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DISTRIBUTIVITY IN BOOLEAN ALGEBRAS

R. S. PIERCE

1. Introduction. Let a be an infinite cardinal number; suppose i?
is an α-complete Boolean algebra, that is, every subset of B which con-
tains no more than a elements has a least upper bound in B.

DEFINITION 1.1. B is a-distributive if the following identity1 holds
in B whenever S and T are index sets of cardinality <: a :

Λ σe*( V r e i Ό - V,6,(Λσ€A,(σ)) , WhβΓβ F = T

This paper studies ^-distributive Boolean algebras, their Boolean
spaces and the continuous functions on these Boolean spaces. A survey
of the main results can be obtained by reading Theorems 6.5, 7.1, 8.1
and 8.2.

2* Notation. Throughout the paper, a denotes a fixed infinite
cardinal number. The term α-B.A. is used to abbreviate α-complete
Boolean algebra. Only α-complete algebras are considered, although
some of the definitions apply to arbitrary Boolean algebras. We speak
of Λ-subalgebras, αsideals, α-homomorphisms, α-fields, etc., meaning that
the relevant operations enjoy closure up to the power a. For example,
an α-field is a field of sets, closed under α-unions, that is, unions of a
or fewer element.

The lattice operations of join, meet and complement are designated
by \/f /\ and (') respectively. The symbols 0 and u stand for the zero
and unit elements of a Boolean algebra. Set operations are represented
by rounded symbols: \J, Γ\ and gj respectively denote union, inter-
section and inclusion. If A and B are sets, B—A is the set of elements
of B which are not in A the complement (in a fixed set) of A is de-
signated Ac. The empty set is denoted by 0. The symbol A stands for
the cardinality of the set A. Finally, for typographical reasons, we use
the symbols 2* and exp (a) interchangeably.

Received February 17, 1956. The research in this paper was done, in part, while the
author was a Jewett fellow of the Bell telephone laboratories.

1 The notion of α-distributibity was introduced in [1]. It is assumed that the least
upper bound an the right side of the equality (1) exists. However, by Corollary 3.4 below,
it would suffice to make the equality in (1) contingent on the existence of this least upper
bound.

983



984 R. S. PIERC'ί>

3» Alternative characterizations of α-distributivity

D E F I N I T I O N 3.1. A subset A of an α-B.A. B is called a covering of

B if l .u.b. A=u. The covering A is called an a-covering if A<La. A
binary partition of B is a pair consisting of an e lement of B and i ts

complement. If A and A are coverings of B> t h e n A is said to refine

A if every aeA is <I some aeA.

PROPOSITION 3.2. Le£ B be an a-B.A. Then the following are equiva-
lent properties of B :

( i ) B is a-distributive

(ii) if {Aa.\σeS} is a set of a-converings of B and S<La, then
there exists a covering A which refines every Aσ

(iii) if {Aσ\σeS} is a set of binary partitions of B and S<la, then
there exists a covering A which refines every Aσ.

Proof!1 (i) implies (ii). Indeed, if we index each ^ f f by a set Γ
of cardinality <LOL, say Aσ={aστ\τeT} (allowing repetitions), then
{/\σesβσφcσϊ\φ€ Ts} is a covering which refines every Aσ.

(ii) implies (iii), obviously.
(iii) implies (i). Let Aστ={aστ, (αστ)'} for all σeS, rβT . Because

the cardinality of Sx T is <la, there exists a covering A which refines
every Aστ. Suppose Oφb<^/\σes(\/7eτaστ). Since l.u.b. A=u, there
exists aeA such that a ^ b Φ 0; Then for each a e S, we can find reT
such that α Λ α σ τ ^ 0 . Denoting this r by φ(σ) defines φeF=Ts. But
A refines A σ K σ ), so a<±aσφCσ) for all σ. Hence, α^Λσes<Wσ:>. It fol-
lows that 6/\(Λσ€s^σκσ))τ^0. Since b can be arbitrarily small,
ΛσesίVvejcO i s the least upper bound of the set {/\σesaσφC^\φ e F],
that is, (1) is satisfied.

COROLLARY 3.3. An α-B.A. is a-distributive if and only if (1) is

identically satisfied under the conditions S<La, T^=2 and <xσl=(aσ2)\

Proof By the argument that leads from (i) to (ii) in 3.2, the
hypotheses of 3.3 imply (iii) of 3.2.

