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1. Introduction

Let the interior of the unit circle be denoted by 4; and let the set
of functions single-valued and analytic in 4 be denoted by U.

It is well known that certain subsets of 2 can be made into Banach
spaces by the introduction of suitable norms. In particular, if fe¥,
and if, for 1 <p < oo,

) 1 2 . Hp
1.y s, ={o |iseeran”, p< o
A(f5 )= sup (=), p==co

and if sup .Z,(f; r)<co, then f is said to be in the set H». Also, H”
r<l
is a Banach space with

(1.2) If Nz? =sup A3 )

A proof of these statements, together with a discussion of many
properties of the spaces H”, can be found in [8].

This paper is concerned with certain transformations in the spaces
H"1,

Let w(z) be a function of z which is analytic in 4 and such that
lw(@)|< 1 for ze 4. If fe, then so is the function defined by fleo(2)].
For fe 2, we define

(1.3) T.f=y <‘;]§> Slo(z)]=g(z) for ze 4.

T, is clearly an additive, homogeneous transformation.

It is well known [4] that if fe H? and «(0)=0, then T,fe H* and
7./ <. In other words, if «(0)=0, then 7,e[H?] (the set of all
linear bounded transformations on H” to H*), and |T,]<1. Our first
task is to prove the following.

Recéived September 21, 1955, and revised form April 27, 1956. This paper forms a portion
of Ph. D. thesis submitted at the University of California, Los Angeles. The author wishes
to express his gratitude to Professor A.E. Taylor, under whose guidance the thesis was

written.
t In the following, all statements about H? refer to 1< p=c unless further

qualified.
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1016 P. SWERLING
THEOREM I.1. If we ¥ and |w(2)|< 1 for z€ 4, and iof |o(0)|=a<1,
/
then T,e[H"] and |T,| < (i"iq)l ' There is at least one such o for
-

which the equality holds.

Proof. For p=c, the theorem is trivial. For 1 < p < =, a simple
proof (for which the author is indebted to the referee) is as follows.

For fe H?, let u be the least harmonic majorant of |f|* in 4 (see
[6]). Then T,u is a harmonic majorant of |7,.f|*. Also,

1A= {(0)}""” and || Tuf | << {(Tue)(0)}'* = {u(B)}'"

where f=w(0). The Poisson integral for u shows that

u() < w117

Putting a=|p|, it follows that
14+a\Vr
T < i .
1zA<11(;7%)

To complete the proof, we note that the following statement holds.
Define the transformation L, (0 <« <1) by

rato=A(725).

Then the function
z+ 1)’7

=21

is an eigenfunction of L,: L,f=1f, belonging to the eigenvalue

i—(Lrey,
l—«a

provided |Ry|<1/p. This follows trivially from the fact that fe H”
provided | Ry |<1/p.
The result stated in Theorem I.1 can be sharpened as follows.

COROLLARY 1.1. For any o (we N, mapping 4 into or onto itself),

SO LB 4 G ) Catrvadin |
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where

_ o)+
I, C)_1+”C”w(>7)

Proof. For Ce€4d, define L. by
Lfe)=F(7E5)

1+¢z2
Then
T,=L_,LTL.L_

where

ned, Led
so that

N TN <N Loy | Lg | I Ly T |

Now, lz—gz takes 0 into —¢; - 1 _7/2 - takes 0 into —7;
and <lz+77 +C/ +Cw<—ziz takes 0 into w(vi‘z(i)

Applying Theorem 1.1, we obtain (I.4).

We are thus assured that a transformation 7, defined by 7,f(z)
=flw(z)] is a member of [A*], I<p<o. §II is devoted to a study
of semigroups and groups of these transformations. Section III contains
a discussion of two examples which illustrate the theorems of § II.

II. Families of Transformations in H?

A. Definitions and preliminary results. Consider a family of funec-
tions {w(z; t)} —also denoted by {w,(2)} —where ze 4 and ¢ belongs to a
set .7~ of complex numbers. The individual functions will be denoted
by w(z; t) or by w,(2), according to convenience.

Let the set .7 satisfy the following conditions,

(CIL.Y)) (i) If t, t,€ ., then t,+t,€ T,
(ii) I contains the origin and some ray originating at the
origin. ‘
(ili) Ewery two points in .7 can be connected by a path® in 7.

