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ON CERTAIN SUMS GENERATING THE DEDEKIND

SUMS AND THEIR RECIPROCITY LAWS

M. MlKOLAS

1. Introduction, Let {u}=-u — [u] denote the fractional part of u
and let ((%))={%}— i Dedekind sums are defined for example, by

>-§ ((ί)X(t))
where h and k are relatively prime positive integers. These sums which
were studied by Dedekind [7], and more recently by Rademacher and
Whiteman [9], [12] in connection with the theory of the modular function
7](τ), occur also in the theory of partitions and in a great number of
special papers. (Cf. for example [1]-[13].) The most important property
of Si{k,, k) is the reciprocity law

(1.2) 81(ht fy+s^k, h) = (h2 + Shk + Icz + l)l(12hk) .

A few years ago, Apostol [1] (for r=v) and Carlitz [3] introduced
and investigated the so-called generalized Dedekind sums

(1.3) 8?\h, k)

Pr denoting the well-known Bernoulli function defined by the expansion

\z\<2π

for Q<Lu<Cl and by Pr(u)=Pr({u}) for u arbitrary real. They found
the corresponding extensions of (1.2) too.

Now, we shall continue to develop these results in two directions.
Next we give a systematic treatment of certain exponential sums (2.1),
(2.3) generating

(1.4) Ua b) = Σ PJ^)PJ^) «, n«0,l, 2, •

with (a, e) = (b, c)=lj c^>0. V̂ e obtain (among others) a three-term
relation of new type (Theorem 1) which implies (in extended form) all
the above reciprocity theorems (see (5.1)-(5.10)). Let us remark that
the sum function (2.5) with other notations is also used in [6]. On the
other hand, we get a functional equation for
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1168 M. MIKOLAS

(1.5,

where ζ(s, u) is the Hurwitz zeta function (Theorem 2). By

ζ(l-n, u)=-Pn(u)ln

(1.5) can be regarded substantially as a (transcendental) generalization
of (1.4).

2 Preliminaries on &c*(x, y), %mn (
a V In what follows, x9 y>

V c J
w, z denote complex variables, α, 6 and c are integers and e > 0 ; for
brevity we write, as usual, e(z)=eLηtiz.

Let us put

λ ( m o d c ) V i e ) { C

with (α, c)=(6, c) = l, the summation extending over a complete residue
system modulo c. It is obvious that (2.1) is independent of the choice
of this residue system1 and for a=b or c = l , 2 it is independent of α, 6.
The function Sf\x, y) remains unaltered if we change α, b or x, y by
multiplies of c. By this periodicity, it is no restriction to suppose for
example, that 0^3i(^)<c, -c<3t(2/)<;0.

We have S?δ(#, y)=S»c>
a(y, x) and

(2.2) Sc-*'δ(α, 2/)=β(aOS?*(-α, 2/Hl-φ?) ,

since {— w} = 0 or 1 — {u} according as u is an integer or not.
The function

(2.3) &Ax, ί/)=[β(a?)-l]-1[β(2/)-l]-1Sfδ(a?, 2/) x, vΦ§, ± 1 , •••

has corresponding trivial properties in particular, (2.2) implies

(2.4) @β-'»(a?, 2/)=-©f(-a?, ^ - [ e f o ) - ! ] - 1 .

By the definition of Bernoulli functions and (1.4) we obtain

(2.5) xy&/(xl2πi, yβπi)= ± ^ f $ ( a b) \χ\, \y\ < 2π .
m,n=o mini \ e /

Here

1 Hence we see that Sa>b(x, y)=S1>J)'(x, y) for a suitable integer b!\ however, the above

symmetric notation seems the most convenient.
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(2.6) &Ja δ ) = Σ Pn ( l ) =cΎ~nBn rc=0, 1, ,

Bn=Pn(0) denoting the Bernoullian numbers.

Note that %m,n(^ δ ) =J8 Λ | W ( δ aλ and 3m,w(α α ) does not depend on a;

especially we have %mJ )=$c™+n~Ό(b, c), furthermore
\ c /

(2.7) ^ ) ^ ^ )

m, n=0, 1, .

