
problems determined by '/ + ix=0 and the respective boundary conditions
2(0)=0 and 2'(0)=0. (These boundary conditions correspond to a=0,
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7/2 in (2%); in a somewhat more general connection, cf. [3, p. 792]).
Thus, in each case, there is a purely continuous spectrum consisting of
the half-line 0 <2< . Moreover, the basis functions, which, in this
instance, are even known explicitly [6, p. 59] are absolutely continuous.
Consequently, Theorem (*) is applicable and shows that the self-adjoint
operators belonging to the above mentioned boundary value problems are
unitarily equivalent.
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PERTURBATION OF THE CONTINUOUS SPECTRUM
AND UNITARY EQUIVALENCE

MARVIN ROSENBLUM

1. Introduction. Suppose that 4 and B are self-adjoint operators
in a Hilbert space H such that B—A=P is a completely continuous
operator. We shall concern ourselves with the problem of finding con-
ditions sufficient to guarantee that B is wunitarily equivalent to A.
Clearly a necessary condition is that the spectrum of A (considered as a
point set on the real line) is equal to the spectrum of B. However
this condition is not sufficient; von Neumann [8] has proved the follow-
ing result

1.1. Let A and C be bounded self-adjoint operators in « separable
Hilbert space, such that the spectra of A and C have the same limit
points. Then there exists an operator B that is unitarily equivalent to
C and such that B— A is completely continuous.

Thus we see that perturbation by a completely continuous operator
can radically alter the multiplicity of the spectrum. Even if A and B
have pure continuous spectra on the same interval, it does not follow
that B is unitarily equivalent to A4.

Our present investigation continues along lines begun by Friedrichs
in {1] and [2]. He considered bounded operators 4 that have continu-
ous spectrum of finite multiplicity, and worked in the representation
space where 4 corresponds to a multiplication operator. One of Fried-
richs’ results is the following.

1.2, Let H=IL(—1, 1) and let A be the operator that sends any
Sunction f(x) of H into xf(x).. Let P be the integral operator with the
hermitian kernel p(x, y)=ply, x), where p satisfies certain Lipschitz
conditions. Then if ¢ is a sufficiently small real number, there exist

unitary operators U, and V, such that
(1) e ¥4+ copperges strongly to U, as t — oo}

(i1) e i4+=Pigidt conperges strongly to V, as t— —oo;
Receivéd April 23, 1956. Research performed in part under contract DA-04-200-ORD-
171 Task Order 5 for Office of Ordnance Research, U.S. Army. This paper is a revised
version of the author’s doctoral dissertation submitted to the University of California,
Berkeley. He wishes to thank Professor Frantisek Wolf for his advice and encouragement.
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and

(iii) U*(A+eP)U.=A and V¥ (A+eP)V,=A.

The operator S=U.*V, is the scattering operator, which is of in-
tersect in quantum mechanics; see H. E. Moses [5] and Kay and Moses

[41.

We shall make the following assumptions.

oo

xd F, are (possibly un-

Assumption 1.3. A=r xd, E, and Bzg

bounded) self-adjoint operators and B—A=P is a completely continuous
operator such that the trace of |P| is finite!.

Assumption 1.4. The spectral measure of A is weakly absolutely
continuous, that is, (E.f, g) is an absolutely continuous function of x
for all f, g in H.

We want to find conditions on B that will guarantee that B is
unitarily equivalent to A4, that is, that there exist a unitary operator
U such that BU=UA, or equivalently, that (F,Uf, ¢)=(E.f, U*g) for
all f, g in H. Thus a necessary condition is given in

Assumption 1.5. The spectral measure of B is weakly absolutely

continuous.
We shall show in this paper that this condition is also sufficient.
In fact, we shall prove the following.

THEOREM 1.6. Suppose that 1.3, 1.4, and 1.5 hold. Then as t—oo,
or t ——oco, e B conpverges strongly to unitary operators U and V re-
spectively, such that U*BU=A and V*BV=A.

By von Neumann’s theorem (see 1.1) Theorem 1.6 is no longer true
if P is allowed to be an arbitrary completely continuous operator. It
should be noticed that we have imposed no smallness condition on the
norm of P, and that 4 may have continuous spectrum of any
multiplicity.

1. Sketch of the proof. Actually, to prove Theorem 1.6, we have
only to prove the following (seemingly) weaker result.

2.1. Assume 1.3-1.5 hold. Then ast — o, e B4 converges weak-

1 For any self-adjoint A:jm

AdEx we define |A]=\" |A|dE.
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ly to an operator U such that BU=UA and | Uf=|f] for all f in H.

Proof. We shall deduce Theorem 1.6 from 2.1. We assume that
the hypotheses and conclusions of 2.1 are valid. Recall that if a sequence
{9,} of elements of H converges weakly to a limit element ¢, and if
lo.l—1gl, then g, converges strongly to g.

Let fe H. U,=e "¢ is unitary, so

lim | UL 1= 1= UF]

But, since U,f also converges weakly to Uf, it follows from the pre-
ceding paragraph that as ¢ — oo, U,f converges strongly to Uf. Also
Fl=lUr| implies that

(fs N=IrP=VUFF=Ur, UNH=U*TS, f), so UU=I.

Now, 2.1 holds for all choices of A and B that satisfy the Assump-
tions 1.3-1.5. Since B—A=P we see that A—B=-—P. Thus we can
substitute 4 for B, B for A, and —P for P, and we can infer from
2.1 and the preceding paragraph that e %'’ converges strongly to
some operator W, and W*W=1. Since (e "% )*=¢ %5 we deduce
~ that W=U* and that UU*=U*U=1, so that U is unitary and U*BU
=A.

It is also true that —B—(—A)=—P, and if we substitute —A for
A4 and —B for B in 2.1 we can repeat the above arguments to prove
that as ¢t — oo, ¢?'e~*4! converges strongly to a unitary operator V such
that V*BV=A.

In the remainder of this paper we prove 2.1. From now on we
assume that assumptions 1.3-1.5 hold. We know that P=B—A4 has a
representation

P.=:§ AJ(" f/’;)¢‘1 ’
where the ¢; are orthonormal and
Sl <o
We put U,=e %4, For any complex-valued Lebesgue-measurable
function K(x) that is almost everywhere finite we can define the normal

operator K(A) by specifying that

(KAY, ="K S gy

for suitable f in H. In particular, (e *4f, ¢) is the Fourier transform
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of d(E.f, g)/dx. The letters f, g shall denote arbitrary elements in H.
The following sketch of our method of attack may prove instructive.
We first derive the representation theorem

83. (i) (Uf 0= o+ L[ @ poes, gz

We wish to take £ — o and thus exhibit an operator U such that U,
converges weakly to U. But the integrand in 3.3 (i) is not necessarily
integrable over (0, ). However, we show in 4.4 (i) and 4.7 that there
exists a function w(x) that is finite a.e. and such that when f is in
the domain of w(A) and ¢ is in the domain of w(B), then the integrand
in 8.3 (i) belongs to L(0, «). Using this fact we prove in part 5 that
U, converges to an operator U such that BU=UA.