2 Here a path is defined to mean a finite number of rectifiable Jordan arcs joined to-
gether; see [3, pp 13, 14].
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Let the family {w(z; t)} satisfy the following conditions :

(CIL.2) (i) For each te. , w,e N, and w, maps 4 into (or onto) itself.
(ii) For t, t,€.7, and z€ 4,

(')bg[wbl(z)]=wtl[wt2(z)]=“)£1+L:(z)
(ili) w(z; 0)=z for ze 4.

(iv) For each ze 4, w(z; t) 1s differentiable’ with 1respect to t for
te.v. Also, if

P(z)=%w(z; e s

then Pe 9,

We can immediately state the following.

LEmmMmaA I1.1. For fixed z€ 4,

(IL.1) %[w(z; £)]—Plo(z; t)]
Proof. wlw(z; t); hl=w(z; t+h) for t, he .o
Therefore

w(z; t+h) —o(z; 1)_ ololz; t); h]l—w(z; t)
h h

_olo(z; 1); h]—olo(z; t); 0]
A

Letting 2 — 0 (in .~), we obtain (II.1).

The family of transformations {wa} defined by (1.3) with w=w, will
henceforth be denoted simply by {7,}. This family forms a semi-group
(possibly a group) of linear bounded transformations in the spaces H.
(The boundedness is shown by Theorem I1.1.)

We define the generator A of the family {T,} by

(IL.2) Af—lim T J; = feH

-0

the limit taken in the strong sense in H?. The domain of A, denoted

3 Here aﬁd in the following, ‘¢ differentiability with respect to ¢ for t€ & ’’ implies that
the difference quotient approaches the same limit no matter how ¢ is approached (as long
as the approach is made entirely in ).
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by 2 (4), is defined to be the subset of H” for which the limit in
(I1.2) exists as ¢t > 0, te .7 (the limit to be the same for all modes of
approach within .7~ to 0).

It follows from (I1.2) that, for fe Z'(4), and each ze€ 4,

(11°'3) Af(z)=lim T,/ (z)t -/
[2d]
This is true since, for fixed ze 4, f(z) is a bounded linear functional
of f, [7].
Now

Afz)=lim ST DI=f()
=0 t

—lim/ 2@ D]—flez; 0)]

t—0 t
Y I
:‘atf[w(zr Oli-o=S"lo(z; t)]at (# Di=a

or
(11.4) Af(R)=P(z)f'(2) ze d, fe Z(A4)

It is thus clear that Z7(4) is contained in the subset of H? consist-
ing of those elements f for which f7(2)P(z) defines an element of H".

B. Differentiability properties of the family {7}

THEOREM II.1. Let f be in H”, and t, be in .7; let g(2)=P(2)f'(z)
and suppose that

(i) There exists a neighborhood . 4, of t, and a positive constant

0]

M such that every point t of . 4, con be connected to t, by a
polygonal line in A, (\ .7 of length < M|t,~t|;

(i) TgeH” for te 4 .7
(iii) | Twg—T, 9| >0 as t—t (te T).

Then, T.f is strongly differentiable with respect to t at t, and

d
11.5 ZT Sfler =T, g .
(IL.5) p Slity=T,,9

Before giving the proof, the following formal derivation might be
of interest ‘
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. T.f— Tzof A f f
fim =5 =i T (5=t =t
= TtoAf =49

This is however not a rigorous proof, even when fe 2 (A), since s=t
—t, may not be in .v” for all te_ 77 [\ .7

A rigorous proof is as follows.

