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1. Introduction. A (p, ¢) graph is one with p vertices and ¢ lines.
A formula is obtained for the number of dissimilar occurrences of a
given («, B) graph H as a subgraph of all (p, ¢) graphs G, a <p, 8 <q,
that is, for the number of dissimilar (p, ¢) supergraphs of H. The
enumeration methods are those of Pélya [7]. This result is then appli-
ed to obtain formulas for the number of dissimilar complete subgraphs
(cliques) and cycles among all (p, ¢) graphs. The formula for the num-
ber of rooted graphs in [2] is a special case of the number of dissimilar
cliques. This note complements [3] in which the number of dissimilar
(p, k) subgraphs of a given (p, ¢) graph is found. We conclude with a
discussion of two unsolved problems.

A (linear) graph G (see [5] as a general reference) consists of a
finite set V of wvertices together with a prescribed subset W of the col-
lection of all unordered pairs of distinct vertices. The members of W
are called lines and two vertices v;, v, are adjacent if {v,, v,} € W, that
ig, if there is a line joining them. By the complement G’ of a graph
G, we mean the graph whose vertex-set coincides with that of G, in
which two vertices are adjacent if and only if they are not adjacent
in G.

Two graphs are disomorphic if there is a one-to-one adjacency-
preserving correspondence between their vertex sets. An automorphism
of G is an isomorphism of G with itself. The group of a graph G,
written I'y(G), is the group of all automorphisms of G. A subgraph G,
of G is given by subsets V; SV and W, < W which in turn form a
graph. If H is a subgraph of G, we also say G is a supergraph of H.
Two subgraphs H,, H, of G are similar if there is an automorphism of
G which maps H, onto H, Obviously similarity is an equivalence rela-
tion and by the number of dissimilar vertices, lines, -+ of G, we mean
the number of similarity classes (as in [3, 4, 6]).

Two supergraphs G, and G, of H are H-stmilar if there exists an
isomorphism between G, and G, which leaves H invariant. It is clear
that the number of dissimilar (p, ¢) supergraphs of H is equal to the
number of dissimilar occurrences of H as a subgraph of all (p, ¢) graphs.

2. Supergraphs. Let H be an arbitrary («, §) graph. We wish to
enumerate the dissimilar (p, ¢) supergraphs of H where p>a«a, g = 8.
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Let sZ , be the number of dissimilar supergraphs of H with p vertices
and ¢ lines. For given p, let

p(p-1J2

(1) si@)= 3] %

be the counting polynomial for the numbers sZ,. We shall develop a
formula for s¥(x) using Pélya’s enumeration theorem.

In precisely the form in which we require it, Pélya’s Theorem is
reviewed briefly in § 2 of [2]. Therefore, we shall not repeat here the
definitions leading up to the statement of Poélya’s Theorem, but shall
only restate the theorem itself.

PéLya’s THEOREM. The configuration counting series Fl(x) is obtain-
ed by substituting the figure counting series ¢(x) into the cycle index
Z(I") of the configuration group I°. Symbolically,

(2) Fa)=Z(I", ¢(z)).

This theorem reduces the problem of finding the configuration count-
ing series to the determination of the figure counting series and the
cycle index of the configuration group.

The observations needed to make our problem amenable to Poélya’s
Theorem are as follows: A (p, q) supergraph G of the given («, ) graph
H is a configuration of length p(p—1)/2—pS whose figures are precisely
those vertex-pairs of G not adjacent in H. The content of a figure is
one if the vertices are adjacent and is zero otherwise, so that the figure
counting series ¢(xr)==1+x. Hence the content of the configuration G
is ¢g—p. The desired configuration series is s%(x).

In order to apply Pélya’s Theorem, we still need to know the cycle
index of the configuration group 7I'; ,. The degree of this group is
p(p—1)/2—p since the objects acted on by its permutations are the lines
of the complement of H in the complete graph of p vertices containing
H. All permutations of these lines which are compatible with 77(H)
are in /'y ,. Before obtaining the cycle index of Iz, we state the
form of the result by applying (2) to the present situation:

(38) sZ(x)=aPZ(I"y ,, 1+2).