COROLLARY 3.4. Let B be an a-BΛ. which is not a-distributive.

2 The referee has pointed out that there is overlap between the first part of this paper
and the independent work of Smith and Tarski [5]. In particular, 3.3 and 3.4 appear in [5]
as Theorems 2.5 and 2.2, while our Corollaries 6.5 and 6.6 are special cases of Theorem 3.6
in [5]. It is a pleasure to acknowledge the contribution of a conscientious referee to the
improvement of this paper.
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Then there exists 67^ 0 in B and a set of pairs {[cσl, c^] ξZB\σeS, S<Ia}

such that cσl/\Cσ2=Q and c σ l N / c σ 2 = ό for all σβS and Λo-es^Ww^O f°r

all φ € 1 * (1 =|_1, Δ\).

Proof. By 3.3, if B is not α-distributive, there exists a set of
complementary pairs {[ασl, α^Jl^eS, S ^ α } such that the unit of B is
not the least upper bound of the set of elements /\σes^σφ^, Ψ & Ts.
Thus, there exists 5 ^ 0 in B such that b /^(/\σ€sa(rφC^)=0 for all <peTs.
Then cσl=b Λ α f f l and ^ , = 5 / ^ ^ have the required properties.

4. Examples of α-distributive Boolean algebras. Every α-field of sets
is α-distributive. Moreover, from Definition 1.1.

(4.1) Every α-subalgebra of an α-distributive B.A. is α-distributive
(4.2) Every 2*-homomorph of an ^-distributive B.A. is α-distributive.
Using (4.2), it is easy to construct α-distributive algebras which are

not α-fields of sets (following Horn and Tarski [2, p. 492], or Sikorski

[4, p. 253]): let B be the B.A. of all subsets of a set X with X=
exp (exp (a)). Let / be the α-ideal of all subsets I of I such that

Λf<:exp(αO. Then (see Tarski [8], or the remarks following 6.6 below),
there exists no prime α-ideal of B which contains /, and consequently
Bjl has no prime α-ideals. Hence, Bjl is not an α-field. On the other
hand, by (4.2), Bjl is α-distributive.

It is easy to see that (4.2) cannot be strengthened to assert that
every α-homomorphic image of an α-field is α-distributive. In fact, by
the theorem of Loomis (see [3]), every ^0-B.A. is the ^vhomomorph
of an c^vfϊeld. But not every ^-0-B.A. is ^-distributive : an atomless
measure algebra in which all nonzero elements have positive measure is
not ^-distributive.

5. The representation of α-distributive algebras* In this section,
we show that every ^-distributive B.A. is the α-homomorph of an <x-
field. If a = 2β, then by (4.2) any α-homomorphic image of an α-field is
/5-distributive. This shows (as Sikorski observed in [4]) that the class
of (2-homomorphs of ^-fields is rather elite when ct^exp(^-0).

For any Boolean algebra B, let X(B) denote the Boolean space of
B. Then the points of X(B) are the prime ideals of B and the topology
is imposed by taking all the sets X(a)=^{Pe X{B)\a$P}f with aeB, as
a neighborhood basis. As Stone [6] has shown, X(B) is a totally dis-
connected, compact, Hausdorff space and the correspondence a —• X(a) is
an isomorphism of B onto the Boolean algebra of open-and-closed sets
of X(B).

DEFINITION 5.1, A set TQX(B) is called a-nσwhere dense if there
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is an α-covering A of B such that T=(\J aEAX(a))c = Γ\aeAX(a').

(5.2) A closed set T^X(B) is topologically nowhere dense in X(B)
(that is, T contains no open subset of X{B)) if and only if there is a
covering A of B such that T=(\JaeAX(a))c. In particular, the α-nowhere
dense sets are just the closed, nowhere dense sets which are α-inter-
sections of open3 sets.

LEMMA 5.3. If B is an a-distributive B.A., and if {Tσ\σeS} is a

set of a-nowhere dense sets in X(B) with S <La, then \Jo esT<r is nowhere
dense in X(B).

Proof By 5.1, Tσ=(\JaeA X(a))c, where Aσ is an α-covering of B.