Let flw(z; t)]=~A(z; t) and let

(IL.6) Dees t; =" O7HED) 1 o)
b

If z=re®, and if aath(z; t) is denoted by A,(z; t), then, from (II.1),

Die; t; )"0 DO 1) (g 1)
0

1 g (™ <)—ha(re?; t)]de
t to Ly

where ¢ is chosen in .7/, and the integral is taken along a polygonal
line in .4, N\ .7~ connecting ¢ and £, and of length < Ml¢—¢,|.
First suppose that 1 < p< . Then

27 p
(IL7)  _A2ZD; 7“)2{217;501D(7‘e“’; : t[,)]”olﬁ}

-2

Let r=1(s), 0 <{s< 1, «(0)=¢, (1)=¢f. Here s is a constant times
the are length. Then [4], [1]

1 S [h(re®; ©)—h,(re®; t,)ldr do} "
t—t,

_AD; q)_{{Z’tlt tox[h(re“’, )= hy(re®; t)]e(s)ds da}

< tnlglf(e)l{ Slh (e, 7)— hy(re®; to)] as}

Hence,

ll—“ : ————Ttﬂg =sup #,(D; r)
t t’Q r1
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St 1ﬂ§ e’ (g);[sup{ S B (re®; 7) — h (re®s to)\ as} ]dq
1

- tlSlr’(@)l I T.9= T g1 ds < M sup | T.g—T, 91

Now, by (iii), as ¢t — ¢, the quantity sup | T.9—T, 9| goes to zero.

Thus | D||—0 as t > ¢,.
For p=co, the proof follows similar lines.

COROLLARY I1.1-1. Let f be in H?, t, be in .7, and let g(z)=P(z)f’(z).
Suppose condition (i) of Theorem 11.1 holds and in addition, suppose
that

(@) lo(z; t) <r <1 for zed

(b) o(z; t) is continuous with respect to t at t,, uniformly in z for
ze 4.

Then, T.f is differentiable with respect to t at t, and (IL.5) holds.

Proof. By (b), there exists a neighborhood J/,;’ of ¢ such that
lw(z; ¢)] < r' <1 for zed, te 47 N I,

Now, ¢(z) is analytic in 4. Therefore for te.7;’ N\ .7, T,9(z)=
glo(z; t)] is bounded in 4 and therefore T.ge H”.

Also, T,g9(z) is continuous with respect to ¢ at &, uniformly in z for
z€ 4. Hence sg? IT.9()—T,9() > 0 as t — ¢,

TeEEOREM I1.2. Suppose

(i) Condition (1) of Theorem 11.1 holds for t,=0;
(i) |TS~f—0ast—0 (te. o) for every fe H".

Then, < (4), the domain of the generator A (defined by I1.2), is the set
of elements fe H? for which g(z)=f'(2)P(z) defines an element g of HP.

Proof. Let % denote the set of elements fe H? such that g(z)=
f'(@)P(z) defines an element g of H?. We already know (last paragraph
of ITA) that & (4) C . To show that ¥ C & (A), one must verify
conditions (ii) and (iii) of Theorem II.1 for fe ¥, £=0.

Since fe & implies ge H?, it follows from Theorem I.1 that T,
e H” for all te o7 Also, condition (iii) of Theorem II.1 is obtained for
t,=0 by applying condition (ii) of Theorem II,2 to the function g,
Equation (I1.5) becomes
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(11.8) Af=g where g(z)=P(2)f'(2).

THEOREM II.3. Under conditions (i) and (ii) of Theorem 11.2, A is
o closed transformation. Also Z(A) is dense in H’.

Proof. Let f, bein Z (A); f, —f (in the norm of H*) Af, —~ge H?
(in the norm of H”). Then [7]

fu(2) = 1(z)
P)f,'(2) > 9(z)

that is, g(z)=P(2)f’(z) for ze 4.
Therefore, since g e H*?, then, by Theorem I1.2, fe & (4) and Af
=g. See [2, Chap. 11] for the fact that <7 (A) is dense in H*.

uniformly on compact subsets of 4,

C. The family of transformations generated by a given operator of
the form Af(z)=P(2)f"(z). Suppose P is a given function in A. The
following question arises: Is there a set .7 in the complex plane and
a set of functions {w,} satisfying, respectively, conditions CII.1 and
CII.2? If so, how, knowing just P(z), can one determine the family
{w,} and the maximum set 7 ?

To investigate these questions, additional conditions will be imposed
on the given function P(z). First,

(CIL.3) 1/P(z) is analytic in 4 except, possibly, for a single pole.
Let the function Q(z) be defined by

(I.9) Q(z)=5;.1§é 2, 2€ 4

The path of integration is chosen in 4 so as not to pass through
any singularity of 1/P(z); also, 2z, is chosen so as not to be a singularity
of 1/P(z). Q(z) may be a many-valued function.