Now we have to show that | Uf|=|f]. We proceed in an indirect
fashion. Rather than work with U, we consider the operators K (B)U,, -
where the K,(r) are a sequence of characteristic functions such that
K, (x) > 1 and such that the integrand in the representation

KABYU.S, )=(KB)f, )+ | | (K (Be~Pe, g)da
belongs to L(0, ) for a dense set of f and «ll g in H. We show
that, for each n, K (B)U, converges strongly to K, (B)U, and thus
lim lim | K,(B)U.f|=IUf]

By means of representation Theorem 3.5 we show that this iterated
limit is also equal to | f), and thus | Uf|=|f[, and 2.1 is proved.

3. Derivation of the representation theorems.

LEMmA 3.1. If s is a complex number with nonzero real part, then
(i) (s+iB)'=(s+34)"'—i(s+iB)'P(s+14)™",
(ii) =(s+2A4)"'—i(s+1A) 'P(s+iB)™".
Proof. Since B—A is bounded it follows that 4 and B have the
same domain D. Then, for any fe H, (s+¢B)'fe D, and
—i(s+1A)'P(s+iB) f=(s+34) (s +id—s—iB)s+iB)"'f
=(s+iB) I —(s+1A)7'f.

(ii) follows similarly.
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LEMMA 3.2. If s is a complex number with nonzero real part, and
if L is a bounded operator that commutes with (s+iB)~", then

(i) (s+iA)'L—L(s+iA)"'=—i(s+iA4)"[LP— PL)(s +i4)" .

Proof. By 3.1 (i),
L(s+iB)'=L(s+1A) ' —iL(s+4B)"'P(s +14)™"
=L(s+tA)"'—i(s+iB)'LP(s +14)™" .
By 3.1 (ii), this last expression equals
L(s+4A4) "' —i(s+1A)'LP(s+1A) ' —(s+1A)'P(s+iB) 'LP(s+1A4)™" .
It ean be similarly shown that
(s+iB)'L=(s+1A)'L—i(s+1A)'PL(s+1A4)""
—(8+1A)'PL(s+iB)'P(s+1A4)™".

Lemma 3.2 follows upon subtracting this last equation from the preced-
ing equation and using the commutativity property of L.

In the following representation theorems all operator integrals are
understood to be defined in the weak sense.

THEOREM 3.3. For any real number t,
t
(i) U, =I+ ?Se—mpem de , and
7 Jo
b
(ii) é-—‘iBtze—'lAt + ]'- S e-—LBIPeiA(z:—-C) dw .

7 Jo

Proof. Let s be a complex number with positive real part. Then
3.1 (i) holds and
Swe—steﬂ'zﬂ dt___(s_*__,bA)—-l
0
for any self-adjoint operator A. Hence by the Laplace transform, con-
volution and uniqueness theorems as found in Hille [3], chapter 10, we
derive (ii).
(i) follows from (ii) by operating on the right with e#*.

THEOREM 3.4. If L is a bounded operator that commutes with every
bounded function of B, then

(i) e~ giat — [ 4 ]."Ste“'L“(LP-—PL)e"““ da .
VIRE
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Proof. We start with 3.2, parallel the proof of Theorem 3.3, and
derive the formula

e 4t — Leg~t4t = 1 Ste'm(LP—PL)e“(”")dm .
2 Jo

3.4 follows by operating on the right with e*,
We shall use 3.4 (i) in the following form.

COROLLARY 3.5. If K 1is a projection operator that commutes with
every bounded function of B, then

() VKULE=1FF=0K=1f, N+ L (e ~DPes, fia

— ;_S:(e—iAzP(K_ I)e'i,Axf’ f)da:

Proof. We set L=K—1I in 3.4 (i) and take inner products. Then
the right hand side of 3.4 (i) is equal to the right hand side of 3.5 (i).
But,

(e- [ K —Ie*f, =(e " Ke“'f, f)—(f, f)
=| Ke“'f P —| £ P
=|KU.fF—I1V,

so the left sides are equal which proves 3.5.
4, Definition of the K,(x).
THEOREM 4.1.

E.f,

(i) o< d"f)<°° for almost all @;
X

Gy | |1 M aw <1401

G " "5 Daa—(s, 9); and
(iv) }d(Ezf’g_‘),z<d(Eﬂ’ﬁ;}i).d(l§“LQ’ Q) for almost all x.
dx = dx dx

Proof. (i) follows from the fact that (E.f, f) is a monotone increas-
ing funetion of z;
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(ii) is true because the total variation of (E.f, ¢) is <|fl-l¢],
(see Riesz and Nagy [6, p. 340]).

(iii) holds because E.=I and E_.=0.

We shall now derive (iv). If A is a nonzero real number, then

‘([Ez+]p,—fx]f, (]) rzf}.’ !([Ex+/:,“Ex]f, I—Ex+n,_Ex]!l)[2,

which by the Schwarz inequality is

< b P )

Taking A to 0 completes the proof.

LEMMA 4.2,

oo

(1) Sll(emﬁ NP dae < 2715 d,(%.g,fg) rdx

~ oo

(i) lim (e‘f, ¢g)=0.

Proof. If d(E,f, g)/dx is not square integrable, then the right
hand side is infinite and there is nothing to prove. If d(E.f, ¢g)/dx is
square integrable, then its Fourier transform is also square integrable
and (i) is an equality.

(ii) is a consequence of 4.1 (ii) and the Riemann-Lebesgue lemma.

LEMMA 4.3, If Q ¢s a bounded self-adjoint operator, thenm
R N “re
() "1 1PPQesrrde < 2e” [ S131d(EQ0 , Qp.)de [UE.S, P/de do

i

< 2ress sup d(E.f, /)/dx g [25] 1QapslF

Gi) [ 1 1PFQenrpds < 2" [ 5 121a(F.Q0, Qp)lde 4.1, 9ds da

Proof. In this proof we have nonnegative integrands and thus we
freely commute integration and summation.

[ viprQesrpda=|" Sialler, @t
which by 4.2 (i) and then 4.1 (iv) is

<2:|” SILUES, Qp)ldat da
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<2l [S11aE.as, Qp)ide UE.F, Hidede

-

The remaining inequality in (i) is readily derived from this and 4.1 (iii).
4.3. (ii) follows similarly.

LemMma 4.4, If Q, and Q, are bounded self-adjoint operators and
—oo L8, t < o, then

(@) [[leeepeer, gras[< (1 1pPecrpas(” i 1PRemgl da.

(@ | |7 e wareenys, pa]
< [2n ess sup d(E,, f)dz] [}: 1,1 19, iﬂ

1| Sl 1t |-

Proof. Let C be the operator A or the operator B. Since for any

self-adjoint operator P we have the decomposition P=1Pl% sgn P IPI%,
we have

(e *QPQf, g)l=I(e~-Q|PF sgn P |PEQe s, g)
1 . 1
=|(sgn P |P]*Qe"f, |P[*Q:e'9)|,
which by the Schwarz inequality and the fact that |sgn P <1 is
% ) % 0.
< IPPQe* f-| |PP@Qe g .

