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1. Introduction. In recent years several authors have considered
the notion of random variables with values in a Banach space, X. One
of the basic problems is to characterize those positive definite functions
on ¥* that are characteristic functions of such random variables. Mourier
[4] has given a solution to this problem if ¥ is separable and reflexive.
The purpose of this paper is to give another solution of this problem.
Our results are valid if X is reflexive. However the contribution of this
paper is not so much the removal of the condition of separability, rather
we feel that our method sheds new light on the problem and aids in
understanding it. The basic tool that we use is the concept of a weak
distribution as introduced by Segal [5], and this idea succeeds in unifying
the theory.

Section 2 contains the basic definitions and preliminaries. The main
results are contained in §3 but in a form slightly more general than
needed for the problem at hand. However we will need the results in
this generality in a future paper. The contents of §3 are clearly valid
in any locally convex linear topological space. Finally in §4 our solution
to the problem stated above is given along with some examples and
consequences.

The considerations of Bochner in chapters five and six of [1] are
somewhat related to our problem.

2. Definitions. Let (2, ¥, P) be a probability space, that is, £ is
an abstract point set, $§ a s-algebra of subsets of 2, and P is a measure
on (2, ) with P(2)=1. Let ¥ be a real Banach space' and X* its conju-
gate space. Let X: 0Q-X, we will call X an X valued random variable
if X is weakly measurable, that is, if {a*, X(w)> is a real valued -
measurable function for each a2*eX*, Let E(X) be the Pettis integral
of X with respect to P, provided it exists. Thus E(X) is the unique

element of % such that (o*, E(X)>=E{<z*, X5} =S<x*, X(w)>dP for each

x* e X*. .The characteristic function of X is defined as follows,

@.1) Wa*)=E(e ¥y = [HaF (@ )

Received January 16, 1956. This research supported in part by Office of Ordnance
Research, U.S. Army, contract DA-36-034-ORD-1296 RD.
! The extension to a complex Banach space is essentially clear.
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where Fi(a*; 1) is the distribution function of the real valued random
variable {&*, X(w)>. It follows that ¢(0)=1, ¢ is positive definite, and
¢ is continuous. For a detailed discussion of the above concepts see [4].

If we put L(@*)=<{x*, X(w)> then L is a linear map from X* to
random variables. Segal [5] defines a “weak distribution”, L, on X to
be a linear map from X* to random variables. However there are two

interpretations of this statement. We may mean L( é aixz“)= i aL(x})
i=1 t=1

with probability one or the stronger statement that for almost all @ the
funection L(-, w) is linear*. Theorem 2 of the next section shows that
these two possibilities are actually equivalent. Thus since there is a
possible ambiguity and since we want to consider a weak distribution
as the generalization of an ordinary n-dimensional distribution we make
the following definition.

DEFINITION 2.1. A weak distribution, L, on X is a map which as-
signs to each finite collection of elements (xF, ---, 2) in X* an n-dimen-
sional distribution function F(x¥, 4,; ---; x¥, 4,) such that

(1) F, is symmetric in the pairs (7, 4;) .

(2) Fn(m;ky z1; ey il?;f, oo)an—l(x;F, x1; e Loy Zn—l)-

3) If tfn_]alxi*=0 then
=1

S an(m;k; 21; ey x;f, Rn)ZE(Z)

where (1) is the unit distribution, e(z)z{o 20
1 2>=0.

Note. Condition (3) implies that if z*= i axF then
i=1

F(z*, x)=§ APk, X; e @y 1) -
aidi =4

1Ma

(2

ExampLE. If X is an X valued random variable then there is as-
sociated with it in a natural way a weak distribution which assigns to
(zf, +--, z¥) the joint distribution function of the random variables

{z¥, X(w)), thus,
F(a7;k’ 21; *ccs w:) '{n)= Pr [<x;k’ -X(w)>-g 4, 77:1’ % 9’&] .
2 Since “random variable” in [5] in treated as a residue class module null sets, it

clearly seems that the definition of weak distribution given there refers to the first inter-
pretation.
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Given a weak distribution L we define its characteristic function
(™) by

2.2) <;b(x*)=§e“dF(x*; 2.