- Q(z) depends on the choice of z,; however, as will become clear
below, it is not worthwhile to express this dependence in the notation.
Clearly, all definitions of @ (corresponding to different choices of z,)
differ from each other by additive constants.

The following property of @ is worth noting.

Let 2, and 2z, be in 4, and not singularities of 1/P(z); let QM(z),
Q®(z) be two values of Q at z=z; and let Q®(z)—Q®(2,)=hA. Let
Q®(z,) be a value of @ at z==z,. There exists a value of @ at z=z,
which may be denoted by Q®(z,), such that Q(z,)—Q®(z,)=h. Thisis
clear from the definition of @ and from (CIIL.3).
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We shall further assume:

(CIL4) If 2, ond 2z, are in 4, are not singularities of 1/P(z), and z, 5 2,
then Q(z) =~ Q(z.).

This may, of course, be regarded as a condition on P(z).

Now suppose Pe U is given satisfying (CI1.3) and (CIL.4), and that
a set v and a family {e,} exist satisfying (CII.1) and (CIL.2). From
(II.1) and (CII.2-iii), regarding z as fixed for the moment, one can
write

(11.10) ;'t oz t)=Ploz; t)] | z€4d

o(z; 0)=z te 9

Let 2 be fixed in 4 and not a singularity of 1/P(z). Then, from
(11.10), o(z; t) must satisfy

(AL11) Qo(z; )]=Q()+t.

Now, for fixed te .7, w(z; t) must be an analytic function of z in
4, mapping 4 into itself.

Let I, be the image under @ of 4 (excluding the possible singulari-
ty of 1/P(z). The set I, includes all values of Q(z) which can be ob-
tained by integrating in (I1.9) along paths which are entirely in 4. If
o(z; t), for fixed te 7, is defined for all ze 4, and such that |w(z; t)] <
1, then (II.11) implies that this ¢ must translate I, into a subset of
itself: I, +t C I,.

Let .7, be the set of translations of I, into or onto itself. (Clearly
7, does not depend on the choice of z, in defining Q.) Then 7 C .7.

On the other hand if P being given', 7, contains a subset .o *
satisfying conditions (CIL.1), then a family {w,} satisfying (CI1.2) exists
(with te 7 *).

Define, for te 7%, ze 4,

Q-[Q(z) +t], z not a singularity of
(IL12)  w(z; t)= , !
P(z)

1
L P(2)

2, z a singularity of -

where Q' denotes the function inverse to §.

This definition defines » uniquely. If Q(z) refers to a¥particular
branch of @, then « is uniquely determined (in 4) because of (CIIL.4);
moreover, by the property of ¢ mentioned on p. it is seen that the
same point « is defined no matter what branch of Q is used in (II :12).

¢ Pe9 and satisfying (CIL 3) and (CIL 4).
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It is also clear that w(z; ¢) does not depend on the choice of z,.

The function w(z; t) thus defined is analytic in z for each te .o ™*.
This is clear if z is not a singularity of 1/P(z). If 2, is a singularity
of 1/P(z) in 4, it is necessary to show that «(z; ¢) is (for fixed ¢) con-
tinuous at z=z;; that is, (from I1.12) w,(2) — 7, as z —z,.

Since 2, is a pole of 1/P(z), one can say, by the definition of @,
that there exist points o,(z) approaching 2z, as z — =z, such that (I1.12)
is satisfied. But, by (CII.4), these points are the only ones in 4 for
which (II.12) is satisfied.

The other conditions of (CII.2) are readily verified for the functions
o(z; t) as defined by (I1.12).

The preceding results may be summed up as follows.

THEOREM 11.4. Let P(z) be wn U, satisfying (CIL.3) and (CIL.4).
Let Q(z) be defined by (11.9); let I, be the image of 4under Q, let .7, be
the set of tramslations of I, into or onto itself.