By the Schwarz inequality for integrals and the above calculation
we see that

H :‘(e_walp Q.ef, g)ldm]z

¢ 1 _ . 3 1 )
<[ Virbeerpas () 1PEQegr as

<[1ipteenrrar | | PEQecgrda.

If we put @,=Q,=I and C=B we see that we have derived (i). If we
put t=o0, s=—co, C=A, and employ 4.3 (i), we derive (ii),
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DEFINITION 4.5.

w@)= 5, \|[A(Eups, 6:)/dar+d(Fis, $,)/d2]

THEOREM 4.6. For almost all x, w(x) is nonnegative and finite.

Proof. From 4.1 (i) and the definition of w(x) it follows that w(x)
is nonnegative a.e.

glw(x)dxz ;lz,“:d(a o byl dx+§1d(F,¢>J, $)lda da |
which by 4.1 (iii), is 23}\@1. This last term is finite by assumption.
Hence w(z) is ini:egra.lee:,I and thus is a.e. finite.

LEMMA 4.7. If f s in the domain of w(A4), then

() [ 1ipfesry do < 2nays, £).

If f is in the domain of w(B), then

@) | 11PEer do < 220(BYS, £)

Proof. By 4.3 (i)
| 11ptesrpdo
<" [ S0 dES, ¢/ U7, Fyde do,
which is
< 20| w@A(EF, £)lde de=2e(u( ), f) .

(ii) follows similarly.

DEFINITION 4.8. For every positive integer n, let K,(x) be the
characteristic function of the set of real number x such that w(z)=c

or w(x) < n.
THEOREM 4.9. For every positive integer n,
(i) K,(x) is a measurable function
(ii) [K,(2)=K,(x) and K,(x) is real;
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(iii) lim K, (z)=1; and
(iv) 0 < w(@)K (x) < n for almost all x.

Proof. (i)-(iii) follow immediately from the definition of K, ().
(iv) is a consequence of 4.6.

THEOREM 4.10., For every positive integer n,
(1) K,A) is a projection operator such that
(ii) 0 w(A)K, (A) < n;

(iif) lim (K.(A)f, 9)=(f, 9); and

(iv) lim |K,(4)f~f}=0.
(i)-(iv) also hold when A is replaced everywhere by B.

Proof. (i)-(iii) are direct consequences of 4.9. (iv) follows from
(iii).
THEOREM 4.11. Let n be any positive integer. Then as t— oo,
K, (BYU, converges strongly.
Proof. For f in the domain of w(A) and all ¢ in H
(E.BLU,—UJlSf, of=IU.—U.lf, KB,
which by 3.3 (i) and then 4.4 (i) and 4.7 (ii)

1
)

S:(e’“‘”Pe“"f, K (B)g)de|

< 22| | |PRessr | d- (BB, Ko(B)) -
But by 4.10 (ii) this is
< 2a] ) IPPesr daenelal

Now set ¢g=K, (B)[U,—U.]f in preceding inequality. When then have
“ Kn(B)[Ut - l]s]f“4

¢ 1
< 22 | |PFesr | daven- | (BT, — ULLAP

< sen|rE|) (PRert dr



PERTURBATION OF THE CONTINUOUS SPECTRUM 1007

But, by 4.7 (i) the integrand in this last expression belongs to L(— oo,
o). Thus lim |K.(B)U,—U,]f|=0.
8,l>e0

We have proved that for all f in a dense set, K,(B)U,f converges
strongly. Since | K, (B)U,| <1, it follows that 4.11 is true.

5. The Operator U.

THEOREM 5.1. As t - oo, U, converges weakly to an operator U.
For any f, 9 in H,

@) (W, 9=(f, g)=ilim | (> Pesss, g)do .

Proof. We know from 3.3 (i) that

s, 9)=(f, 9)=i e =Pesr, g)do.

The estimates 4.4 (i) and 4.7 assure us that the integrand in this ex-
pression belongs to L(0, «) for all £ in the domain D, of w(4) and all
g in the domain D, of w(B). Thus the bilinear form

B, 9)=Yf, H=lim (U.f, 9)

is defined on D, xD,. Since |U,|=1 this form is bounded and it follows
from the Frechet-Riesz representation theorem (see Stone [7], p. 63)
that there exists a bounded, everywhere defined operator U such that
(Uf, 9)=b(f, g) for all f, g in D, xD,. In fact, since the U, are uni-
formly bounded it is the case that (Uf, g)=1tim(Utf, g) for all f, ¢ in

H. Thus 5.1 (i) holds.

LEMMA 5.2. For all f in H, lim | Pe'*f|=0.

Proof. Let ¢ >0. Since P is completely continuous there exists
an integer » and an operator

Pnz_—j;n{ zj(': ¢’j)¢]
such that |P—P,| <e. Then
LR |=(P + P— P F| < | Pacttf 1+ P— P |

S|P fl el
But
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[Bctf =3 2, $)F

which, by 4.2 (ii), goes to 0 as ¢ — o. Since ¢ is arbitrary, the proof
is complete.

LEMMA 5.83. For all real s, e '#U=Ue ",

Proof.
e—-lBSUL — Ute—iAsze-’l:BSe—iBteiAt —_— e—tBﬁeiAte—iAs

==e‘“”(g"“’s — gidS)gidt

which by 8.3 (ii)
—_ 1 Sse—w(zH)PeiA(xﬂ-s)dm .
2 Jo

Thus

(e U.f, 9)—(U.e™™f, 9)|
—:<:Ss l(e_iB(:v+b‘)PeiA(x+t—s‘)f, 9)[ dCU

<(Jpescr-oplgl de
By the preceding lemma and the bounded convergence theorem this

last term goes to 0 as t— o. Since U, converges weakly to U we
have (e ®Uf, g)—(Ue *“f, g)=0, or 5.3.

THEOREM 5.4. BU=UA.
Proof. By 5.3, (e”®Uf, g9)=(Ue *f, g), or
S“’ S YFUF, g)lda dx=r e d(UE.,f, g)lde de .

By the Fourier integral uniqueness theorem, (F,Uf, 9)=(UE,f, g), and
thus BU=UA.

6. Conclusion of the proof.

6.1. We know that as ¢t — o, U, converges weakly to U. Since
K,(B)U, converges strongly (Theorem 4.11) it follows that it converges
strongly to K,(B)U. From this we deduce that for all f in H,
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lim | K.(B)U.f |=| K.(B)US],

and by 4.10 @iv),
(i) lim lim | K(B)U.S1=1Uf1 .

We shall use 3.5 (i) in the form
(i) NK(B)US |~ P=(Ku(B)—11f, 1)
+ (e tr, By - ey, £)do

— P, (B) = Doy, ),

to prove that

and thus show that |Uf|=|f|. When this has been done we will have
proved 2.1, and Theorem 1.6 will follow from the argument after 2.1.
It is clear that it is sufficient to show that (iii) is valid for all f is a
dense set.