It is clear from (2.1) that if L comes from X (as in the example) then
the characteristic function of L and X are the same.

We are going to give conditions that a weak distribution come from
some ¥ valued random variable and hence that ¢ be the characteristic
function of some ¥ valued random variable.

3. The main theorems. From the definitions in the preceding sec-
tion we see that L and its characteristic fuunction ¢ are both defined
relative to ¥*, In other words in the study of the relations between ¢
and L the space ¥ plays no role. We are thus led to define a g-weak
distribution on ¥ as a map, L, from finite sets of elements (ay, «--, 2,)
in X to distribution functions which satisfies the conditions of Definition
2.1. We can now state our first theorem.

THEOREM 1. There is a unique one-to-one correspondence between q-
weak distributions L defined on X and positive definite functions ¢ defined
on X satisfying (1) ¢(0)=1 (ii) ¢ @s continuous on each finite dimensional
subspace of £. We say that ¢ is the Fourier transform of L and denote
the correspondence by H=L(L).2

Proof. In the following we will need a formula for change of vari-

ables in Lebesgue-Stieltjes in:cegrals that we give here for convenience,
If

F(R)SS an(Ali ct )ln)

iiiazl»zél
then for any bounded Borel measurable function, f, we have
3.1) S F)AFQ) = S f( o ahzi)an(x], e 1)
Given L we define the corresponding ¢ by

3.2) gb(x):Se“dF(x; 2) .

3 This result was essentially contained in a lecture of I. Segal given at the Institute
for Advanced Study during the academic year 1954-55. See also [1]. Note that (ii) can
be replaced by the equivalent condition that ¢ is continuous at 0 on each finite dimensional
subspace.
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Clearly ¢(0)=1 and since

- nw
1>, arldk

qS( i akwk>=Sei"dF( i ®pllys} l)=Se k=1 AW, Ay v v Ty An)
k=1 k=1

(using the formula stated above) it is evident that ¢ is continuous on
each finite dimensional subspace of X. Moreover

n
>
k=1

S a@p—o)= Lo |-z, )

= 2 akCYjSei(}\"—}\f)sz(xm Ay @y A3)

7
Jrk=1

I

n
Z ak&jgez(Ak_)\j)an(xh Ay o e s Tny Zn)
Jik=1

g

Thus ¢ is positive definite and satisfies the conditions of Theorem 1.
Conversely suppose we are given ¢ satisfying the conditions of
Theorem 1. For any finite set of elements (x, ---, 2.) we consider the

funetion ¢(«ay, ---,an)=¢(§] akxk). It then follows that ¢ is an =-

"4F, >0 .

n ;
Z akez)\k
Jik=1

dimensional characteristic function in the ordinary sense. Hence by the
n-dimensional Bochner theorem there exists a distribution function
F(x, 2} «++; @, 4,) such that

(33 o Eaw)=gla, o @) = BBy, 25 e, 2.
k=1

By using the uniqueness assertion of the n-dimensional Bochner theorem
it is easy to show that the above construction actually defines a g-weak
distribution on X. The fact that the correspondence established between
the ¢’s and the L’s is one-to-one (and unique) again follows from the
uniqueness in the n-dimensional Bochner theorem.

COROLLARY 1. A necessary and sufficient condition that ¢ be con-
tinuous on X is that F(z, ))—e(2) as z—0.

Proof. This is an immediate consequence of the representation (3.2)
and the properties of ordinary characteristic functions.

