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1. Introduction. Let R be a region (open connected set) in the
plane or in space (w==[z,, x,] or x=[w;, @, z;]). We will say that B is a
regular region for Laplace’s equation

(1) Au=0

if the Dirichlet problem for R always has a solution for continuous
data. By this we mean: given a function ¢(¢)e C (that is, continuous)
for £e B, the boundary of R, there is a unique function u(x)e C for

xe€ R=R\UB, for which
du=0 rzeR,
w(§)=9¢(¢) £eB.
We will further say that R is regular for the heat equation
(2) du=u,

if the ‘‘ Dirichlet problem’’ for the heat equation has a solution for
continuous data, that is, if for each

@) e C zeR
and
g t)eC teB, t=>0
where

d(6)=¢(¢, 0)
there is a unique function u(z, t)e C, for ze R, ¢t >0 for which
du=u, rxeR, t>0
u(@, 0)=¢(z) zeR
(€, t)=¢(, t) €€B, t=0.

Tychonoff [4] has shown that if R is bounded and regular for
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Laplace’s equation, then it is regular for the heat equation and con-
versely. We give here a new proof that regularity for Laplace’s equa-
tion implies regularity for the heat equation.

2. The work of Tychonoff. In the first half of the memoir cited
above, Tychonoff proves the following three theorems.

A. Each bounded region which is a regular region for the heat
equation s also regular for Laplace’s equation.

B. Each bounded regular region for the equation du=2au for a certain

2>>0 is also regular for the equation du=iu Jor arbitrary 2=0.

C. Each bounded region which is regular for all the equations Au
= for A=>4, is also regular for the heat equation.

This cycle of theorems shows the equivalence of regular regions
for the equations du=0, du=Ju (1>0), and du=u,.

In the proof of B Tychonoff observes that the solution of the
boundary value problems

du—u=0 ze R
u(§)=¢(&) teB

is equivalent to the solution of the integral equations
u=(=1 | 6@, Yue)dy+ute)

where G is Green’s function for the region R for the equation du=2lu,
and w(x) is the solution to the problem

Aw— =0 zeR
w(E)=¢(8) £eB.

The existence of both w and G are guaranteed by the assumption that

R is regular for du=J/u. He then deduces, via the Hilbert-Schmidt
theory, that the desired solutions of the integral equations exist and
hence these solve the boundary value problems.

However, in establishing C, he forsakes his integral equation
methods and bases his argument on a refinement of a differential-dif-
ference method due to Rothe [2].

We may note that to complete the cycle of theorems it is sufficient
to prove that if R is regular for 4u=0 it is regular for Adu=wu,, and
we give here a proof of this result using a modification of the integral
equation argument mentioned above.

In our argument we will use the following theorem which was indi-
cated in a footnote in the paper by Tychonoff. For the sake of com-
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pleteness we present the proof.

D. Let R be a regular region for du=0, and let ¢(&, t) be defined
on B and be k times differentiable with respect to t, 0 <t < T < o, and
let ¢ and each of its k derivatives respect to t be continuous for &€ B,
0t <]T. Further, let u(x, t) be the solution to the problem

Ju(z, t)=0 zeR
u(§, ty=¢¢, t), ¢eB, 0<t<T.

Then u(x, t) has k continuous derivatives with respect to t and

J.
b= 0<i<k,
ot’

solves the problem

"G t)=§§;¢(s, t), €eB, 0<t<T.

Proof. Choose t,, 0 <¢,<T. By the maximum and minimum princi-
ples for harmonic functions

fu(a, =@, B < max g O—9(E tl.

But by the uniform continuity of ¢(¢, ¢) for £e B, and ¢ in a (suffici-
ently small) closed ¢ interval about £, this maximum tends to zero as ¢
tends toward ¢,. So that u(z, ¢) is continuous in ¢.