DEFINITION 6.2. Let D be the set of all f in H such that d(E,f, f)/dx
is essentially bounded for all real z.

THEOREM 6.3. D s dense in H.

Proof. Let f be an arbitrary element in H. By 4.1 (i) d(E,f, f)/dx
is almost everywhere finite. Let M,(x) be the characteristic function
of the set of all real numbers « such that d(E.f, f)/dx < n or d(E,f, f)/dx
=oo, Then M,(A)f is a sequence of elements of D that converges
strongly to f. Hence 6.3 is true.

THEOREM 6.4. If fe D, then 6.1 (iii) is true.

Proof. We shall consider each of the terms on the right hand side
of 6.1 (ii). By 4.10 (iii), lim ([K.(B)—1I]f, f)=0.

By 4.4 (ii)

| ) nipess, e

< zwess sup “EL IS ke -np kS 1]
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which by 4.10 (iv) goes to 0 as # — «. Thus it can be shown that
all the terms on the right hand side of 6.1 (ii) go to 0 as n — o, and
thus 6.1 is true, and our proof of Theorem 1.6 is complete.

We conclude this paper with an interesting representation theorem
for F(B)—F(A).

THEOREM 6.5. Assume 1.3-1.5 hold and that F(x) is an essentially
bounded function. Then

(1) lim (™ F(B)e'f, g)=(F(A)f, 9) and

(i) (FB)~FAf, 9)=lim ] ( “IFBP—PFB)e“S, g¥ia .

Proof. (e*"F(B)é'f, 9)=(U;F(B)U.f, 9)=(F(B)U,f, U,g). Since
U.f and U,g converge strongly to Uf and Ug respectively and U is
unitary we have

lim (e~ F(B)e'“'f, 9)=(F(B)Uf, Ug)=(UF(A)f, Ug)=(F(A)f, 9) .

{00

(ii) is a consequence of (i) and Theorem 3.4.
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CERTAIN GENERALIZED HYPERGEOMETRIC IDENTITIES
OF THE ROGERS-RAMANUJAN TYPE

V. N. SINGH

1. Introduction. In a recent paper H. 1. Alder [1] has obtained
a generalization of the well-known Rogers-Ramanujan identities. In
this paper I have deduced the above generalizations as simple limiting
cases of a general transformation in the theory of hypergeometric series
given by Sears [5]. This method, besides being much simpler than that
of Alder, also gives a simple form for the polynomials G, .(x) given by
him. In Alder’s proof the polynomials G, .(x) had to be calculated for
every fixed & with the help of certain difference equations but in the
present case we get directly the general form of these polynomials.

2. Notation. I have used the following notation throughout the
paper. Assuming |z|<[1, let

(@)= (a; s)=(1—a)(l—ax):--(1—az’"),  (a)=1

1L (@, @y ==y @3 by by +e e, by)= (95 8005 )= +(a5 5)
) (b5; 8)(by; 8)- - +(by; 8)

1(@)=11 (1 —az")

II(G/U Uyy =0y Uy bl; bzy sy, bt) = ll(al)ll(a’z)' B 11(“7)

IIO) 11 G - -+ T1(0,)
K U )V B 8=/ k5 )
(@ )V ks s)(—1v k5 9)
1{1 =K (x'T; S) xrs
v ‘(ka''; 8)
S = SR ) g G R @ )
y T =0 (.’E, Tn) 11=0 (Q?, 7'1)
Lﬂiﬁfl“ﬂwA]( b, —2f 1. 2t (-t
M-n ,,ﬁﬁ—l 3 7,72@"),’1, n! n--—] n) o
T»z,,M: ‘._240 (117; tn)(xbn_g-ztn_l—ﬂ; [n) ’ (M=U; 4; 57 °° ')

n
where [a] denotes the integral part of «.
The numbers s, », »y, 7, *+-, t, t;, t,, --- are either zero or positive
Received March 19, 1956.
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integers. #, and ¢,, wherever they occur, have been replaced simply by
r and ¢ respectively. Empty products are to mean unity.

3. Sears [5, § 4] has proved the following theorem :

By S T e fana) 1T (G, s &, ksfcts, kefa)O,
=11 (kr, kajaucs; Rewfas, aja) S, (kajaa) 1T (0, ai; @, k)
S @ (=1,

= (ka"*t; t)(; ¢)

[ 2]

wrere |kz/a,a,|< 1, |#|< 1 and §; is any sequence. The theorem holds
provided only that the series on the left converges.

Take
zﬁ [:k, (L']/ k ’ "—.’lﬂ/k g Qbgy Qbgy == ¢l Qypros;
Vk, =V'k, kxja, kxja, -, kn/t,y..
" ittt ,1)377—.’1;03(1—8) , (M=1,2,3, --)
(@30 = * Boyg 11)°
Then
(3.2) iK (@5 s)(ay; 8)++ +(Quaria; 8) (kile)i,

57 (kwjay s)kw)ay; )« o (K /Gumer; 8) (Beye + @y 1)
=11 (kav, kraa; Kea)aty, ear)a) S, (eafanay T1 (au, @y , Kax)
=0

o g (@ 0@ 1) (s (=)' FHOD o=y
Ld i ' [ / .
t=0 (kxfas; t)ko/ay; 1)+« (kx| Gy iy D0« Oy’

Now let a,, ¢, ++ -, thyyy — o in (3.2). Then we get

(3.3) i Ks(_ 1)skysx%8{<u{+1)s—1}
§=0
= k k(M—-l)tx(M—l)tz .
) S )(k 5 S

And in (38.2) if we take (M—1) for M, a,=z"" and let a, a; -+, oy
tend to «, we have

(3.4) é K, Jr-Dtgu-net
t=0

*——(kx 7)2 kx Exr t)l t)EK k(J[ ")Sa;(ﬂ ")S .
=0 X, §=0
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On repeated application of (3.4) on the right-hand side of (3.3) it follows
that

I
Ms
=
gl’nr

(I ()} = 5 K= Dyppreasd™ €4

there being (M —2) terminating series on the right since
1

(3.5) S K,,=0
5=0

by Watson’s transformation [(2); § 8.5 (2)] of a terminating ¢, lnto a
Saalschiitzian ,¢;.
Now it is easily verified that
M—-2

Il Sn,n—l

n=1

can, by suitable rearrangements, be simplified to

. [350n]
(M =27 [ 3 7 =1, +1e M-2 6 Zt +l -2, (L -1, ) M2
khati (a7~ L) S (x"s Zf)ta;l .., .
i=0 (; ty) {50 (z; t,)(x t) n=3

where t,=7r,+ 7+ +ryy, (=1,2, «-., M—2).
Thus on putting »+¢,=¢, we finally have

(3.6) {H(km)}“‘iKs(—1)*/c”-*x'21’”““"”’*”“‘}
¢ [M-; ] 6~ 2!‘ +1, ¢ -2t 2
ke (@2t 2t )=t W

=§@an @it =

nM
This is a k-cum-M generalization of the Rogers-Ramanujan identities.
For any assigned values of M and ¢, the repeated terminating series
can, by dividing out by the denominator factors, be evaluated as poly-
nomials in .