3* Representation by cotangents and Eulerian numbers respectively*
Let c > l . The identity

(3.1) βΣ1

β(.ίί?.)β(i??i)_ [ β(a.)_i ]Γβ(5±

yie lds a f t e r m u l t i p l i c a t i o n b y e\—^—\ ( ^ = 0 , 1, •••, c — 1) a n d s u m m a -
V c J

tion

(3.2)

(3.1) and (3.2) hold clearly provided that (x+^)jc is not an integer
(v=0, 1, •••, c—1). Hence by putting μ=c{αΛ/e}, α and c being coprime
we get

(3.3)

Furthermore, by using the corresponding expression for e{y{bλ\c}),
Φ, c)=l,

[Φ)»)l] Σ
CT ί.,3(mod<0

If we consider the complete residue systems (mode): p=—br,

(r, p=Q, 1, . . . , c ~ l ) and take into account that Σ
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vanishes except for p=r when it has the value c, it follows simply that

(3.4) ®Kx,V)->- Σ
c rcmod

holds for all x, yφ-0, ± 1 , ••• and, because of the definition (2.3), in
the case c=l too. By [1 — e(z)]~1=i(l + i ctgπz) and

Σ ctgπ(z+ ^-)=

we have the equivalent formula:

(3.5) &/(χfy) = .1 [1 +i(ctg 7Γ̂ -h Ctg
4

- f Σ ctg

(3.4) or (3.5) expresses the sum (2.3) by means of periodic elementary
functions, without using the arithmetical function {u}.

(3.4) leads immediately to corresponding representations of $mJa )

by means of the so-called Eulerian numbers Hn(ηk), defined for a root

of unity ηk=e(—V c > l , c\k by

(3.6) (l-7*)/(ββ-^) = Σfl»(9fc)^M! \z\<2π{kjc} .

In fact, after expanding the right-hand members of

xy&Λxβπi, yβπi) = {xylc){e*'c - iy\ev'e -1)-1

+ (as|//c) Σ (β*'V»Γ-l)-I(β*'Ύr-1)""1 '
r = l

we find

(3.7) ^

so that comparison with (2.5) gives in addition to (2.6)

(3.8) U ty-UBA + mttΆ&ΆdJΓ
\ c / c^+^-iL r=i (^αr —l)(^- & r —1)

m, w=l, 2,
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a formula implying a result of Carlitz [3, (6.5)]. In particular, for
m=n=l (3.8) becomes

(3.9) gj ) ) + Σ
V C / 4C C r=

4 4<?r=ι

which contains two equivalent representations due to Rademacher and
Redei (for a=l cf. for example, [4], (2.2) and [2], (5) respectively).

4. The main property of &fb(x, y). Our next purpose is to deduce
a peculiar symmetry relation relating to the sums in question, by ap-
plying the calculus of residues.

THEOREM 1. We have for α, δ, c positive, mutually coprime, and

for 0^3l(a?)<l, --1 < 3 % ) ^ 0 the relation

(4.1) epa(ax+by, - ex) -f ®?δ(cx, cy) + ©£c( - cy, ax -f by)

provided that ax + hy, ex and cy are not integers.

Proof. We consider the integral

(4 2) β - ^ L ^ - ^
the path of integration being a rectangle whose vertices are the points
— ε±tif c — ε±ti with

a

and

0<ε<minlc--(1-Sfϊ(a?)), —
I b a

taken in positive direction. A straight-forward calculation shows that
only singularities of the integrand inside Q are at the points:

a
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by our assumptions, these are all distinct and poles of order 1 only of
the first, second, and third factor respectively. Since

res [e(x - bzjc) — 1] -1 == - c/2πib ,
*-(c/δXμ D

res
β^Cc/αXv

the residue theorem yields

a

and therefore, by (3.4), we obtain

(4.3) &?b(cx, cy)-<SetΓa(ax+by, cx

Now, if we write

ί
fc-β + t* Γ-s + ti r-s-ίi fc-ε-

+ + +
Q Jc~z-ti j c - s + ti j - z + ti J - ε -

-ε-ίi

ti

with the integrand of (4.2) and straight-line paths, the sum of the first
and third member on the right vanishes because of the periodicity (with
period c) of

[ φ ) - 1 ] - 1 ^ - bzlc) - l~\-\e{y + az\c) - 1 ] " 1 .