By 3.2, there is a covering A which refines every Aσ. Then Γ=
(\JaeAX(a))c is a nowhere dense set (by (5.2)) which contains every Tσ.

THEOREM 5.4. If B is an a-distributive B.A., then B is the a-
homomorphic image of an a-field of sets.

Proof* Let F be the α-field generated by the open-and-closed sub-
sets of X(B). Let / be the α-ideal of F generated by the α-nowhere

dense subset of X(B). Consider the collection F of sets in F which are
congruent modulo / to some X(a) with ae B. The α-completeness of B

implies that F is an α-field since F contains every X(α), F=F. By
5.3, X(a)el only if α=0. Hence, Fjl is isomorphic to B.

6 Quotients of ^distributive algebras. We wish now to character-
ize the ideals / of an α-distributive B.A. for which B\I is α-distributive.

DEFINITION 6.1. Let S be an index set with S<La. For each σeS,
suppose Aσ={aσr\τe T} is a subset of the a-B.A. B. Denote

( 2 ) Πσ6*Λτ= {Λσ6^Cσ)|? € TS) \J {0} .

The sets EξΞ:B which are of the form ΐlσesAσ, with each Aσ a disjoint
pair of elements of B, are called PΛ subsets of B.

PROPOSITION 6.2. Let B be an a-distributive B.A. and suppose I is
3 Note that since X(B) is compact, every closed set which is an ^-intersection of

open sets is also an α-intersection of open-and-closed sets.
4 This theorem is a special case of known results. (See [1] and the following abstracts

from B.A.M.S. vol. 6 1 (1955): Smith 210, Chang 579, Scott 675 and Tarski 677.) We in-
clude the proof for the sake of completeness. The argument is the same as the topological
proof of Loomis' theorem, given, for instance in Halmos' Measure Theory, p. 171.
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an a-ideal of B. Then B\I is a-distributive if and only if every PΛ sub-
set of B which is contained in I has a l.u.b. in I.

Proof. Suppose Bjl is α-distributive. Let £ = Π σ e Λ be a PΛ set
with EQI. Then

E={eφ\φeF=Ts}\J{0} .

where ββ,=/\σ €iSασ ?, ( σ ), T = [ l , 2]. Let a->d be the natural homomorphism
of B onto BjL By the α-distributivity of B\I,

Λaes(aσΊ\/άσ.2) = χ/ φeFeφ=Q

and hence

Conversely, suppose B\l is not α-distributive. Then by 3.4, there exists

Ί)φO in BII and

such that

with c< r l /\Cσ 2=0, cσΎ\yCσ2=T) and

Choose an element be B whose image in Bjl is ~b. Next, pick counter-

images

\βσl, cσ2] e β

of the pairs Cσ in such a way that c ( T ] / x c σ 2 =0 and c σ . i x / c σ 2 =6. Then
UcresCσ is a PΛ subset of B which is contained in / and whose least
upper bound is b (since B is α-distributive), which is not in /.

PROPOSITION 6.3. Let B an α-B.A. Then a subset E of B is a Pa

subset if and, assuming B is a-distributive, only if
(a) 0 e E,
(b) the elements of E are disjoint,
(c) l.u.b. E exists in B,

(d) there exists EσQE defined for each a in an index set S with

S<La, such that l.u.b. Eσ exists for all a and the sets Eσ distinguish

the nonzero elements of E, that is, if eφe are nonzero elements of E,
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then there is an Eσ which contains e or c, but not both.

Proof. The necessity of (a)-(c) is clear from 6.1. The subsets Eσ

of (d) are obtained by letting Eσ=[ee E\e<La<n]. Evidently, l.u.b.
Eσ=aσl/^(\.u.b. E).

To show that (a)-(d) are sufficient, let α=l.u.b. E, ασl==l.u.b. Eσ

and α σ J =l.u.b. {E—Eσ). By (b), α σ i = α / x ( α σ l )
/ and for eeE, either

e<Laσl and e κ x α ( Γ 2 =0, or vice versa. We prove that ί ^ Π σ e A
Suppose <pe F and eeE satisfy

e/\/\σesaσφί<τ ) '

Then e / N α σ ^ C σ ) ^0 for all σβS, so e<:aσφCσ). Consequently,

0 = = /\σ€ S^σφCσ)

(by (b) and (d)). Thus, Π σ e Λ ^ ^ . On the other hand, for e^O in
Ey define ^ e F b y <P(<J) = 1 if esEσ, φ(σ)=2 if eφE-Έσ.
β/sΛσe^σ^cσ), and therefore e = A r t A ^ ) . Hence, E S Π

COROLLARY 6.4. Lei B be a 2*-B.A. T/̂ en EξZB is a P« subset if

and only if OeE, the elements of E are disjoint and E<L2*.