Let us now write

il P .

- 28 +1. —~26,(6—8,) M—2

3.7) Guaa)=a® > @7 22T,
by =0 (x; t) n=2

Then, as usual, for k=1 and k=ux respectively, the left-hand side of
(3.6) can be expressed as a product by means of Jacobi’s classical identity

(3.8) S (- 1)"90"2"~H(1 " 2) (1= [2)(1 —a™)

N = —o0

and we get Alder’s generalization of the first and second Rogers-
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Ramanujan identities in the form

(39) TI (1 x(2M+1)n+M)(] x(.'M+1)/z+M+1) | _ 5;_“ GM,;,(-T)
=t (1 x(’M+1):a+1)(1 ,C(AM+1)7L+’) ,(1_x(2m+1)n+.ull) iz (‘7.’ t)
and
= 1 - w‘GM,ﬁ(x)

(3.10) L[o (1_.¢(§bl+1)n+2)(1__x(z.’u+1)m+3). oo (L — g+ kit 1) = = (xt)

where Gy (v) is given by (3.7). The polynomials Gy, (x) can be seen by
easy verification to be identical with G, .(x) of Alder.

I am grateful to Dr. R. P. Agarwal for suggesting this problem
and for his kind guidance in the preparation of this paper.

Added in Proof. If in (3.2) we take a;=—1/fg, make a, a; -,
t.re; tend to oo, and proceed as in § 3, we get for k=1 and k=ux the
respective identities

(1 — g2in- (u- ‘1))(1 szn—(M+1))(1 _xzdln)
I (1~a%)

1 (2]
T — i1 S x?‘(“ﬂf"%)c, ! x‘%(“gfl)
(I (=abjo G T8

(xc_,w +1) M2
x L T

( wo“'t tl) n=2

and
11 (1 xllln I)(l ‘Z.ZMM (20— 1))(1 w‘mm)
n=1 (1 x)
2L(t+1)( ) [5 ;Jw%tl ~t,(t=31))
—{w(—2)} " 2 A Vi A
5 @ an (o),
ij ’( +1 , 9
« T)“ 11 T
(—a*th),
REFERENCES

1. H. L. Alder, Generalizations of the Rogers-Ramanujaon identities, Pacific J. Math.,
4 (1954), 161-168.

2. W. N. Bailey, Generalized Hypergeometric Series (1935), Cambridge Tract No. 32.

3. ————, Identities of the Rogers-Ramanujan type, Proc. Lond. Math. Soc. (2), 50
(1949), 1-10.

4. , Some identities in combinatory analysis, ibid., 49 (1947), 421-435.

5. D. B. Sears, Transformations of basic hypergeometric functions of special type, ibid.,
52 (1951), 467-483.

LuckNOW UNIVERSITY



FAMILIES OF TRANSFORMATIONS
IN THE FUNCTION SPACES H”

P. SWERLING

1. Introduction

Let the interior of the unit circle be denoted by 4; and let the set
of functions single-valued and analytic in 4 be denoted by .

It is well known that certain subsets of 2 can be made into Banach
spaces by the introduction of suitable norms. In particular, if fe ¥,
and if, for 1 < p < o,

(1.0 s, n={y | irenrant”, p< e
~(f; r)=sup [z, =0

and if sup .Z,(f; r)< co, then f is said to be in the set H*. Also, H”
r<1
is a Banach space with

(1.2) Ifllz =sup ANS5 )

A proof of these statements, together with a discussion of many
properties of the spaces H”, can be found in [8].

This paper is concerned with certain transformations in the spaces
H"1,

Let w(z) be a function of z which is analytic in 4 and such that
lo(z)|< 1 for ze 4. If fe?, then so is the function defined by fle(2)].
For fe U, we define

(1.3) T.f=qg %}) flo@]=g(z) for ze 4.

T, is clearly an additive, homogeneous transformation.

It is well known [4] that if fe H? and w(0)=0, then T,fe H” and
7./ <|Fl. In other words, if w(0)=0, then 7,e[H"] (the set of all
linear bounded transformations on H” to H”), and |T.]<<1. Our first
task is to prove the following.

Recéived September 21, 1955, and revised form April 27, 1956. This paper forms a portion
of Ph. D. thesis submitted at the University of California, Los Angeles. The author wishes
to express his gratitude to Professor A.E. Taylor, under whose guidance the thesis was

written.
! In the following, all statements about H? refer to 1< p=C o unless further

qualified.
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THEOREM 1.1. If we U and |o(2)|< 1 for ze 4, and if |o(0)|=a< 1,
1
then T,c[H"] and |T,| < </}-l:§¥,> ' There 4s at least one such o for
o

which the equality holds.

Proof. For p=c, the theorem is trivial. For 1 < p < =, a simple
proof (for which the author is indebted to the referee) is as follows.

For fe H?, let u be the least harmonic majorant of |f|? in 4 (see
[6]). Then T, is a harmonic majorant of |7.f]|*. Also,

1A= {(0)}"'* and | Tuf | << {(Tu)(0)}'" = {u(A)}'*

where 8=w(0). The Poisson integral for # shows that

u(B) < u(0)<%{:4§=)

Putting a=|p|, it follows that
1+a\Vr
< -Th .
171K ;)

To complete the proof, we note that the following statement holds.
Define the transformation L, (0 < «a <1) by

Lof@)=f(ZE5) .

Then the function

)

is an eigenfunction of L,: L,f=4f, belonging to the eigenvalue

,z=<_1_ﬂ)",
l—a

provided |Ry|<1/p. This follows trivially from the fact that fe H*
provided | Ry | < 1/p.
The result stated in Theorem 1.1 can be sharpened as follows.

COROLLARY I.1. For any o (w2, mapping 4 into or onto itself),

an amis p GGG SO



FAMILIES OF TRANSFORMATIONS IN THE FUNCTION SPACES H? 1017

where

I O kS
L. ©) 1+ Co(y)

Proof. For {ed, define L, by
Ls@=r(} )

+Cz
Then
T,=L_,LT,L.L_

where

ned, {e4d
so that

VTN <N Loy | | e | I Ly Tl |

Now, f—éz takes 0 into —¢; «:Zz takes 0 into —7;
and (1z+77 )+C/ +Cw< zi:) takes 0 into 1")(772;57)

Applying Theorem I.1, we obtain (I1.4).

We are thus assured that a transformation 7, defined by 7,f(2)
=flw(z)] is a member of [A*], I<p<o. §II is devoted to a study
of semigroups and groups of these transformations. Section III contains
a discussion of two examples which illustrate the theorems of § II.

II. Families of Transformations in H?”

A. Definitions and preliminary results. Consider a family of func-
tions {w(z; t)} —also denoted by {w,(2)} —where ze 4 and ¢ belongs to a
set .7~ of complex numbers. The individual functions will be denoted
by w(z; t) or by w,(?), according to convenience.

Let the set .7 satisfy the following conditions,

(CIL.}) (i) If t, t,€ .7, then t,+t,€ I,
(ii) I contains the origin and some ray originating at the
origin. :
(m) Every two points in 7 can be connected by a path* in 7.