We now turn to the development of the permutation group I’z , in
a form which will yield its cycle index. Let F, denote the complete
graph of p vertices, that is, the graph with p vertices and all p(p—1)/2
possible lines. As in [3], let I"(G) be the line-group of the graph G,
that is, the permutation group whose objects are the lines of G, and
whose permutations are induced by those of I'(G), the group of auto-
morphisms of G. If I' is a permutation group of degree s, let T(/")
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be the pair-group of I', that is, the permutation group of degree
s(s—1)/2 which acts on the pairs of the object-set of I but is isomor-
phic to I" as an abstract group. Then clearly I'y(F,) and T(I"(F,)) are
isomorphic as permutation groups. Let I';-I", denote the direct product
of the permutation groups 7", and I", whose object-sets are disjoint.

The lines of the object-set of the configuration group Iy , are of
three possible kinds:

I. neither vertex is in H
II. both vertices are in H
III. one vertex is in H and the other is not.

For each of these three cases, we find the permutation group on the
corresponding subset of lines and then form their direct product to get
Iy ,. In case I, every rearrangement of the lines with neither vertex
in H which is induced by a permutation of the vertices of G—H is
compatible with the group of H, so that we have the group I'(F,-.).
For case II, we obtain the line group of the complement of H, that is,
I'(H'). The third ‘“ mixed ”’ case yields the group M(H, F,-,) of degree
a(p—a) on those lines of F, joining a vertex of H with one of F,_,,
consisting of those permutations of these lines which are compatible
with I'((H). Then Iy, , is the direct product:

(4) Ly =T'(F,-0)- '(H')-M(H, F,_,)

and by a remark of Pélya [7] to the effect that Z(I",-I",)=Z([",)-Z(I,),
we have

(5) 2y, ) =2 (Fy-0)) Z(I"(H'))- Z(M(H, F',-.)) .

We note as a ‘‘ dimensional check ’’ that the degree of the groups
of the right hand member of (4) are (p—a)(p—a—1)/2, a(a—1)/2—-4,
and a(p—a) whose sum is p(p—1)/2—p3, the degree of the configuration
group.

Combining (5) and (3), we are now able to develop the counting
polynomial for the dissimilar p vertex supergraphs of H. It is useful
for this purpose to recall equation (10) of [2] which gives a formula
for the first factor of (5). In this formula, which is equation (7) be-
low, the letters g, are employed for the indeterminates of the cycle
index, S, denotes the symmetric group of degree p, the sum is taken
over all p-tuples () satisfying

(6) i+2j,+ - +05,=D,

and d(q, r), m(q, r) denote the greatest common divisor and least com-
mon multiple respectively.
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Equation (7) gives the first factor of the right hand member of (5).
The second factor depends on the particular graph H whose supergraphs
are being enumerated, The third factor also depends on H, but can
be readily computed as soon as Z(I'(H)), the cycle index of the auto-
morphism group of H, is found, by the following procedure. It is well
known that for S,, the symmetric group of degree p, one has

(8) AS)=1 S bbb

! D11 24,1 - - ping, !

where the sum is taken over all partitions (5) of p satisfying (6) and the
letters b, are indeterminates. We write Z(I"((H)) using the letters a; as
indeterminates, and then form the product Z(I"((H))-Z(S,-,). This will
be a polynomial whose general term, aside from its numerical coefficient
is of the form

) (@0 -0, ) b -022) =TT e T
s=1 r=1

If the letters ¢, are the indeterminates of the third factor of (5), we
then obtain Z(M(H, F,.,)) by substituting for (9) in Z(I'(H))-Z(S,-.)
the expression:

R j a(r,s)
(10) I1 euiss

7,8

3. Cliques. We now specialize (5) to the case where H is a clique
or complete graph, that is, to H=F,. For this to be meaningful, we
define Z(I'(F,))=1, so that (5) becomes

(11) I p, 0)=Z(1'\(Fy-0)) ZAM(Fa, Fyp-0)) -
To illustrate (11), we take p=4, a=2. Then the first factor is Z(I"(F}))=¢,

and the second factor is Z(M(F,, F2))=i—(c;‘+303). Therefore in thiscase,
(8) yields the polynomial:



THE NUMBER OF DISSIMILAR SUPERGRAPHS OF A LINEAR GRAPH 907
F - 1 5 2
s, M(x)=2- T (¢l +3eccs, 1+x)
=g+ 20° +42° + 4ot + 22° +

which can be readily verified pictorially by observing the number of
dissimilar lines in all the graphs of 4 vertices: see Figure 1.