Since R is a regular region for 4u=0 there is a solution to the problem

dv(z, t)=0 zeR

U(Ey t)zai Sb(Ey t), EGB, 0:<—_tT

Then

w(w, t)—u(, t)

- e D96 1) _ 0 yie )

— v(, t)‘ < max
| t—t,

by the same argument used above. But

‘/’(5 )= ¢'(E ) _ a¢(§, t(é))
t—1t,

where #(¢) lies between ¢ and ¢, Again by the uniform continuity of
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o
0
differentiable with respect to ¢ and this derivative attains the continu-

f(&,,t) this maximum vanishes as ¢ tends toward ¢,. Hence u(x, ¢) is

ous boundary data gi:(é', t). Hence by the first part of the proof

g—?(x, t) is continuous in ¢. By iterating this argument %k times the

proof is completed.

We will need the following, also taken from Tychonoff.

E. Let R be bounded and regular for du=0, and let G(x, y) be the
Green’s function for this equation and this region:

1

{ log—= —g(x, y) n=2
2r T 1y
Gz, y)= )
1 o —g@,y) n=3
4 7,y
where g(x, y) is the solution to the problem
4,9(x, y)=0 xeR, yeR
llogL ¢ceB, ye R, n=2
2 Tty
9(¢, y)=
}li teB, ye R, n=3.
\477 Tey

Then Gz, »)=G(y, z), xe R, yeR.

Proof. Let R, be a sequence of regions, R, C R,,; C R, which tend
to R with the property that the corresponding boundaries B; are sur-
faces having continuous curvature and such that the distance from each
point on B, to B is not greater than &; where the sequence &,—0 as
j— oo, For such a construction see Kellog [1].

Let G4z, y) be the Green’s function for R,. Under the hypotheses
on R, it is well known that G,(xz, y) is symmetric (see Tamarkin and
Feller [3]). It is therefore sufficient to prove that

lim Gz, »)=G(z, y) .

To this end we note that G>0: since it vanishes on B and is
large and positive near the pole y it must be nonnegative by the mini-
mum principle.

Let ¢>0 be given, then if j is sufficiently large we have 0 < G(x, y)

< e for each point x€ E—R,, and in particular on B,. Hence
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OéG(xJ y)_Gj(w! y)=g(w, y)—gj(xy y) <€

everywhere in R, since that inequality is true on B,. This completes
the argument.

3. Reduction of the data. We return now to the problem
du=u, zeR, t >0
Wz, 0)=¢() zeR
wé, )=y 1)  €eB, t>0

under the assumption that R is regular for du=0. We show that ¢(x)
may be assumed to be zero. Let R’ be a sphere (or circle) containing

R in its interior, and let ¢’(x) be a continuous bounded extension of ¢(x)
into R’. Define

ula, 0= Ka—v, H6' @)y,

dy being the element of area or volume, and k(x, ¢) being the funda-
mental solution

k(z, t)=(4rt)~"" exp [|=[/4¢]

where
EENE n=2,3.

If u(z, t) be the solution to our problem, the function
v(w, t)=u(z, t)—ulz, t)
solves the problem
dv=ny, zeR, 1 >0
v(w, 0)=0 xeR

v(E, )=9E, )—w(E 1), £eB, t=0
and

(&, Dlime=9(&, 0)—ui(§, 0)=4(&, 0)—p(£)=0.

4. The integral equations. We study now the problem

du=u, rzeR, t >0

u(x, 0)=0 zeER
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u(§, t)=¢(§, t) §eB, t =0
with
¢(§’ O)ZO, EGB .

Since R is assumed regular for du=0, let #(x, t) be the solution to

the problem
da(x, t)=0 zeR

ag, =9, b, rekR

Also since R is regular for du=0, the Green’s function G(z, y) ex-
ists and is symmetric function by E, and if f(x) is differentiable the
funetion :

9(@)=— SRG(% Y S (W)dy

solves the problem-

dg=f(x) zeR

9(6)=0 ¢eB.
(See Tamarkin and Feller [3]). Hence if u(zx, ) be the solution to our
problem it must also satisfy the integral equation

(3) u(z, =a(e, 0= | 6@ 1) 2 uw, vy .