Then, there exists a set ./~ and a family {w,} satisfying (CIL.1) and
(CIL.2), if and only if .», contains a subset ./ * satisfying (CIL.1). The
maximum set ./ 1s the *‘ direct sum’’ of all subsets of . which satisfy
(CI1.1). Here ‘ direct sum’’ s defined as follows: If {G,} s a collec-
tion of subsets of the complex plane, each containing the origin, the direcct
sum of the sets {G*} is defined to be the set consisting of all elements of
the form t=t,4 -+ +t, where n is a finite (positive) integer and where
ti € U Gm-

The last statement follows from the fact that the direct sum of
subsets of .7, satisfying (C.II.1) is also a subset of .7, which satisfies
(C.IL1).

One result of the previous theorem is the following.

THEOREM II.5. If P(z)e U, satisfying (CIL.3) and (CIL.4), and if
there exists a set .7~ and a family {o,} satisfying (CII.1) and (CIL2),
then 1/P(z) can have only a pole of first order in 4.

Proof. If 1/P(z) had a pole of order higher than the first, then
I, would have a bounded (and non-null) complement; therefore .7, would
consist only of the point £=0.

Thus, if ¢, is the singularity of 1/P(z), then Q(z) can be written

(I1.18) Q(2)=q, In (z—&,) + Q(?)

where Q,(2) is analytic in 4.
Theorems II.6 and II.7 refer to families of transformations generat-
ed by P(z) satisfying (CIL.3) and (CIL.4).
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THEOREM 11.6. If w(z; t)==z, z €4, for ¢ 2mikq,, k=0, +1, +2,
«oo, then z,=C,.

Proof. Qlow(z; t)]=Q()+1t for z¢,.
Therefore Q[z]1=Q[z]+1 if z5£¢,.
Therefore t=2rikq,, k=0, +1, ---.

THEOREM 11.7. If w(z; &)=w(z,; t), t€ 9, then z,=2,.

Proof. Suppose first that z, 2,74 &,. Then «(z;t)=w(z,; t) would
imply Q(z)=Q(2,) or, by (CII.4), zz=2,., On the other hand, if, say,
z,=C,, then w(z, t)=2=w(z,; t) and so z,=2, by Theorem IL.6.

Thus, conditions (CIL.3) and (CII.4) when imposed on the function
P(z) imply that the family {w,} is a family of schlicht functions.

It is clear that the functions o, as well as the set .7 are unalter-
ed if the definition of @ is altered by the addition of an arbitrary
constant.

It is also easy to see that multiplying @ (that is, multiplying 1/P)
by a constant ¢ =% 0 yields essentially the same family of transformations:

Let .2, {o,} correspond to P(z) and let .77, {w;} correspond to

iP(z). (Here the primes do not, of course, imply differentiation.) Then

clearly, o 7=c¢.7, Also, for t'e 9,

cQlw'(z; t')]=cQ(») +1',

or
QLe'(ei t1=Q@+ L,
so that
(11.14) /(2 t')=w(z;—tc—/>; tre .7, tc e.9r

In other words, there is a one-to-one correspondence between the

transformations corresponding to P(z) and those corresponding to yP(z);
c

the correspondence is given by (II.14).
Now consider, for te & N I,, the parameter defined by

(11.15) F=Q-(%) te NI,
Then fe 4 and (I1.12) becomes, writing w[z; #(5)] simply as w(z; ),
(11.16) o(z; f)=Q'[Q(2) +Q(A), z, ped.
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Here B is defined on Q'[N I,].

It is always possible to define @ in such a way® that .. C I, and
therefore .7 N I,=_. In such a case, (I1.15) and (I1.16) hold for all
te g, For example, in defining @ by (II.9), it is clear that Q(z)=0
for z,€ 4. Thus, for @ defined as in (II.9) with 2z, € 4, we have f=Q"(¢)
=aw(z,; 1).

It is, however, often possible and more convenient to define @ such
that &~ is the closure of I,. It is also often possible to extend the
definition of @ to the boundary of 4 in such a way that the boundary
of 4 goes (under Q) into the boundary of I,. (An example of this is
given by the family of transformations studied in the next section.) In
such cases, (I1.15) holds for all £¢e .7 and, in (11.16), # may be a point
on the boundary of 4.

The law of composition of the transformations T.,,B=TB in terms of
the parameter 2 is

T Tp,=Ts,
Be=a(Bs; B)

This can be shown as follows.