2 Here a path is defined to mean a finite number of rectifiable Jordan arcs joined to-
gether; see [3, pp 13, 14].
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Let the family {w(z; t)} satisfy the following conditions :

(CIL.2) (i) For each te. , w, e, and o, maps 4 into (or onto) itself.
(ii) For t, t,€.7, and z€ 4,

(')Lz[wzl(z)] = wbl[wzz(z)‘l =W L:(z)
(ili) w(z; 0)=z for ze 4.

(iv) For each ze 4, w(z; t) 1s differentiable’ with 1espect to t for
te.v. Also, if

P(z)=£? o(z; t)lt=0 ,

then Pe?l .

We can immediately state the following.

LEMMA I1.1. For fixed z€ 4,

(IL.1) 2 fa(e; 1)]=Plofz; 1)
Proof. wlw(z; t); h]l=w(z; t+h) for t, he.o
Therefore

w(z; t+h) — oz t)_ olo(; t); h]l—o(z; t)
h h

_olo(z; 1); h]—ofe(z; t); 0]
h

Letting 2 — 0 (in .~), we obtain (II.1).

The family of transformations {wa} defined by (1.3) with v=w, will
henceforth be denoted simply by {7,}. This family forms a semi-group
(possibly a group) of linear bounded transformations in the spaces H*.
(The boundedness is shown by Theorem I.1.)

We define the generator A of the family {T,} by

(11.2) Af—=lim T»f; —f fe H

=0

the limit taken in the strong sense in H?. The domain of A, denoted

3 Here aﬁd in the following, ‘¢ differentiability with respect to ¢ for t€ 4’ implies that
the difference quotient approaches the same limit no matter how ¢ is approached (as long
as the approach is made entirely in 9).
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by Z(A), is defined to be the subset of H” for which the limit in
(I1.2) exists as t > 0, te .7 (the limit to be the same for all modes of
approach within .7~ to 0).

It follows from (I1.2) that, for fe 2(4), and each z€ 4,

(11°3) Af(z)=lim 1+ (?1Tf(?')
This is true since, for fixed ze 4, f(2) is a bounded linear functional
of f, [7].
Now
Af(z)=lim f[‘“(z, t)]—f(z)
-t t
—lim /@ O]—flo(; 9)]
-0 t
_ 0 rie =Tz V1.9 wlz:
~6tf[ (z; Olico=S"[w(z; t)]at (2 O)iao
or
(II.4) Af(z)=P(2)f'(2) ze d, fe Z(A)

It is thus clear that <2 (A) is contained in the subset of H? consist-
ing of those elements f for which f'(2)P(z) defines an element of H”.

B. Differentiability properties of the family {7}

THEOREM II.1. Let f be in H”, and t, be in .7 let g(z)=P(2)f'(2)
and suppose that

(i) There exists a neighborhood . 4: of t, and a positive constant
M such that every point t of . 4, can be connected to t, by a
polygonal line in A, (\ 7 of length < Mit,—t|;

(i) T.geH”® for te 4 N\ .7;
(i) |Tw~T,9|—>0ast—>1t (te ).

Then, T.f is strongly differentiable with respect to t at t, and

(I1.5) %th!mno:Tq,g .

Before giving the proof, the following formal derivation might be
of interest ‘
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. be - Tzof . Ts f—f
fim == =Tm 7, { ==} (s=1—t)
=T, Af=Tyg

This is however not a rigorous proof, even when fe 27(A), since s=t
—t, may not be in v~ for all te_ 17 N\ I

A rigorous proof is as follows.

Let flo(z; t)]=h(z; t) and let

W O)—hiz; t)

11.6 D(z; t; t)=
(I1L.6) &5 13 to) 7y

—T,,9(z)
If 2=re®, and if - h(z, t) is denoted by A,(z; t), then, from (II.1),

8. 9.
D(Z; t; t”):;%(qfe?yt)t_‘lz(relj tu) -—h,(o’e’“’; t[,)
b

1 g[kb(')e"’ )= hu(re; t)]de
t to to

where ¢ is chosen in ./, and the integral is taken along a polygonal
line in ./, \ .7~ connecting ¢ and ¢, and of length < M|t—{%,/.
First suppose that 1 < p< . Then

(IL7) . 2Z(D; 7“)~{ S \D(re®; ¢; t0)|7’d0} ’

R0

Let r=1(s), 0 <s < 1, ©(0)=¢, o(1)=¢t. Here s is a constant times
the arc length. Then [4], [1]

1

S [hre®; ©)—h,(ré®; t,)ldr
t—t,

dﬂ} ;

AYD; ) =] 1—§|

S[h (re; t)—h,(re®; t)]c'(s)ds da}

t— tg

< tolgl'(e)h’ Slh (re%; o) —h(re; £) da}

Hence,

{72

Tt(,g =sup A5(D; 1)
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_g[wl_d {r’(?)l[sup‘{ g V(e ) — b (re®: to)\ s} de
=2 L@ T =T g N as < M sup | 79T 1
Now, by (iii), as ¢t —1¢, the quantity sup | 7.9~T, 9| goes to zero.

Thus |D||—0 as t > ¢,.
For p=co, the proof follows similar lines.

COROLLARY I1.1-1. Let f be in H?, t, be in .7, and let g(z)=P(2)f'(2).
Suppose condition (i) of Theorem I1I.1 holds and in addition, suppose
that

(a) lo(z; t)l <<r <1 for ze 4

(b) o(z; ) is continuous with respect to t at t,, uniformly in z for
ze 4.

Then, T.f is differentiable with respect to t at t, and (I1.5) holds.

Proof. By (b), there exists a neighborhood </? of ¢ such that
lw(z ) <r' <1 for zed, te 4’ N I

Now, ¢(z) is analytic in 4. Therefore for te.7,’ N\ .7, T,g9(z)=
glo(z; t)] is bounded in 4 and therefore T,ge€ H".

Also, T.g9(z) is continuous with respect to ¢ at ¢, uniformly in z for
ze 4. Hence sgAp |T.9(z)—T,9(z)| - 0 as t — ¢,

THEOREM I1.2. Suppose

(i) Condition (i) of Theorem 11.1 holds for t,=0;
(i) |T./—f—0ast—>0 (te.o) for every fe H".

Then, < (A), the domain of the generator A (defined by 11.2), is the sel
of elements f€ H” for which g(z)=f"(2)P(z) defines an element g of H”.

Proof. Let & denote the set of elements fe H? such that g(z)=
(@) P(z) defines an element g of H?. We already know (last paragraph
of IIA) that & (4A) C ¥. To show that ¥ C <7 (A4), one must verify
conditions (ii) and (iii) of Theorem II.1 for fe &, ¢,=0.

Since fe & implies ge H?, it follows from Theorem 1.1 that T.g
€ H* for all te & Also, condition (iii) of Theorem II.1 is obtained for
t,=0 by applying condition (ii) of Theorem II.2 to the function g,
Equation (II.5) becomes
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(11.8) Af=g where g()=P>)f'(2).

