Pacific Journal of
Mathematics

SOME TAUBERIAN THEOREMS

AMNON JAKIMOVSKI




SOME TAUBERIAN THEOREMS

AMNON JAKIMOVSKI

1. Introduction. The following Taurberian theorem is well known.

THEOREM A. If the sequence {s,}, n=0,1, 2, --., is summable Abel*
to s and the sequence {n(s,—S,-,)} is bounded on one side, then {s,} s
convergent to s.

Another Tauberian theorem, proved in [4], is

THEOREM B. If the series ﬁan is summable Abel to s and the se-
n=0

quence {n*(@t,-,—a,)} s bounded on one side, then lim na,=0.

N~>o0

An immediate consequence of Theorem B is the well known proposi-

tion that, for a convergent series ian with monotonically decreasing

n=0
terms, lim na,=0.
N~>oo

By a well known theorem of Tauber, the series ian of Theorem
n=0

B is convergent and hence the sequence {s,} of partial sums of the
series is summable (H, —1), that is, {s,} is summable by the Holder
method of order —1, as defined in §2. Thus Theorem B is equivalent
to the following

THEOREM C. If the sequence {s,}, n=0,1, 2, -.., 4is summable Abel
to s and the sequence {(g)(sn_z—2sn_1+sn)} 18 bounded on one side, then
{s.} 1s summable by the Holder method of summability of order —1.

As will be shown below both Theorem A and Theorem C are special
cases of general results proved in § 5 of this paper.
The Tauberian conditions,

(1) sa-s—s0=0u0

and

Received September 16, 1955 and in revised forms January 16, 1956, and May 28, 1956.
1 Concepts and propositions mentioned or used in this paper without definition or proof
are to be found in Hardy’s book [3].
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(5)(5a-s—2501+8)=0u(D),

belong to the general class of conditions of the form

() 450-s=0u0),

where %k is some fixed nonnegative integer and 4%s, is defined by

u k
Aks,—_—z(—l)v< )s
=0 VY
In this paper we prove for the Abel transformation Tauberian theorems

in which the Tauberian conditions are of the form

(2)4s0-s=0D),
or O(1), or O,1), as m»— o. For these theorems see specially § 5.

2. Some properties of Hausdorff and Holder transforms. For all se-
quences appearing in this paper the index denoting the order of the
terms will assume the values 0, 1, 2, ---. If, in some formulae in this
paper, a term appears with a negative value of the index denoting the
order of the term, then we shall understand that this term assumes
the value zero.

We say that a sequence {¢,} is a Hausdorff transform, generated
by the sequence {g,}, of the sequence {s,}, if

(1) to= 33 (1)@ " 1),

m=

for n=0,1,2,---. A Hausdorff transform generated by a sequence
{#,} will be called here, for shortness, a (9, p,) transform.

It is known that a necessary and sufficient condition for a sequence
{t,} to be a {9, p,} transform of {s,} is the existence of

(2) Aty=prn+ A",

for n=0,1,2, ---,
It is easy to see that, if {4,} is defined by

(3) 2=,

for n=0, 1, 2, ---, where {g,} is an arbitrary sequence, then for each
pair of nonnegative integers p and ¢

(4) 43 = A, .
If {4,} is defined by (8) then (2) might be written in the form



SOME TAUBERIAN THEOREMS 945
(5) Aty= 472y A7,
for n=0, 1, 2, -.-. Equation (2) now shows that
(" - _
to= 3 (2 )" n)sm, n=0,1,2, -+,

is, by (4) and (5), equal to

35 (o )"

m=0

which, by the symmetry of (5) in {4,} and {s,}, is equal to
LS -
pol (m>(d Se)

= 35 (0 ) )(d7s,-)

for n=0, 1, 2, --- .
Thus the (9, p,) transform of {s,} might be defined equivalently
by

(6) to= 32 (0 ) m) (@50

I

for n=0,1, 2, ---; a fact which we use later.

We shall denote, in this paper, by {g¢}, where « is an arbitrary
fixed real number, the sequence {(n+1)"*}. The Holder transform of
order a, {h®} (or, in short, the (H, «a) transform) of a sequence, where
« is a real number, is defined as the (9, ) transform of the original
sequence. We say that a sequence {s,} is summable Holder to s if it is
summable (H, «) to s for some real number «. We say that {s,} is bound-
ed Holder if it is bounded (H, «) for some real number «.