The following example shows that there actually exist positive defi-
nite functions continuous on each finite dimensional subspace without
being continuous. Let ¥ be a separable Hilbert space and let {e,} be

n
a linear base, thus if e X then z= >\« s, and this expression is unique.
1

It is no restriction to assume |le,||=1 for all 4. Let {s,} be a given
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sequence from {s}, and let Y, be independent Gaussian random variables
(real valued) such that E(Y,)=0 and E(Y;)=n. Put Y, =Y, and Y,=0

is 0740, for some n., If xziaje(,j we define L(x)zian,j. This
1 1

then defines a ¢-weak distribution, L, on X as described in the example
of §2, that is, Fl(xy, 4; +--; 2, 4,) is the joint distribution of L(zx,),
coe, Lx,). Let ¢=F(L) then, according to Theorem 2, ¢ is continuous

. . . 1 .
on each finite dimensional subspace. However — =€, — 0 while for each

.l/
n F < 1/1: ey , 2) is the standard normal distribution with mean 0 and
n n

variance 1. Thus by Corollary 1 we see that ¢ is not continuous on ¥%.

Since for any g-weak distribution on X the family of associated
distribution functions satisfies the Kolmogorov compatibility conditions
we can construct a stochastic process in R* (R is the real number
system) which induces the given distribution functions. If we put Q=R*
then we can denote this stochastic process by L(x, w)=w(x) and the
joint distribution of L(z,, »), ---, L(x,, ) is given by F (x;, 1;; -} Tn, 1n).
See [2]. Taking into account condition (3) of Definition 2.1 it is clear
that one should expect the sample functions L(-, ) to be linear in some
sense. The next theorem states that L(-, o) is a linear function for
almost all .

THEOREM 2. Given a g-weak distribution L on X then the stochastic
process L(x, w) can be realized in the space of all linear fumctions from
X to R, that s, in the algebraic dual of X.

Proof. Let £ be the set of all linear functions from ¥ to R, let

% be the field of cylinder sets of 2. e P if and only if U= {w/(w(x),
<+, w(x,)) e A,} where A, is a Borel set in B*. Let P, be the n-dimen-
sional measure induced by F,(x;, 4,; ---; @,, 4,) and then we put P(UA)=
P.(4,). We will now show that P is a completely additive measure

on %.

(1) If AeF then P(A) is uniquely determined. This is proved in
exactly the same way as in Kolmogorov [2].

@) P(2)=1. Clear.

(3) If A and *B are disjoint cylinder sets then P(A\J B)=P(A)+ P(B).

Let A={w/(o(x)), - -, o(xy)) € A} and B={ov/(o(a)), ---, o(z)) € B},
then by assumption % N\ B=0. Let (v, ---, ¥, contain all the x,’s and
x’s in some order and let A be the cylinder set in R* with base A4, in
R* and B be the cylinder set in R" with base B, in R’. We claim that
P,(A N B)=0. Suppose not, that is, P,(A N\ B)>0. We distinguish two
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cases. First suppose (v, ---,¥,) are linearly independent. A N\ B+#0
since P,(A/\ B) >0. Let (4, ---,2,) € AN B, define w(y;)=4, and extend
o linearly to the linear extension, {w, -+, ¥.}., of (% -+, ¥,). Then
we can extend @ to a linear function on all of ¥ (w can even be taken
to be continuous by the Hahn-Banach theorem). Thus we 2 and
oeANB which is a contradiction. Second suppose there is a linear

relation, > a,=0, among the y,’s. Sinece
1

dF(yli Xl; s Yny Rn)ZE(l)
2 aiki =4

7w
the measure P, in R" is concentrated on the subspace 3 a,4,=0. Because

i=1

P(ANB)>0 there exists a point (4, -+, 4,)€A N\ B such that

ﬁalﬂi=0. If we define w as before we obtain the same contradiction.
i=1
Thus P,(A N\ B)=0. Now

PR B)=P,(A\J B)=PF,(4)+ P,(B)—P,(A N\ B)=PR)+P(B) .

(4) P is completely additive on . This again can be proved
exactly as in [2].

We can now extend P to a completely additive measure on the o-
algebra, §', generated by & and thus the proof of Theorem 2 is complete.