THEOREM II.3. Under conditions (i) and (ii) of Theorem 11.2, A is
a closed transformation. Also Z(A) is dense in H”.

Proof. Let f, bein Z (A); f, —f (in the norm of H?) Af, —ge H”
(in the norm of H?). Then [7]

ORI O
uniformly on compact subsets of 4,

PR)f,'(2) > 9(2)

that is, g(z)=P(2)f'(z) for ze 4.
Therefore, since g e H?, then, by Theorem I1.2, fe 2 (4) and Af
=g. See [2, Chap. 11] for the fact that & (A) is dense in H*.

C. The family of transformations generated by a given operator of
the form Af(z)=P(2)f"(z). Suppose P is a given function in . The
following question arises: Is there a set .77 in the complex plane and
a set of functions {w,} satisfying, respectively, conditions CII.1 and
CII.2? If so, how, knowing just P(z), can one determine the family
{w,} and the maximum set .77

To investigate these questions, additional conditions will be imposed
on the given function P(z). First,

(CIL.3) 1/P(z) is analytic in 4 except, possibly, for a single pole.
Let the function Q(z) be defined by

(IL.9) Q(z)=S:0 .la‘fg) 2 2€ 4

The path of integration is chosen in 4 so as not to pass through
any singularity of 1/P(z); also, z, is chosen so as not to be a singularity
of 1/P(z). Q(2) may be a many-valued function.

- Q(z) depends on the choice of z,; however, as will become clear
below, it is not worthwhile to express this dependence in the notation.
Clearly, all definitions of @ (corresponding to different choices of z)
differ from each other by additive constants.

The following property of @ is worth noting.

Let 2, and 2z, be in 4, and not singularities of 1/P(z); let Q®(z),
Q®(z) be two values of Q at 2z=z; and let Q®(2)—Q®P(z)=hA. Let
Q®(z,) be a value of Q at z==z,. There exists a value of @ at 2=z,
which may be denoted by Q®(z,), such that Q¥(z,)—Q®(z,)=~k. Thisis
clear from the definition of @ and from (CIL.3).
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We shall further assume:

(CI1.4) If 2, and z, are in 4, are not singularities of 1/P(z), and z, 5 2,,
then Q(z,) == Q(z.).

This may, of course, be regarded as a condition on P(z).

Now suppose Pe U is given satisfying (CII.3) and (CII.4), and that
a set v and a family {e,} exist satisfying (CII.1) and (CII.2). From
(II.1) and (CIl.2-iii), regarding z as fixed for the moment, one can
write

(11.10) G‘lzt o(z; t)=Plo; t)] | 24

o(z; 0)=z te 7

Let z be fixed in 4 and not a singularity of 1/P(z). Then, from
(11.10), o(z; t) must satisfy

(IL11) Q[u(z; )]=Q()+¢.

Now, for fixed te .7, w(z; t) must be an analytic function of z in
4, mapping 4 into itself.

Let I, be the image under @ of 4 (excluding the possible singulari-
ty of 1/P(z). The set I, includes all values of Q(z) which can be ob-
tained by integrating in (I1.9) along paths which are entirely in 4. If
ofz; t), for fixed ¢t e 7] is defined for all ze 4, and such that |w(z; #)|<
1, then (II.11) implies that this ¢ must translate I, into a subset of
itself: I, +t C I,.

Let .7, be the set of translations of I, into or onto itself. (Clearly
7, does not depend on the choice of z, in defining Q.) Then 7 C .7,.

On the other hand if P being given'!, 7, contains a subset & *
satisfying conditions (CIL.1), then a family {w,} satisfying (CII.2) exists
(with te 7 *).

Define, for te .77, ze d,

Q'[Q(z) +¢], z not a singularity of;“—-lnw
(I1.12)  w(z; t)= [P(2)
2, z a singularity of P %z)

where Q' denotes the function inverse to Q.

This definition defines » uniquely. If Q(z) refers to a¥ particular
branch of @, then w is uniquely determined (in 4) because of (CII.4);
moreover, by the property of ¢ mentioned on p. it is seen that the
same point o is defined no matter what branch of @ is used in (II :12).

¢ Pe and satisfying (CIL 3) and (CIL 4).
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It is also clear that w(z; t) does not depend on the choice of z,.

The function w(z; t) thus defined is analytic in z for each te.v/ ™.
This is clear if z is not a singularity of 1/P(z). If 2z, is a singularity
of 1/P(z) in 4, it is necessary to show that w(z; ¢) is (for fixed ¢) con-
tinuous at z=z,; that is, (from II.12) w,(2) — 2, as z — z,.

Since 2, is a pole of 1/P(z), one can say, by the definition of @,
that there exist points w,(z) approaching 2, as z —z;,, such that (II.12)
is satisfied. But, by (CII.4), these points are the only ones in 4 for
which (II.12) is satisfied.

The other conditions of (CII.2) are readily verified for the functions
wo(z; t) as defined by (II.12).

The preceding results may be summed up as follows.

THEOREM 11.4. Let P(z) be in U, satisfying (CIL.8) and (CII.4).
Let Q(2) be defined by (11.9); let I, be the wmage of 4under Q, let .7, be
the set of tramslations of I, into or onto itself.

Then, there exists a set ./ and a family {w,} satisfying (CIL.1) and
(CIL.2), if and only if .», contains a subset ./ satisfying (CIL.1). The
maximum set ./ 1s the *‘ direct sum’’ of all subsets of .. which satisfy
(CI1.1). Here ‘“ direct sum’’ is defined as follows: If {G,} is a collec-
tion of subsets of the complex plane, each containing the origin, the direcct
sum of the sets {G*} is defined to be the set consisting of all elements of
the form t=t,+ - +t, where n is a finite (positive) integer and where
ti € U Gm-

The last statement follows from the fact that the direct sum of
subsets of .7, satisfying (C.II.1) is also a subset of .7, which satisfies
(C.IL.1).

One result of the previous theorem is the following.

THEOREM IL1.5. If P(z)e U, satisfying (CIL.3) and (CIL.4), and if
there exists a set .7~ and a family {o,} satisfying (CIL.1) and (CIL2),
then 1/P(z) can have only a pole of first order in 4.

Proof. If 1/P(z) had a pole of order higher than the first, then
I, would have a bounded (and non-null) complement; therefore .7, would
consist only of the point £=0.

Thus, if ¢, is the singularity of 1/P(z), then Q(z) can be written
(I1.13) Q)= In (z—,) + Qi(z)

where Q,(2) is analytic in 4.
Theorems II.6 and II.7 refer to families of transformations generat-
ed by P(z) satisfying (CIL.3) and (CIL.4).
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THEOREM I1.6. If w(z; t)==z, 2 € 4, for t £ 2mikq,, k=0, +1, +2,
*, the’ﬂ 21=:g.

Proof. Qlo(z; t)]=Q()+t for z~¢,.
Therefore Q[z]=Q[z]+1¢ if z54¢,.
Therefore t=2rikq,, k=0, +1, ---.