Let k& be a fixed nonnegative integer. It is known that

( 7) Ak“/.lf[k):o
(8) pO=(=1) !
for n=0, 1, 2, ... ; therefore, by (6),
k
(9) B =3 () - (1) (478, -)

for n=0, 1, 2, --- ., Equations (9) and (8) immediately yield the identity
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0 0 v 0 AP
A A0 e 0
n
(10) (k)'dksn—k ‘u(()_g) Ap§ AZ#(()—Z)._. 0 hi
)
RN
p=0
[ A B e 4D R

for n=0,1, 2, --.. If the determinant on the right side of (10) is ex-
panded then we obtain

k
for n=0, 1, 2, --- ; where, as is easy to see,
k
(12) Sa®=0; a £ 0,
p=0

for £k=0,1, 2, --.. In the rest of this paper we shall denote by af®,
-, af” the coefficients which appear in (11).
It is known that the Holder transform of order « of the Holder

transform of order # of a sequence {s,} is identical with the Holder
transform of order a+p of {s,}.

Let {g,} be defined by ""=<Z>’ n=0,1, 2, ---, where k is a fixed

nonnegative integer. It is easy to see that

of N

0 for p>k.

A consequence of (13) is that the sequence {(Z)A"s,,_,c}, n=0,1, 2, -,

is a Hausdorff transform, generated by %(——1)7‘<Z)} , of the sequence
{8,}.

It is known that the product of two Hausdorff transformations is
commutative; therefore, taking one the transformations to be that given

by {2{®} and the other to be that given by {(Z)A"s,,_k} we obtain the
following consequence of (11).

LEMMA 1. Let a be a real number and k o nonnegative integer ;
then, for any sequence {s,},
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LAWTIREY ® k), pla—k+p)
(7)a i3 a0- b
p=0
Jor n=0,1,2, -+,

3. A proposition concerning the product of two summability
methods and three Tauberian theorems. We shall use later the follow-
ing proposition (proved by O. Szasz in [7]).

THEOREM D: If {s,} is summable Abel to s and {¢t,} s a regular
Hausdorff' transform of {s,}; then {t,} is summable Abel to s too,

and the three theorems

THEOREM E. If {s,} is summable Abel to s and {s,} is bounded,
then [s,} is summable (H, ¢) to s for each ¢ > 0.

THEOREM F. If {s,} is summable Abel to s and {s,} is bounded on
one side, then {s,} is summable (H, 1) to s.

Theorem E may be deduced from Theorem 92 and Theorem 70 of
[3], while Theorem F is Theorem 94 of the same book.

THEOREM G. If f(x) possesses a finite nth derivative, n=>2, in the
wnterval 0 < x <1, and if for some real number «

fz)y=o((1-2)"), z11,
SN (@)=0/1—z)*"), zt1,

then for all integers k satisfying 1 <k <n,
f®(x)=0((1—x)*"F), x11.

If, in Theorem G, we put 1—x=y!, the theorem becomes a result
first proved by N. Obrechkoff in [5] and subsequently generalized by
M. Parthasarathy and C.T. Rajagopal in Theorems B and C of [6].

We shall now show the following proposition to be a consequence
of Theorem G.

LFMMA 2. Let the real sequence {s,} be summable Abel to s, that is
(14) lim (1—2) 3 s,0"=s .
ztl n=0

If for some nonnegative integer k
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(15) (7)450-s=0s(1), s,
then for all integers p satisfying 0 < p < k,
(16) lim (1—m)-<k—v-l>-n§j;p (Z)-(A’”sn_,c)x”"’=(—1)""”(1‘;;1)8 .
Proof. The identity
S st =(=1y (=) " 3 (&5, )"
for r=0, 1, 2, - -+ combined with (14) yields (16) with p=0; that is
1n io (445, )" o (—1)Fs(1 — )1 z11.

Taking the kth derivative of the left side of (17) and using (15) we
obtain

=OL<§;x“"°>, 211,
=0/((1—2)"), xtl.

The validity of (16), for all integers p satisfying 0 < p <k, follows
now from (17) and (18) by an appeal to Theorem G with

@)= 2, @ —(—1)s(l—a)*", a=k—1, n=Fk, k=p.
n=0

4. A Tauberian inequality for power series. In this section we
prove one of the fundamental steps used in proving the main results
of this paper. This step is the following.