The next theorem gives conditions under which L(-, ) is continuous
for almost all @, that is, L(-, v)e X* for almost all «. The proof is
fashioned after a proof given by Mann [3] in the real valued case.

THEOREM 3. A mnecessary and sufficient condition that L(x, w) is
realizable in the space, X*, of all continuous linear functions from X to
R s that for any separable subspace ¥ and any e, p_ >0 there ewists
0=0(e, 9, X') such that for any finite collection x,, «--, x, € X' with ||lz)]| <o
we have

(34) SE "'Se an(xl’ '11; e Tpy 37»)21“77

Proof of sufficiency. First note that if 2,=¢ and 1,=—¢ (1=1, 2,
.-+, m) are continuity points of F), then the integral (3.4) is equal to
P[ max |L(z;)] <¢e]. For the purposes of this proof we denote X* by 2

1=sisn

and then as in the proof of Theorem 2 we can introduce a finitely ad-
ditive measure, P, on the field, ¥, of cylinder sets in 2. We will now
show that P is completely additive. As is well known it is sufficient
to show that if 2, DU, > --. is a decreasing sequence of cylinder sets



ON CHARACTERISTIC FUNCTIONS 891

such that ﬁ%rnzo then P(2,)\0. Assume P(,)\6>0. It is no

loss of generality to assume that U, is defined by «,, ---, z, and a closed
Borel set A4, in R”

Ay={o|(o(@), -+, @(7,)) € Aa} .

Let X’ be the separable subspace generated by {z, z,, ---}, and let
{y,, ---} be the set of all finite linear combinations of the =z,’s with
rational coefficients. Thus {y,} is a countable dense set in ¥’ and we
arrange the notation so that A, depends on y, ---, y;, where k, <k, if
t1<7 and k,—> o as m—c. By hypothesis we can choose a 8, >0,
independent of n, such that

P[wlmaxlw(yi)l_g% for i<k, and ][yillgangl _%} .

Define %if,={wlwe%fn and max lw(yi)lé—g; 1 <k, IIyiil_S_&z}, then since

P(2,)>>0 we have P(3)> g+z and 92 CA,. Also AW

Similarly we define inductively

—{o e W, max o(y)| < o, for i <k, Iyl <5,}

and P(A2) > g +-g—p. More over AP DAL > -+« and W AT ... TN,
Consider the sequence 2? and note that 2 DA > ..., also note that
Az depends on y, .-+, Y, - Moreover the above inequality shows that
P(%Ig)g—g—. We can now replace the A2 by sets B, depending on v,
0 Ys, such that B, CAZ and the corresponding Borel set, B,, in R?
is closed and bounded and P(?B,,)g-z—. See [2].

Now choose w,e®B, and by the diagonal process we can choose a
subsequence (which we again denote by w,) such that w,(y,) — 4, for
each y,. Since B, is closed the point (4, ---, Z,cp) is in B, and thus if
we define o(y;)=4; for all y, we see that if we can show we X* it will
then follow that we®,. Clearly o is rational linear on {y;}. We now
show that « is uniformly continuous on {y;}. Given ¢ >0 choose 5 such
that ZJ < % and then choose §=4¢, (the ¢, used in the construction of
At). For any y;, with |ly,]| <8 we have

lo(y)l < o) — oY)+ o) -
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Since w,(y;) > »(y;) we can choose a p, such that p>p, implies

lw(yi)—wp(yi)lg_—;- We choose a p such that p=>p,, p=>j, and k, >4,

then w,e®B, C Az A7 end hence |w,(y,)] g;gfé. Thus if |yl <o

then |w(y;)|<{e. Since w is rational linear on {y,} it follows that w is
uniformly continuous and hence can be extended by continuity to X,
Clearly the extension will be linear on X', and hence by the Hahn-Banach
theorem » can be extended to be a continuous linear function on X.
It now follows that we®B, for all p and since B, T A, we have that
we ﬁ A,. Hence P is completely additive on .

k=1

Proof of mecessity. Since L(-, w)e X* for almost all @ we can write
L(z, wo)={r, X*(w)>. Let X' be a separable subspace of X and let
I X*(w)||' be the norm of X*(w) when considered as a linear functional
on ¥/, then || X*(w)||’ is a measurable function. Given ¢, 7 >0 we can
choose ¢ >0 such that P[|X*||' <e/d]>=1-—7% and this § has the required
properties.