On the other hand, using the estimate \e(u-hίv) — 1|I> \e~27CV —1| (u, v
arbitrary real), we find at once that the integrals along the horizontal
segments tend to zero as £-><». Hence (4.3) implies for t -> oo

(4.4) BϊXax + by, -cy)-&b>-a(ax-hby, cx) + &c'
b(cx, cy)=0

which is, by (2.4), equivalent to (4.1).

5 Applications; extension of the well-known reciprocity theorems,
(1) If we write

(5.1) Xftx.y)—1- ΣΣ
C r(modc)

and use (3.5), then (4.1) becomes



ON CERTAIN SUMS GENERATING THE DEDEKIND SUMS 1173

(5.2) %

By (3.9), this may be regarded as a generalization of the reciprocity
theorem of Dedekind sums. For, by putting y=—x in (5.2) and making
x —> 0, we obtain on the basis of the Laurent expansion ctg z=z~λ—\z

,r QX o (b c\ o (c a\ , (a δλ 1 1 / a 6 , c
V α / V δ / \ c / 2 12\δc cα ab

a remarkably symmetric three-term relation which for α = l reduces to
(1.2) with A=δ, &=c. (Cf. also a result of Rademacher in [11].)

(2) Let us replace in (4.1) x, y by xj2πi and y!2πi respectively,
multiply both sides by cλxy{axΛ-by) and expand every member by ap-
plying (2.5), (2.6) and the power series of zj(ez — l). We obtain

ey Σ ψ r \ ) ( m Σ
m,n~l 7711 Til \ 0 ' mtn~l TΎblΎllΎll \ C '

mn-i mini \ a / L v-i v!

Σ |r-,[(«« + W + (-cxf\ + c{ax + by) Σ B* (xv

- es Σ -i^--1 [ ( - eyy + {ax + byY\ ,

this holding identically for \x\, \y\<C_2π. If one uses still the binomial
theorem and arranges our absolutely convergent series in terms of xv,
y" (v=l, 2, •••)» then comparison of the corresponding coefficients leads
without difficulty to the following system of relations:

(5.4) ( W
\ a

furthermore, by (a )( r W r )(r~^) ,
\β/\a/ \β/\γ — a/

(5.5)
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The results can be written briefly in symbolic form as follows

(5.6)

y = l , 2,

(5.7) a»

p-f 1/ V p / J V c

( J v δ * c P = l , 2 ,

where for example

(b$-cϊy+1(b$y-p(e b)
\ a J

means that, after formal application of the binomial theorem to the

first factor and formal multiplication by bv-p-%v-pAc ), every product
v a /

gmgn/'c δ\ i g r e p l a c e d b y g Λ* δλ ̂
\ α / ' V α /
(3) We remark at once that (5.4), (5.6) go over for v=l to the

reciprocity relation (5.3) and for v > l odd, δ = l to the formula (cf.
(1.3), (2.7))

(5.8)

with 2

μ

The factor ( —l)μ may plainly be suppressed in the last summand, that is.
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therefore (5.4), (5.6) generalize (5.3) and ApostoΓs reciprocity theorem
[1, Theorem 1].

On the other hand, putting v=3, 5, 7, ••• in (5.7), we get for e = l

(5.9) (v + 1)av~>(ft»'>-b)*+1(b, α ) - ( v + 1Wβ< v>-α) v + 1-*(α, &)

= ( )aBv-pBp+ι-~( )6Z?V+1-.P
Vp-r-1/ \ p /

)aBv-pBp+ι(
Vp-r-1/ \ p

while the case 6 = 1 yields

(5.10) c V [ ( p + l ) α s ^ ( α ' )̂ + (^1)e\-p(α, c)]

p

the symbolic notations being understood in similar sense as above. (5.9)
and (5.10) express the first and second reciprocity law of Carlitz respec-
tively [3, Theorems 1, 2]3, so that we have in (5.5), (5.7) a common ex-
tension of them.