THEOREM 1. Let p be a fixed nonnegative integer. If for some real
or complex sequence {s,},

(pz1>"’p“8"’”‘l

then, for x=1—(m+1)7,

lim

n-—>co

=80+  f oo,

(19) il_lﬁi —(1_w)—p'dpsm—p_ Zp. (1 -x)r_p' i (Zj)wﬂ_r‘ Ap*lsn—p—l
Mmoo 7=0

n=0

< p,-lim (pf_l)-mﬂsn-p_l [ ,

n—>o0
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where p, is independent of {s,}.

The case p=0 of Theorem 1 is well known. See for instance, in-
equality (15) of H. Hadwiger’s paper [2].
The proof of Theorem 1 requires the following auxiliary proposition.

LEMMA 3. For any pair m, n of integers satisfying m=>1, n >0,
and for 0 <o <1, we have

0<1— 2( )(1 @)= P<( )(1—90)"‘

=0
where we suppose <z>=0 fp>n.

Proof. By the Taylor expansion

0=+ @)t QL povia + =0 poas o—a),

001,
we obtain, by choosing b=1, a=1—x (0 <z < 1) and f(¢)=¢t",

1— z( )(1 )ran ”+( )(1—x)m(9c+0(1—x))"“m, 0<0<1.

p=0

Hence, for the stated values (in the theorem) of m, » and =,
0<1— 2( )(l—x)”w" v<( )(l—w)””.
Proof of Theorem 1. We have

@) —(=a)ds = S (= ay e 51 2,

50
(

—-a5{1- %

r=0

:f)(l _x)rxn—-r} AP,

LR VI B () C B0 TR

n=m+1\ r=0
=I1+1,.

Lemma 3 yields

L < (l—x)"”g_‘b (1—x)r+?

(p?‘ 1). A 8ypa|

Now, for x=1—(m+ 1)},
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1) lim |1, ;m[(pﬁl).awlsn_,,_l :

m—»co N—>co

For each >0 there exists an integer m,(e) such that, for every
m > myfe),
() ] <0

We suppose now m > m,(e); then

@) LIS Ee+9- S S (Ma—aee (1)

n=m+1\ r=0

=(P+1)(S*V +¢) é(g)(l“w)“““"’- S a4 (n—p) !

n=m+1l

It is easy to show that for 0 <» < p we have

@)  (1-a) 0" 3 o)

n=m+

=xm+1—rp§l(_1)q(1 -—x)'(”‘r“’)-d”""‘q"l(m—}— 1—Q— p)—l
a=0

+(=1 S (n—p) 2,

n=m+l+p—1r
and for r=p

@)  A-ey e S @ d-p) = 5 (e-p) e

n=m+1

If we choose x=1—(m+1)"* and apply (23) and (24) to (22) we infer
easily that, for p >0, there exists a positive constant 2, which is in-
dependent of the sequence {s,} and such that

Tim || < 2,- (S* +¢) .

Since ¢ >0 is chosen arbitrarily we infer that, for x=1—(m+1)7,

(25) lim |, < 2,-S@#v

m-rco

Combining (20), (21) and (25) we see that our proposition is proved.
A consequence of Theorem 1 which will be used later is the follow-
ing proposition.

LEMMA 4. Let {s,} be summable Abel to s, and let there be a fixed
positive integer k such that

(26) (Z)Aks,,_k;oa), n—co.
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Then (i) (Z)A?’sn_”=o(1), n—oo, for 1< p<k, (ii) {s,} s conver-

gent to s.

Proof. 1If k=1, we have to prove conclusion (ii) alone, and this
follows from Theorem 1 with p=0. If k>2, then, by Theorem 1 and
(26), for x=1—(m+1)7%,

@7) lim —(1—:11;)”‘”-A"‘lsm_kﬂ—’g(l——x)'“"“‘i(Z)x"‘r-A"sn_k —0.
m—>oo =0 n=0
The Abel summability of {s,}, (26) and Lemma 3 show that
@) lim S a—ay- SV ats, =5 (- e (F 1) 0
ztl =0 n=o\7 r=0 T
=(=1)%0-(1=1)*
=0.
(28) and (27) show, for x=1—(m+1)"", that
lim |(1—2)~ED. 4571, oy]|=0.
The last fact shows, immediately, that
(kfl>'dk—13n—(k—1)=0(l) , 7 —> © ,

Thus we reduced %k in (26) by one, and by such a reduction (repeated
if necessary) prove conclusion (i). Finnally we derive conclusion (ii)
from conclusion (i) as already stated.