Conversely any solution of our integral equation which is differentiable
in z (and which attains the proper initial values) must also solve our
problem.

We apply the Laplace transform: let

< H{u, 1)} =w(x, s), L {u@, )} =v(, s),

so that (8) becomes
(4) w(x, s)=v(x, s)—sSRG(x, y)w(y, s)ds

which is a Fredholm integral equation with a symmetrical kernel
'—G(.'L', y)’

5. Restricted solution of the problem. To facilitate the solution
of our integral equations (3) and (4) we make additional restrictions
which will be removed later. We assume

(i) there exists 7> 0 such that ¢(&, t)=0 for ¢ > T.
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(i) ¢(&, t) in addition to being continuous with respect to (¢, t),

has four derivatives with respect to ¢ which are also continuous with
respect to (&, t) and

D&, 0)=¢,.(&, 0)=¢,., (5, 0)=0, ¢&eB.

From D it follows that #@(x, t) has four continuous derivatives with
respect to t; and

at(xy O)zatt(xr 0)=?76“;($, 0)=O
for z e R, by the maximum principle. From (i) it follows that
#(x, t)=0, for t>T, wekR.

Since —G(x, y) is symmetric in (z, y) it follows that the eigenvalues
of our problem are all real and in fact it is well known that they are
all negative. (See for example, Tamarkin and Feller [3]).

The solution of (4) is

(5) w(z, 8)=o(a, )+ 24 4,(0),
where ¢,(x) are the eigenfunctions for the kernel —G(zx, y) and where

0a(5)=|_#uonla, 9tz

We must now invert the Laplace transform and show that
L -Hw(z, s)} is the solution to our restricted problem. To this end we
examine some of the properties of w(x, s). We begin with an examina-
tion of w(x, s).

By its definition we have

v(x, 8)= Sw e “u(x, t)dt,
0

the integral being uniformly and absolutely convergent for xeR, and
A s2>0. In fact any of the z derivatives of v can be computed under
the integral sign, since the resulting integral is uniformly and absolute-
ly convergent for <& s>0 and « in any closed sub-domain of R. So
that, in particular,

to(a, s)=re““dz_l,(x, £)dt=0 .
Furthermore w(zx, s) is analytic for <#s>0, and bounded for

# $2>0, and by integrating by parts, under of course the restrictions
(i) and (ii) we get



874 W. FULKS
1{~5 st
(e, 8):-81 ) Uppeo (2, D)e~dE .

From this we see that
lo(z, )| < Kyflst, Rs>0, veR

which is of interest only for large |s| since v(x, s) is bounded.
Since

5U,(8) , bal®)
w(zx, s)=v(x, 8)— Z(slln) 7

we get

lw(z, s)|<|v(z, S)IJ{E ]l(SI/,!zv;(S)llzlz %di 2(x) ]1/2

Now 4,=<C0 so that |(s/2,)—1|=>1, and hence
e, 9 o, 9+ 15 | oo, 9 da-| G way]”

Butg Gz, y)dy is bounded since G is continuous except for a
R
singularity at « like log |[x—y|| or 1/|z—vy]|, as the case may be. Hence

lw(@, )| < |Kl4 + |K|3 glKli for |sj>1
s

uniformly for xe R, “#s>0, and
oz, <K, 5|1, #Fs=0

since »(x, s) is bounded there.
Hence w(xz, s) is also bounded for all ze R, -#s>0, and for large
Ist,
w(z, s)=0(1/|s)
uniformly for ze R .
The inverse transform

(6) u(z, t)= 1 S w(x, s)eds o >0
2

a—ioo

exists, and since % is bounded and w(x, s)=0(1/|s’) converges uniform-
ly. Also
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ou 1 fote s
»a—t—(x, t)——éﬁ;spimsw(x, s)e"ds ,
since the integral converges uniformly.