Proof. The necessity is clear. To prove the sufficiency, observe

that since E<L2*, it is possible to find a one-to-one map λ of E into

the set of all two-valued functions on a set S of cardinality <La. For

each σeS, let

Eσ={eeE\[λ(e)l(σ)=l} .

It is clear that the system {Eσ\σeS} satisfies condition (d) of 6.3.

COROLLARY 6.5. Let B be a 2*-B.A. which is a-distributive. Let I
be an a-ideal of B. Then B\I is a-distributive if and only if I is a 2*-
ideal.

Proof.5 If C g / satisfies C<12*, then using Zorn's lemma, it is

possible to find a set E of disjoint elements such that Έ<LC, l.u.b. E
=l.u.b. C and every eeE is contained in some ceC (so that EξΞ=I).
By 6.4, E\J[0] is a PΛ subset of B. By 6.2, l.u.b. (E\J[0])eI. Thus,
l.u.b. Cel.

5 See footnote 2. As noted in Smith and Tarski [5], the assumption that B is a-
distributive in 6.6 is unnecessary. This condition was used only to prove the sufficiency
in 6.2.
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COROLLARY 6.6. Let B be a 2Λ-complete, a-distributivite B.A. Sup-
pose a is weakly accessible from the infinite cardinal β. . Let I be a β-
ideal of B such that Bjl is a-distributive. Then I is a 2*-ideal.

Proof First, observe that if ξ is a singular cardinal and / is an
^-ideal for all ??<£, then / is a f-ίdeal. Using this fact, 6.6 follows
from 6.5 by transfinite induction on α.

It should be remarked that the methods and results of this section
are related to the circle of ideas developed by Ulam and Tarski in [9]
and [8]. For example, it follows directly from 6.6 that if B is a 2Λ-
field, where α is weakly accessible from β, then any prime β'-ideal is
also a 2*-ideal (see [8], Theorem 3.19).

7* The lattice of continuous functions on X(B). Stone has proved
(see [7], p. 186) that a Boolean algebra B is α-complete if and only if
the lattice of real valued, continuous functions on its Boolean space is
conditionally α-complete. This result immediately suggests the

THEOREM 7.1. Let B be a Boolean algebra. Then B is a-distributive
if and only if the lattice C(X(B)) of real valued, continuous functions on
the Boolean space of B is a-distributive6.

Proof. Assume first that C(X(B)) is conditionally α-complete. Then
the set of all characteristic functions of open-and-closed subsets of X(B)
form an α-sublattice of C(X(B)) which is clearly lattice isomorphic to B
(see the proof of Theorem 12 of [7]). Consequently, if C(X(B)) is α-
distributive, so is B.

Conversely, suppose B is α-distributive (and α-complete). Then by
Stone's result, cited above, C(X(B)) is conditionally α-complete and we
have only to verify the relation (1) of 1.1.

First consider the special case where each function aστ takes only
finitely many real values. Let A^^ib^n^ly 2, •••} be a finite set of
disjoint elements of B such that Vw^W^^ and aστ is constant on each
set X(bσrn). By 3.2, there is a covering A of B such that A refines
every Aστ. If be A, then every aσr is constant on X(b). Since α->
(a\X(b), a\X{bf)) is a direct decomposition of C(X(B)), the restriction
homomorphism πb: a->a\X(b) preserves arbitrary joins and meets. More-
over, πb sends all αστ into the conditionally complete sublattice of constant
functions on X(b). This sublattice, being isomorphic to the chain of
real numbers, is evidently α-distributive. Hence,

β That is, C(X(B)) is a conditionally ^-complete lattice which satisfies the identity (1)
of Definition 1.1 when the elements aστ are functions which have a common upper bound
and a common lower bound.
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/\<r€SVτ€7τ7Γ/X°W~ VφeF/\σesπb(aσφCσ})

Using this remark, we show that /\σ\/7aστ is the least upper bound in
C(X(B)) of the set {/\^^^\φeTs}.