4. Application to ¥ valued random variables. We can now give a
solution to the problem stated in the introduction in case X is a reflexive
space.

THEOREM 4. Let X be a real reflexive Banach space and ¢(x*) be a
positive definite function on X*. A necessary and sufficient condition that
¢ is the characteristic function of an X valued random variable is that :

(i) #(0)=1 and ¢ be continuous on each finite dimensional subspace
of X*.

(i) If L=5(¢p) (which exists by (1) and Theorem 1) then for any
separable subspace X of X* and any e, 7 >0 there ewists 0=05(Xy, ¢, 7)
such that for any finite collection =¥, «--, xF¥ e XF with |lz¥|| <6 we
have

Ss ...Se dF (xF, 2+« zr, y=1—7.
-t -t

Proof. L is a g-weak distribution on X* which satisfies the conditions
of Theorem 8 relative to X¥*. Hence L can be realized in X**=% since
¥ is assumed reflexive. Thus L(z*, 0)={z*, X(v)> and X(w) is weakly
measurable since L(z*, -) is measurable for all #*. But ¢ is the charac-
teristic function of L and hence as remarked in §2 it is the charae-
teristic function of X. The necessity of the above conditions is obvious
if we apply Theorem 3.



ON CHARACTERISTIC FUNCTIONS 893

We conclude by giving two “continuity” theorems. Suppose ¢,=
B(X,) (F(X,) denotes the characteristic function of X,) and ¢, (z*)—
¢(z*). Clearly ¢ is positive definite and if ¢ is continuous at 0 on each
finite dimensional subspace then there exists a weak distribution L on
% such that ¢=%(L). The question naturally arises as to when there
exists an X such that ¢=%(X). We give two theorems which bear on
this question and then two examples.

THEOREM 5. Let X be a real reflexive Banach space and let ¢,=
BUXL), of du(x™) = p(a™) then a necessary and sufficient condition that
there exist an X such that ¢=F(X) s that :

(1) ¢ restricted to any finite dimensional subspace of X* 4s continuous
at 0.

(2) Given any separable subspace Xf of X* and any e, 7 >0 there
exists a O such that for any finite collection J=(af, ---, x¥) e X with
o | < 0 there exists n(J, 8) such that of n_>n(J, o) then

(4.1) Plmax |Ly()| < e]=1-7 .

Proof. Recall that L,(z*)={z*, X,(v)>. We now prove the sufficiency.
Condition (1) implies that there exists a weak distribution L such that
¢=%(L) and L,— L in the sense that

(4.2) F& (s, Ay coes o, Ag) = B, Ay o5 2, A)

provided (4, +--, 4,) is a continuity point of F,. We show that L

satisfies the conditions of Theorem 4. For convenience we put F(c)=
F(e, ++-, &)= F(—~¢, -+, —¢) for any distribution function F' and we say
e is a continuity point provided (e, ---, ¢) and (—¢, +-+, —¢) are continuity
points of F.

Given X, ¢, 7, choose & of Condition (2) corresponding to X, ; , Z~ ,

Given any finite collection J=(z;, ---, zi) € ¥¥ with ||zf||<é we must
show that

[ amer, a5 s o a0 =10,
Choose ¢ such that ¢ is a continuity point of F, and -;<s’<s.

Choose m, such that n,>n(J,d) and 1?@(5)—1‘@(5/)@_% then

Fi(e) = Fooe') ~ v% . Since ¢>>¢ we have
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SE S AF(f, A -e 05 @, Rk)ng(e’)__ZF'z’!o(e’)——ZA
-t -€
>1-7-7 >1—y9.
2 4

The necessity is proved by a similar computation.

