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1. Introduction. In a recent paper H. 1. Alder [1] has obtained
a generalization of the well-known Rogers-Ramanujan identities. In
this paper I have deduced the above generalizations as simple limiting
cases of a general transformation in the theory of hypergeometric series
given by Sears [5]. This method, besides being much simpler than that
of Alder, also gives a simple form for the polynomials G, .(x) given by
him. In Alder’s proof the polynomials G, .(x) had to be calculated for
every fixed & with the help of certain difference equations but in the
present case we get directly the general form of these polynomials.

2. Notation. I have used the following notation throughout the
paper. Assuming |z|<[1, let

(@)= (a; s)=(1—a)(l—ax):--(1—az’"),  (a)=1

1L (@, @y ==y @3 by by +e e, by)= (95 8005 )= +(a5 5)
) (b5; 8)(by; 8)- - +(by; 8)

1(@)=11 (1 —az")
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1{1 =K (x'T; S) xrs
v ‘(ka''; 8)
S = SR ) g G R @ )
y T =0 (.’E, Tn) 11=0 (Q?, 7'1)
Lﬂiﬁfl“ﬂwA]( b, —2f 1. 2t (-t
M-n ,,ﬁﬁ—l 3 7,72@"),’1, n! n--—] n) o
T»z,,M: ‘._240 (117; tn)(xbn_g-ztn_l—ﬂ; [n) ’ (M=U; 4; 57 °° ')

n
where [a] denotes the integral part of «.
The numbers s, », »y, 7, *+-, t, t;, t,, --- are either zero or positive
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integers. #, and ¢,, wherever they occur, have been replaced simply by
r and ¢ respectively. Empty products are to mean unity.

3. Sears [5, § 4] has proved the following theorem :

By S T e fana) 1T (G, s &, ksfcts, kefa)O,
=11 (kr, kajaucs; Rewfas, aja) S, (kajaa) 1T (0, ai; @, k)
S @ (=1,

= (ka"*t; t)(; ¢)

[ 2]

wrere |kz/a,a,|< 1, |#|< 1 and §; is any sequence. The theorem holds
provided only that the series on the left converges.

Take
zﬁ [:k, (L']/ k ’ "—.’lﬂ/k g Qbgy Qbgy == ¢l Qypros;
Vk, =V'k, kxja, kxja, -, kn/t,y..
" ittt ,1)377—.’1;03(1—8) , (M=1,2,3, --)
(@30 = * Boyg 11)°
Then
(3.2) iK (@5 s)(ay; 8)++ +(Quaria; 8) (kile)i,

57 (kwjay s)kw)ay; )« o (K /Gumer; 8) (Beye + @y 1)
=11 (kav, kraa; Kea)aty, ear)a) S, (eafanay T1 (au, @y , Kax)
=0

o g (@ 0@ 1) (s (=)' FHOD o=y
Ld i ' [ / .
t=0 (kxfas; t)ko/ay; 1)+« (kx| Gy iy D0« Oy’

Now let a,, ¢, ++ -, thyyy — o in (3.2). Then we get

(3.3) i Ks(_ 1)skysx%8{<u{+1)s—1}
§=0
= k k(M—-l)tx(M—l)tz .
) S )(k 5 S

And in (38.2) if we take (M—1) for M, a,=z"" and let a, a; -+, oy
tend to «, we have

(3.4) é K, Jr-Dtgu-net
t=0

*——(kx 7)2 kx Exr t)l t)EK k(J[ ")Sa;(ﬂ ")S .
=0 X, §=0
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On repeated application of (3.4) on the right-hand side of (3.3) it follows
that

I
Ms
=
gl’nr

(I ()} = 5 K= Dyppreasd™ €4

there being (M —2) terminating series on the right since
1

(3.5) S K,,=0
5=0

by Watson’s transformation [(2); § 8.5 (2)] of a terminating ¢, lnto a
Saalschiitzian ,¢;.
Now it is easily verified that
M—-2

Il Sn,n—l

n=1

can, by suitable rearrangements, be simplified to

. [350n]
(M =27 [ 3 7 =1, +1e M-2 6 Zt +l -2, (L -1, ) M2
khati (a7~ L) S (x"s Zf)ta;l .., .
i=0 (; ty) {50 (z; t,)(x t) n=3

where t,=7r,+ 7+ +ryy, (=1,2, «-., M—2).
Thus on putting »+¢,=¢, we finally have

(3.6) {H(km)}“‘iKs(—1)*/c”-*x'21’”““"”’*”“‘}
¢ [M-; ] 6~ 2!‘ +1, ¢ -2t 2
ke (@2t 2t )=t W

=§@an @it =

nM
This is a k-cum-M generalization of the Rogers-Ramanujan identities.
For any assigned values of M and ¢, the repeated terminating series
can, by dividing out by the denominator factors, be evaluated as poly-
nomials in .

Let us now write

il P .

- 28 +1. —~26,(6—8,) M—2

3.7) Guaa)=a® > @7 22T,
by =0 (x; t) n=2

Then, as usual, for k=1 and k=ux respectively, the left-hand side of
(3.6) can be expressed as a product by means of Jacobi’s classical identity

(3.8) S (- 1)"90"2"~H(1 " 2) (1= [2)(1 —a™)

N = —o0

and we get Alder’s generalization of the first and second Rogers-
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Ramanujan identities in the form

(39) TI (1 x(2M+1)n+M)(] x(.'M+1)/z+M+1) | _ 5;_“ GM,;,(-T)
=t (1 x(’M+1):a+1)(1 ,C(AM+1)7L+’) ,(1_x(2m+1)n+.ull) iz (‘7.’ t)
and
= 1 - w‘GM,ﬁ(x)

(3.10) L[o (1_.¢(§bl+1)n+2)(1__x(z.’u+1)m+3). oo (L — g+ kit 1) = = (xt)

where Gy (v) is given by (3.7). The polynomials Gy, (x) can be seen by
easy verification to be identical with G, .(x) of Alder.

I am grateful to Dr. R. P. Agarwal for suggesting this problem
and for his kind guidance in the preparation of this paper.

Added in Proof. If in (3.2) we take a;=—1/fg, make a, a; -,
t.re; tend to oo, and proceed as in § 3, we get for k=1 and k=ux the
respective identities

(1 — g2in- (u- ‘1))(1 szn—(M+1))(1 _xzdln)
I (1~a%)

1 (2]
T — i1 S x?‘(“ﬂf"%)c, ! x‘%(“gfl)
(I (=abjo G T8

(xc_,w +1) M2
x L T

( wo“'t tl) n=2

and
11 (1 xllln I)(l ‘Z.ZMM (20— 1))(1 w‘mm)
n=1 (1 x)
2L(t+1)( ) [5 ;Jw%tl ~t,(t=31))
—{w(—2)} " 2 A Vi A
5 @ an (o),
ij ’( +1 , 9
« T)“ 11 T
(—a*th),
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