Suppose / I > Λ σ < W ) for all φ. The if be A, πh{f) ̂  j\σπh{aσψi^)
for all ψ, so

Thus / ( P ) I> (ΛσVArrXP) pointwise on the dense set \JbeAX(b) and
therefore, by continuity, /I>ΛoVArr By definition of the least upper

Now consider the general case of arbitrary functions aστ. Since
X(B) is compact and totally disconnected, the Stone-Weierstrass theorem
guarantees the existence (for each a e S, τ e T and integer n) of functions
fστ, taking only finitely many real values, such that \fστ — aστ\<Lljn.
Suppose feC(X(B)) satisfies / ^ Λ σ < W r ) for all φeTs. Then

for all ψ. Hence, by the result of the special case,

Since w can be arbitrarily large, Thus,

8. The continuous functions on X{B). In this section we consider
the individual continuous functions on the Boolean space of an ^-,Γ

distributive B.A.

LEMMA 8.1. Let B be an ^^distributive B.A. Let X(B) be the
Boolean space of B. Let Y be a separable metric space. Then any con-
tinuous mapping f of X(B) into Y is locally constant on a dense subset
of X{B)f that is, the set of points P of X(B) such that f is constant
on some neighborhood of P is dense in X(B).

Proof Let {Nlf iV2, •• ,JVn, •••} be a countable neighborhood basis
of Y. Set Mn=f~1(Nn). Since Y is a metric space, Nn is an open Fσ

(that is, a countable union of closed sets). By the continuity of / , so
is Mn. But X(B) is the Boolean space of an ^-B.A., so the closure
of any open Fσ in X(B) is open (see [5], Theorems 17 and 18). Hence,
elements bneB exist so that M~=X(bn).

Let An=[bn, b'n~\. Then there is a covering A of B which refines all
An. By 5.2, \JazAX(a) is dense in X{B). It will be sufficient to prove
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that / is constant on X(a) for each ae A.
Suppose f{P)φf(Q). Then there exists Nn such that f(P)eNn,

f(Q)<βN'. Thus PeMn^X{bn), but QφM», since f(M~) S A £ . Hence,
Qe J(5ή). Consequently, P and Q cannot lie in the same set X(a) with
aeA, In other words, / is constant on each X(a).

THEOREM 8.2. Let B be an ^0-B.A. and let X(B) be the Boolean
space of, B. Then a necessary and sufficient condition that B be ^-0-
distributive is that every real valued, continuous function on X{B) be
locally constant on a dense subset of X(B).

Proof. Necessity is a special case of 8.1. Suppose then that every
real valued continuous function is locally constant on a dense set. Let
An=[an, an] be a countable set of binary partitions of B. Let ψne
C(X(B)) be defined by ψn(P) = 0 if PeX(an), ψn(P)=2 if PeX(άn). Set
f(P)=Σin=iMP)βn. Then / is continuous on X(B). Note that /(P) =
f(Q) if and only if ψn{P)=^ψn{Q) for all n (because the points of the
Cantor set have unique representations in the form Σ~=A/3W with dn=
0, 2). By assumption, / is locally constant on a dense set. Thus, there
is a subset A of B such that \JaeΛX(a) is dense in X(B) and / is con-
stant on each X(a) with aeA. This implies A is a covering of B and
every ψn is constant on each X(α), so that A refines every An. By 3.2,
B is ^-distributive.

9 Unsolved problems,

(9.1) What properties of the Boolean space of B characterize α-
distributivity ? One can deduce from 3.4 the following result, which,
seemingly, is only slightly weaker than the converse of 5.3 : if B is
an α-B.A. which is not α-distributive, then there is a nonempty open
subset of X(B) which is contained in a 2α5-union of α-nowhere dense
sets.

(9.2) Is the completion by Dedekind cuts of an α-field (or more
generally, and α-distributive B.A.) itself α-distributive?

(9.3) Is every 2*-complete, α-distributive B.A. the 2α5-homomorph
of a 2Λ-field? By 6.5, it would be enough to prove that every α-distri-
butive, 2Λ-B.A. is the α-homomorph of a 2Λ-field.
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