THEOREM 11.7. If w(z; t)=w(z,; t), t€ .9, then z,=2,.

Proof. Suppose first that 2, 2,74 &,. Then «(z; t)=w(z,; t) would
imply Q(z)=Q(2,) or, by (CIl.4), 7=2,., On the other hand, if, say,
z2,=C,, then w(z, t)=2=w(z, t) and so z,=z, by Theorem II.6.

Thus, conditions (CII.3) and (CII.4) when imposed on the function
P(z) imply that the family {w,} is a family of schlicht functions.

It is clear that the functions o, as well as the set .27 are unalter-
ed if the definition of @ is altered by the addition of an arbitrary
constant.

It is also easy to see that multiplying @ (that is, multiplying 1/P)
by a constant c¢ =% 0 yields essentially the same family of transformations:

Let .2, {®,} correspond to P(z) and let .77, {w;} correspond to

1rrP(z). (Here the primes do not, of course, imply differentiation.) Then
¢
clearly, & '=¢ 7 Also, for t'e 97,

cQlo’(z; t')]=cQ(z)+1t',

or
Qlo'(z: t)1=Q@+ L,
so that
(I1.14) o'(z; t')=w(z;fc.') L te o, tc e

In other words, there is a one-to-one correspondence between the

transformations corresponding to P(z) and those corresponding to 1—»P(z);
¢

the correspondence is given by (I1.14).
Now consider, for te .~ N I,, the parameter defined by

(I1.15) B=Q(¢t) te I NI,
Then fe 4 and (II1.12) becomes, writing o[z; #(8)] simply as wo(z; B),
(11.16) w(z; B)=Q7'[Q(2) +Q(F)], z, fed.



1026 P. SWERLING

Here f is defined on Q'[.7 N I,].

It is always possible to define @ in such a way® that .. "C I, and
therefore .7 N I,=. In such a case, (I1.15) and (I1.16) hold for all
te g, For example, in defining @ by (IL.9), it is clear that Q(z)=0
for zye 4. Thus, for Q defined as in (II.9) with z,€ 4, we have 8=Q"'(¢)
=w(z,; 1).

It is, however, often possible and more convenient to define @ such
that 7 is the closure of I,. It is also often possible to extend the
definition of @ to the boundary of 4 in such a way that the boundary
of 4 goes (under Q) into the boundary of I,, (An example of this is
given by the family of transformations studied in the next section.) In
such cases, (I1.15) holds for all e .7~ and, in (I1.16), 8 may be a point
on the boundary of 4.

The law of composition of the transformations T,_,ﬁ=Tﬁ in terms of
the parameter g is

T Tp,=Tp,
Bs=a(B; f.)

This can be shown as follows.

(IL.17)

ola(z; t,); tl=ow(z; t+t),
SO
wlo(z; B1); Bl=olz; t=Q(3)+Q(B.)]
=olz; f=w(fi; B)].

By simply looking at the set I, one is usually able to determine
many of the properties of the family {7,}. For example, one may de-
termine (a) whether or not such a family exists for the given P(z); (b)
what the maximum parameter domain .7~ is; (¢) whether {T,} is a
group or a semigroup; (d) which of the functions o, transform 4 onto
itself and which transform 4 into but not onto itself;

D. Possible applications. The above results provide the basis for
obtaining a variety of theorems by rephrasing known results in the
theory of transformations in Banach space in terms of transformations
in the function spaces H” of the kind studied above. Three possible
categories of results are:

(a) Representations of the transformations 7', in terms of the ge-
nerator 4 or the resolvent of A ([2] contains many such formulas).

(b) Application of results in the theory of analytic Banach-space-

s The addition of a constant to @ changes Ig but leaves g unaltered.



FAMILIES OF TRANSFORMATIONS IN THE FUNCTION SPACES H? 1027

valued functions of a complex variable ([2], [7], [9])
(c¢) Other theorems concerning properties of semigroups or groups
of transformations in Banach space.

III. Two Special Cases

A. The family {T,} defined by T,f(z)=Awz), |w|<1.
Let

(L) P()=—¢
and®
(II1.2) Q)= Sj:g? —_lnz.

Then I, is the open right half plane: R(z) >0. .5, is the closed
right half plane: R(2) = 0. Clearly, .7, itself satisfies conditions (CII.1)
and is therefore the maximum domain .97 of the parameter ¢. We
have

(I11.3) o(z; t)=ze ! zed, te o,

or, if we let

(111.4) w=e"’

then, writing o[z; ¢(w)] simply as o(z; w),

(I11.5) w(z; W)=wz zed, w1
The corresponding family of transformations {7} is then given by

(I11.6) Tof=g

where 9(z)=f(wz)

The generator A is defined for those fe H? for which the limit

Af=lim Lo/ | < 1
w1 1 —q0

exists in the H” norm, Thus,
(I1L.7) Af(z)=—zf"(z) for fe 2 (A).

For 1<p< oo, 7 (4) is the set of functions fe H* for which
f/(z) defines an element of H”. This follows from Theorem II.2. The
crucial point in applying Theorem II.2 is in verifying condition (ii) of

¢ Here #zp=1 is not in 4, but in this case this is immaterial,
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that theorem. This amounts to the following. Let %2 be in H* 1<p
< ), and let T, (z)=~h(wz) for |w|<1. Then T,k — % in the norm of
H* as w—1 in the closure of 4. It is not difficult to prove this.
Also, for 1< p< o, A is a closed operator with domain dense in
H?,
For p=co, (II1.7) still holds, but one ecannot verify condition (ii)
of Theorem II.2 and it is eassily seen that <7 (4) is not dense in H=,

B. The family {L,} defined by L,,f(z)=f<g+ “w), “1<a<l.

1+az
Let
(I11.8) P(2)—(1—7)
and"
I S TR
(I1L.9) Q(z)_gol__cz tanh~' 2

Then I, is the strip [J()|< n/4. 7, is the real axis. Clearly .7,
satisfies conditions (CII.1) and is therefore the maximum domain .7 of
the parameter . We have

I11.10 . fy— z+tanht te 75, zed.
( ) w(z ?) 1+ztanht ¢
If we let
II1.11 a=tanht, te 7,
4]

then, writing o[z; t(a)] simply as o(z; «@),

(I11.12) o(z; a)y=2T% zed, —1<a<1.
1+az

The family of transformations {L,} is given by
(111.13) L.f=g

where

o) =1 (? o)

1+az
The norm of L, is
1/p
(IIL.14) | L =] 211 ]
L1—]a

8 The ;;;th of integration lying entirely in 4,



FAMILIES OF TRANSFORMATIONS IN THE FUNCTION SPACES FH» 1029
The generator A is defined for those fe H? for which the limit

Af=1im = “f —f

a0

exists in the H* norm. Hence
(I11.15) Af(R)=(1—2)f"(2) for fe & (A4).

For 1<<p< e, Z(A) is the set of functions feP? for which
(1—2*)f"(2) defines an element of H’; also, A is a closed operator with
domain dense in H?. As with the previous example, these statements
do not hold for H=.
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