6 The sum ©?fδ(w, z). We now use the generalized zeta function,
defined by

ζ(z, u)=Σ>(u + n)~*

for 3t(£) > 1 and by analytic continuation for other values φl of z, u
denoting a fixed number with 0 < % < I l . There holds the well-known
formula of Hurwitz :

(6.1) ζ(z,u) = 2(2π)-iΓ(l-z)

x (sin — Σ n*-1 cos 2nπu + cos πz- Σ w*-1 sin 2nπu) ΪR(z)<0 .
V 2 »-i 2 Λ«i /

Next we establish a functional equation for the sum

(6.2) ®^^)=

with (a, c)=(b, c)=l, c > l , in observing that [cf. (1.4)]

(6.3) Φ? 4 ( l -m, 1 - n ) =

3 In formula (3.2) of [3], the lack of the corresponding binomial coefficients before the
Bernouilian numbers appears to be a typographical error.
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and, by ζ(z, i)=(2* —l)C(s) where ζ(z)=ζ(z, 1) is Riemann's zeta function,

(6.4) ^Πw, z)=(2™-l)(2*-l)-ζ(w)ζ(z) .

THEOREM 2. For (a, c) = (6, c)=l, c > 2 and for any w, z distinct
from 0 and 1 we have the relation

(6.5)

x jcos π (w-

Proof. 1° First let 3t(w)<0, SR(«)<0. We transform

(6.6)

by means of (6.1).
Since the series involved in Hurwitz's formula are absolutely con-

vergent, one obtains after substitution into (6.6)

(6.7)

where

(6.8)

x
m,n*=l

ιn=2^ cos 2mττ-i-— cos

».n COS--COS-~-

c, if c I am±bn ,

0 for c^αm±δ% ,

c/2 otherwise ,
/ c/2, if c I am—bn but

(6.9)
^ = 2 J sm Δmπ-1 -~ sin — c/2, if c I am-hbn and

0 otherwise .

Hence it follows easily that

(6.10) ®? δ(w, ̂ )

•fcos Σ
αmΞδwCmod c)

mw?"V-1-cos π(w + z)
2

Σ
α?n,Ξ-δw(modc

m^V"1 1
) j

Now, by the functional equation of C(s) we have
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(6.11) Ac(2π)w+z'T(l-w)Γ(l-z)sm7T2V-smπz Σ
2 2 c\m,c\n

cw+z-1ζ(w)ζ(z) .

Furthermore, ar ( r = 0 , 1 , •••, c—1) and br ( r = 0 , 1 , •••, c — 1) being
complete systems of residues mod c, we can write

(6.12) Σ m - V - ^ W Σ m—Λf Σ n-
αm=δra(mode) r = l \m=r&(modc) / \ίi=rα(mod c)

and similarly

(6.13) Σ m—V-'-Σf Σ m—Λ( Σ w
αwι=-&w(modc) r = l ^m=rδ(modc) / \w=-rα(modc)

(6.10)-(6.13) yield together

(6.14) ®?δ(w, z)^cw+z-χ

2° Finally, (6.5) follows immediately from (6.14), in view of

®ϊb(w, z)=®r(w, z) - ζ(w)ζ(z) ϊΛ(w) < 0 , SR(s) < 0

and by analytic continuation.

7. Some remarks* In [2], Apostol finds certain finite sum repre-
sentations for scj\h, k), involving cotangents, ζ(z, u), Γ'{z)lΓ(z) and he
uses these expressions to give a short analytic proof of (5.8) [Theorems
1, 2]. It may be noted that the above Theorem 2 implies the results
in question, arising as limiting cases for w->0, and z->0, z= — l,
-2, . . . .

The form of ©?'δ(#, y), ®?δ(w, z) suggests applications in connection
with certain Lambert series, generalizing those investigated by Rade-
macher, Apostol and Carlitz. I hope to return on this problem in an-
other paper.
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