5. Some Tauberian theorems. The main result of this paper is
the following.

THEOREM 2. Be k some fized positive integer. A mecessary and
sufficient condition for {s,} to be summable (H, k) is that {s,} should be

summable Abel to s and lim <Z)'Aksn—k=0'

7n—»>oo

Proof. Proof of the sufficiency part. From the convergence of
{s.} to s and the relations (Z)Al’sn_?=o(1), n — oo, for p=1, ---, k (from

Lemma 4) rewritten in the form (11), we get

lim AP =s

N—>o0

for p=1, 2, ---, k, successively; which proves the sufficiency part of the
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theorem. The proof of the necessity part of our proposition follows
from (11) and the fact that the limits
im A, lim A ED, -« -, lim A

exist and are all equal to s.
Now we prove three interesting consequences of Theorem 2.

THEOREM 3. A necessary and sufficient condition for a sequence {s,}
to be summable (H, «), for some real value of «, is that {s,} should be
summable Abel and that the sequence

{('}:)A’“ sn_k} , n=0,1,2, ---

should be summable (H, a+k) to zero for some fixed positive integer k.

Proof. The necessity of the Abel summability of {s,} is obvious.
The necessity of the (H, a+k) summability of

{(Z’)A s} , n=0,1,2---,

to zero follows from Lemma 1 (if we replace « there by «+£k). Thus
we have proved the necessity part of our theorem. The sufficiency
part of our theorem is proved as follows. Suppose, first, that o >—k.
Then, by Theorem D, the sequence

{hsb“+k)} ’ n':ov lr 27 ctty

is summable Abel to the same sum as the original sequence {s,}, hence,
using Theorem 2 with {A%*®} instead of {s,}, which is justified by
Lemma 1 with « replaced by «a+#k, {s,} is summable (H, «); which
proves the sufficiency part of our theorem for a>—k. In the case

{(E)a e}

being summable (H, a+k) to zero, is necessarily convergent to zero;
and so, by Theorem 2, {s,} is summable (H, —k), or {A®} is summable
(H, —a—k), and consequently summable Abel too. Thus, by Theorem
D, {#{*®} is also summable Abel and the proof can be completed as in
the case o > —k.

The case k=1 is a special case of Theorem (9.4) of [1], with A=«
+1 there.

THEOREM 4. Be k an arbitrary fived nonnegative integer. If a
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sequence {s,) is summable Abel to s and the sequence

(@]

is bounded (H, a+k) for some real number «, then {s,} is summable (H,
a+e) for each e > 0.

The case k=1 of the last theorem is the special case f=a+1 of
Theorem (9.5) (for Abel summability) of [1].

Proof. TFirst suppose @ >0. Then, by Theorem D, (11) and (12),
v, =3 aPhFI=0(1) , n—sco,
p=0

and {v,} is summable Abel to zero. Therefore, by Theorem E, {v,} is
summable (H, ¢), for each ¢ >0, to zero, or {(Z) AF Sn—k} is summable

(H, a+k+e¢) to zero, and the conclusion follows by Theorem 3. If «
<0, we apply the preceding argument to the (H, —a) transform of
{v,} which is clearly O(1), as n— o, and summable Abel to zero.
Thus we find that the (H, —«a) transform of {v,} is summable (H, ¢)
to zero, for each ¢ >0, or that {»,} in summable (H, —a+¢) to zero
and hence summable Abel to zero. Since v,=0(1), {v,} is, by Theorem
E, summable (H, ¢) to zero and the proof is completed exactly as in the
case o > 0.

THEOREM 5. Be k an arbitrary fixed positive integer. If a sequen-
ce {s,} is summable Abel to s and the sequence

{(2)a-

18 bounded (H, a+k) on one side, then {s,} is summable (H, a+1) to s.

The case k=1 is the special case f=a+1 of Theorem (9.6) of [1].

The proof of Theorem 5 is exactly the same as that of Theorem 4.
But now we have to use Theorem F in place of Theorem E.

In conclusion I wish to thank Professor C. T. Rajagopal for helpful
suggestions.
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