Since w(x, s) satisfies (4), by applying the inverse transform to
each side we are led back to (8), the integration under the integral
sign being permissible by the uniform convergence of the integrals in-
volved. Hence u(x, t) as given by (6) where w(wz, s) is given by (5) is
the solution to the integral equation (3), and as such is a solution to
the heat equation in R and attains the proper boundary conditions. Let
us examine the initial values of u(z, ¢):

o +ioo =
u(z, 0)=291{,S “u(e, s)ds 6>0, ze R

v Jao—i

fute, 1< | ot 9)l-1asl,

gK?Sw dr ,Kl,_r v
T 2m)-=(o+ i)  2m6® )-= |1+
which tends to zero as o becomes infinite. Hence u(z, 0)=0, zeR.
This completes the solution in the restricted case.

6. Removal of the restrictions. We first remove the restrictions
(ii).

Let (&, t) be continuous, ée€ B, t>0, with ¢(¢§ 0)=0, £eB, and
¢, t)=0, t >T. By the Weierstrass approximation theorem there is a
polynomial p,(¢, t) such that

195, )—pal§, DI<1/4n, feB, 0<t<T.

By the uniformity of the continuity of ¢(&, t) there exists ¢,, ¢,
such that

0<t<t, §eB

|¢(&, )< 1/4n, for
t,<t<T, ¢eB

and without loss of generality we may, assume ¢,<1/2n and T'—¢, <
1/2n.

Let ¢,(t) e C° 0<t, increase from 0 to 1 as ¢ increases from 0 to
t, and be identically 1 for ¢,<¢#<t, and decrease to zero again at
t=T, and have four vanishing derivatives at =0 and at ¢t=17.

Now let ¢,.(&, t)=q,(t)p.(&, t). This function is an admissible
boundary function under the restricted proof, which we have already
completed, Hence for each n there is a solution u,(z, ¢) of the heat
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equation assuming these boundary values and of course zero initial
values. To show that this sequence converges to the solution to our
present problem we consider first

96, =46, DI=I0(E, O—pul6, 01 <

for ¢, <<t<t,. For 0<t<¢t, and ¢, <t < T,

198, ) —ul&, OIIPE, DI+ 1¢a(E, O

1 1
- -
b +1.()]- 1pal€, ) < 4n+lz>n(5, I,
but
1,1 1
dn 4n 2n
so that
I9(E, 1) — (&, t)l<—él9—i , 0<t<T,
and consequently
10,8, ) —dule, B <t 0<t<T

mlr’i(ézﬁi;»h)i ’
For xe R, 0<t<T
u(x, t)—uy(x, t)

is a solution of du=u, in R and continuous for ze R, 0 <t <T. Hence
by the maximum and minimum principles for the heat equation this
function attains its maximum and its minimum on the bottom or lateral

parts of the space time cylinder defined by zeR, 0 <t T
It follows that

[Un(, t) —un(x, ) < max |P.(&, t)—Iu(§, )| g—w.—f—l-»—-~
teB, 0st=T min(m, n)

from which the uniform convergence of the sequence wu,(x, ) in the
cylinder is clear. The limit function, u(x, t), clearly attains the proper
initial values, since each of the approximating functions does. And for
¢eB,

u(€, ¢)= lim u, (&, )= lim ¢(&, H=9(5, 1),
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so that wu(x, ¢) is the solution to our problem under the restriction (i).
Consider now any ¢(&, t), continuous for £e B, t =0, which vanishes
for t=0. Then let

1 0<t<n
rt)=4{1+m—t) wt<n+l
0 n+l1<¢t.

and this time let
D&, =P, Dr.(2) .

If wu,(z, t) be the solution to the problem with data ¢, we will again

show convergence. For let (x, ¢) be any point, ze R, t=>0, and let n
and m each be greater than, say 2¢t. Then

fa(, O) ~un(e, )] < max |fu(§, ) =g, o)

where the maximum is computed over all ée B, 0<r<{2¢t. But this
maximum vanishes, hence wu,(z, {)=u,(z, ) for n, m sufficiently large.
So that lim u,(z, t) exists and is a solution of the heat equation and

7 ~»o00

takes on the prescribed initial and boundary values.
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