D S S N
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Figure 1

Equation (7) gives the first factor of (11) explicitly. One can also
obtain an explicit formula for the second factor of (11) by applying
(10) to two copies of (8) for the degrees « and p—a. The result of
this procedure is

(12) Z(M(FM Fp_m))z 1 N Z Z m'a! . ({):a)!
alip—a)l & ® {1, p]:[’&.jlji!
i=1

i=1

T e
When (12) is specialized to a=1, and then substituted into (3), the
formula in [2] for the number of rooted graphs results.

4. Cycles. A cycle of length n, or an n-cycle, of a graph is a col-
lection of » lines of the form A4, A4, ---, 4,,4,, 4,4, in which
the vertices A, are distinct. Let C, be a graph consisting of an =-
cycle. We now specialize (5) to the case H=C,. Since a 3-cycle is also
a 3-clique, the particular case a=3 for cycles has already been treated.
In general, however, I'(C,)=D,, the dihedral group of degree = and
order 2n. From Poélya [7], we have

-;—alag"“, when n=2m—1
18)  ZAD)=1 3 ¢ld)ai+
2'}7/ ain

Lli—-(a?a;"'l-ka;”), when n=2m .

When the cycle index of Z(D,) is multiplied by Z(S,-,) from (8), and
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(10) is applied, one obtains a formula for Z(M(C,, F,-,)) analogous to
(12). Substituting H=C, into (5), we see that

(14) 2oy, ) =Z(I\(Fy-o))- Z(I'(CL))- Z(M(Cay F,-0)) -

The only factor of the right-hand member of (14) for which we have
not yet developed a formula is Z(I',(C)).

To deseribe Z(I,(C,)), it is convenient to use a special case of the
“ Kranzgruppe ’’ of Pélya [7]. Let I' be any permutation group of
degree d, and let E, be the group of degree » and order 1. Then by
I'[E,], the crown-group of I' around E,, is meant the permutation
group of degree nd obtained from I by replacing the d elements of
the object-set acted on by the permutations belonging to I°, by d dis-
joint sets of » elements each. Thus Z(I'[E.)]) is obtained from Z(I")
when one replaces each factor f,’+ occurring in each term of Z(I") by
S

For a odd, a=2n+1, one sees that
(15,) F1(C;n+1)=D2n+l[En—1] ’

from which Z(I",(C,,,,)) is readily computed.

For « even, a=2n the group can be described using A. Cayley’s'
term ‘‘ dimediation.”” For example the permutation group 7(C;) is
generated by (123456)(789) and (12)(36)(45)(7)(89). Thus [I'(C;) is iso-
morphic to D, as an abstract group, but as a permutation group it can
be constructed from one copy of D, and two different copies of D..
Abbreviating dimediation by ‘dim’’ following Cayley, we have in
general

(15'7) I'(Cyn) =DylE, -] dim D, .

One can compute Z(/",(C;,)) by multiplying each term of Z(D,[E,_.])
by the appropriate term of Z(D,).

A Hamilton cycle of a graph is a cycle passing through all its ver-
tices. Thus the number of dissimilar Hamilton cycles occurring in all
(p, @) graphs is the number of dissimilar (p, ¢) supergraphs of C,. In
this situation, (14) becomes simplified to:

(16) Z(Iq,,,)=2(I"(C3)) .

We illustrate (16) for p=>5. Here (15’) becomes ['(C;)=D,[E]=D;,
and by (13):

Z(Dy;)— i16 (@ + 4a;+ 5a,al)

1 See for example: A. Cayley, On the substitution groups for two, three, four, hve,
six, seven, and eight letters, Quart. J. Math. 25 (1890) especially p. 74.
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so that applying (3), we get the counting polynomial for the number
of dissimilar Hamilton cycles of length 5:

875(x) =a" + &° 4+ 22" + 2’ + ¥+ 2 .