(IL.17)

olo(z; t,); bl=w(z; t+1,),
S0
olo(z; B1); Bl=wlz; t=Q(8)+Q(B.)]
=olz; f=w(fi; B)].

By simply looking at the set I, one is usually able to determine
many of the properties of the family {7,}. For example, one may de-
termine (a) whether or not such a family exists for the given P(z); (b)
what the maximum parameter domain .7~ is; (¢) whether {T,} is a
group or a semigroup; (d) which of the functions w, transform 4 onto
itself and which transform 4 into but not onto itself;

D. Possible applications. The above results provide the basis for
obtaining a variety of theorems by rephrasing known results in the
theory of transformations in Banach space in terms of transformations
in the function spaces H? of the kind studied above. Three possible
categories of results are:

(a) Representations of the transformations T, in terms of the ge-
nerator 4 or the resolvent of A ([2] contains many such formulas).

(b) Application of results in the theory of analytic Banach-space-

& The addition of a constant to Q changes I, but leaves g unaltered.



FAMILIES OF TRANSFORMATIONS IN THE FUNCTION SPACES H? 1027

valued functions of a complex variable ([2], [7], [9])
(e¢) Other theorems concerning properties of semigroups or groups
of transformations in Banach space.

III. Two Special Cases

A. The family {T,} defined by T,f(z)=f(wz), hw|<1.
Let

(IIL1) Ple)——2
and®
(II1.2) Q(z)=§f:éic — Iz

Then I, is the open right half plane: R(z) >0. .7 is the closed
right half plane: R(z) = 0. Clearly, .7, itself satisfies conditions (CII.1)
and is therefore the maximum domain .9 of the parameter f. We
have

(I11.3) o(z; t)y=ze ! zed, te vy

or, if we let

(111.4) w=e*

then, writing olz; t(w)] simply as o(z; w),

(I11.5) w(z; wy=wz zed, w1
The corresponding family of transformations {7',} is then given by

(I11.6) Twr=g

where 9(z)=F(wz)

The generator A is defined for those fe H? for which the limit

Af=lim Lof=F ] <1
w->1 -—

exists in the H* norm. Thus,
(I1L.7) Af(z)=—2zf"(z) for fe & (4).

For 1<p< oo, 7 (A) is the set of functions fe H” for which
f’(2) defines an element of H”. This follows from Theorem II.2. The
crucial point in applying Theorem I1.2 is in verifying condition (ii) of

¢ Here zp=1 is not in 4, but in this case this is immaterial,



1028 P. SWERLING

that theorem. This amounts to the following. Let # be in H* (1<»p
< ), and let T z)=h(wz) for |w|<_1. Then T,k — Ak in the norm of
H? as w—1 in the closure of 4. It is not difficult to prove this.
Also, for 1 < p < w0, A is a closed operator with domain dense in
H>,
For p=co, (II1.7) still holds, but one cannot verify condition (ii)
of Theorem II.2 and it is eassily seen that <7 (4) is not dense in H".

B. The family {L,} defined by L, f(z)zf(ﬁﬁ), —1<a<l.

1+az
Let
(I11.8) P(2)—(1—2)
and"
N /S
(II1.9) Q(z)_gol_cz tanh-" 2

Then I, is the strip |J(»)|< n/4. . is the real axis. Clearly .75
satisfies conditions (CII.1) and is therefore the maximum domain &~ of
the parameter £. We have

11110 . yy— #+tanht te 75, zed.
( ) () 1+ztanht¢ @

If we let
(I11.11) a=tanht, te. 7,

then, writing o[z; t(a)] simply as o(z; «),

(I11.12) w(z; a)y=2T% zed, —1<a<1.

The family of transformations {L,} is given by
(1I1.13) L.f=9

where

o0~ )

The norm of L, is

(I11.14) I L. “sz[_ i{ ’:g’] ]up
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The generator A is defined for those fe H? for which the limit

Af=1im = ‘”f =f

a0

exists in the H* norm. Hence
(I11.15) Af()=(01—2)1"(z) for fe & (A).

For 1<p< o, Z(A) is the set of functions fe P’ for which
(1—2*)f'(z) defines an element of H’; also, 4 is a closed operator with

domain dense in H?, As with the previous example, these statements
do not hold for H™.
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