THEOREM 6. Let X be a real separable reflexive Banach space and
let d,=F(X,), if Pu(@™) > p(x*) then a sufficient condition that there exist
an X such that ¢=%(X) is that :

(1) Condition (1) of Theorem 5 hold.

@) If G.(a)=P[||X,||< a] then there exists a subsequence an(a) con-
verging to a distribution function G(a). (||X,| s measurable since X is
separable.)

Proof. In the same way as in the proof of Theorem 5 we have
that L, > L where L=%(¢) and L,(z*)=<{z*, X,>. Given ¢, » >0 choose

>0 such that % is a continuity point of G and G<2€3>>1_'g'
Choose N such that n, > N implies

655~ (55)

Now let J=(af, ---, x5) where ||a}||< 3, and let ¢ be a continuity point

7
<y

of Fi(xf, ; -+, xf, 2,) such that é—<e’ <e. (We use same notation as
in proof of Theorem 5.) Choose n; > N such that
Fpe) =P <
We now have
Fe) = Fue) 2 Fine) - L = Fa(5) -2
But

Fo($) =P max <at, X, )1 < & | = Pl 01X, 1< 5 =6 () -

Therefore we finally obtain

[ ool amer, 15 s at, =Fu0 26(5) - 7

>1-7-7=1—9,
2 2
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and hence the proof of Theorem 6 is complete.

COROLLARY 1. Condition (2) of Theorem 6 is implied by

lim inf G,(a)=1 .

A n

Proof. In this case every convergent subsequence (at least one
exists by the Helly theorem) converges to a distribution funetion.

COROLLARY 2. (Mourier [4]). The following condition implies (2) of
Theorem 6. For some a >0 E(||X,||*) exists for all n and E(||X,||*) < M.

Proof. An immediate consequence of Corollary 1.

ExampPLE. Let ¥ be a separable Hilbert space and let {e,} be a
complete orthonormal system. Let Y, be ordinary random variables
mutually independent with normal distributions such that E(Y,)=0,

E(Y;):-L. Define Xn=§‘ Y,e,., clearly X, is an ¥ valued random vari-
n 1
able. Moreover (identifying ¥* with %), if z=> &, then
1

Pu(x)=E Jle " Yk} P N .

But g.(z)—>px)=e iz

Clearly ¢(x) corresponds to the weak distribution L(z)= i £.Y,. How-

and the convergence is uniform if |jz]| < A.

ever there is no ¥ valued random variable corresponding since 3. Yie,
1

diverges with probability one. (This also follows from Theorem 4.) Thus
uniform convergence of ¢, (x*)— ¢(«*) on bounded sets is not sufficient
to insure that ¢ corresponds to an X valued random variable.

ExampLE. This example shows that condition (2) of Theorem 6 is
not a necessary condition. Let ¥ and {e,} be as in Example 1. We
define an ordinary random variable Y with the following distribution.

P[Y=1/5]=P[Y*=n]=1 (¢ for n=0, ---. Clearly E(Y)< 1. Let
n:

Y., be independent random variables each with the above distribution
with parameter 2,,. Put

1/,}2)312 k_<_n2 o s o
A= ( == o= Ap = .
.k { 0 k>n2 ’ k§=j{ n,k 21: n,k 1/')?;
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2

Let Xn=k§‘,1 Yn,kek=kz Y, 16, then again X, is an X valued random vari-
= =1

able. If x=§‘, &.¢, then
k=1

Bl X1} < 3516t Sl | S8, ]" =il 0.

Therefore (x, X,)— 0 in probability hence (x, X,)— (x, X) in probability
where X=0. Thus the weak distributions corresponding to X, approach

the weak distribution corresponding to X. However llxnllzzi Y%, where
k=1
the Y., are independent Poisson variables with parameters A,,. Thus

the distributions of |x,|* is Poisson with parameter }Eln,k=1/E and
k=1

clearly no subsequence converges to a distribution function.
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