This polynomial is verified by the graphs of Figure 2, in each of which

the Hamilton cycle is drawn as the exterior cycle.

N A
Q- &

For p=>5, it turns out that each similarity type of Hamilton cycle oc-
curs in a different graph; but this is not always so for larger p.

5. Problems. We discuss two unsolved problems implicit in [4]
and [8] respectively.

I. It was shown in [4] that for any linear graph G; the dissimi-
larity characteristic equation:

amn v—(k—k,)+(c—c)=1

holds, where v, k, k, denote the number of dissimilar vertices, lines,
exceptional lines® respectively, and ¢, ¢, denote the number of cycles,
exceptional cycles respectively which appear in any dissimilarity cycle
basis® of G. In the past, dissimilarity characteristic equations for trees
and for Husimi trees [6] have proven useful in enumerating these
kinds of graphs. The unsolved problem is to sum (17) over all (p, q)
graphs, then multiply the resulting equation through by z* and sum over

q=0 to (g) When this is done, the term 1 which is the right-hand

member of (17) becomes g,(x), the counting polynomial for all p vertex
graphs [2] and the term v clearly is manipulated into G,(z), the polyno-
mial for p vertex rooted graphs [2]. By a result of Pélya [7], the
enumeration of configurations in which all figures are distinct may be
accomplished by using Z(A4,)—Z(S,), where A4, is the alternating group
of degree n. But this is precisely the nature of the term k—F%, of (17),
which is the number of dissimilar lines of G whose vertices are not
similar to each other. One sees by inspection from Figure 1 that for

2 An exceptional line of a graph is one whose vertices are similar to each other.

3 A dissimilarity cycle basis of a graph G is a minimal collection of cycles indepen-
dent mod similarity on which all cycles of G depend mod similarity. Consult [4] for more
details.
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p=4, the counting polynomial induced by the term k—Fk, is
4200 20+ 20 .

To derive the general formula of which the preceding polynomial is the
special case p=4, let us regard F, as a line whose vertices are not

similar. Then replacing F, by F, in (11), we get

(18) Z(I 5y, o) =Z((F, ) Z(M(F,, F,os))
An explicit formula for the second factor is computed by noting that
we may take Z(FO(I_V’Z))=Z(AZ)—Z(Sz)zl(af—az) by the above-mentioned
result of Pélya, then multiplying this cycle index by (8) in which p is
replaced by p—2, and applying (10).

The only term of (17) which we have been unable to sum is c—ec,.
This appears to offer a nontrivial combinatorial problem, which if solv-
ed would provide a functional equation for g, () of the form

9,(@)=G ()~ Z(I'"5, ,, 1+2)+the missing term.

Using (14) for «=3, 4, ---, p one can enumerate all the dissimilar
cycles among all (p, ¢) graphs, but this does not count just those in a
dissimilarity cycle basis.

II. An n-cube can be described briefly as a graph whose vertices
are the 2" n-digit binary numbers in which 2 vertices are adjacent
whenever they differ in exactly one place. An interesting unsolved
problem with some potential applicability to switching theory is to deter-
mine the number %, of dissimilar Hamilton eycles in an n-cube. It is
well known that A,=h,=1 and it has been shown by E. N. Gilbert (un-
published) that 2,=9. From the formula of [3] one can find the number
of dissimilar (p, p) subgraphs of any (p, ¢) graph, and of course, all
the Hamilton cycles of the graph are included among these subgraphs.
On the other hand, (16) gives a formula for the number of dissimilar
Hamilton cycles occurring in all (p, ¢) graphs. However, each of these
observations merely provides an upper bound for A4, and leaves the pro-
blem open. The more general problem of determining the number of
dissimilar occurrences of a fixed graph H as a subgraph of a fixed
graph G is also interesting.

One can give the results of this paper an interpretation in binary
relations, following [1], and can also generalize them to directed graphs
by employing the ordered-pair group of [2] instead of the pair group,
but we shall not spell this out. We note finally that (3) implies that
each such counting polynomial has end-symmetry with respect to its
coefficients. This is explained geometrically by the one-to-one correspon-
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dence between the collection of all supergraphs G of H and the collection
of their relative complements G, with respect to H defined by
Gr=G \J H.
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