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Introduction- The method of linear integral equations is an impor-
tant tool in the theory of conformal mapping of plane simply-connected
domains and in the boundary value problems of two-dimensional poten-
tial theory, in general. It yields a simple existence proof for solutions
of such boundary value problems and leads to an effective construction
of the required solution in terms of geometrically convergent Neumann-
Liouville series. The convergence quality of these series is of consider-
able practical importance and has been discussed by various authors
[4, 5, 6, 7]. It depends on the numerical value of the lowest nontrivi-
al eigen value of the corresponding homogeneous integral equation
which is an important functional of the boundary curve of the domain
in question. Ahlfors [1, 10] gave an interesting estimate for this eigen
value in terms of the extreme quasi-conformal mapping of the interior
of this curve onto its exterior. Warschawski [15] gave a very useful
estimate for it in terms of the corresponding eigen value of a nearby
curve which allows often a good estimate of the desired eigen value in
terms of a well-known one. This method is particularly valuable for
special domains, for example, nearly-circular or convex ones.

It is the aim of the present paper to study the eigen functions and
eigen values of the homogeneous Fredholm equation which is connected
with the boundary value problem of two-dimensional potential theory.
In particular, we want to obtain a sharp estimate for the lowest non-
trivial eigen value in terms of function theoretic quantities connected
with the curve considered. The steps of our investigation might be-
come easier to understand by the following brief outline of our paper.

In § 1 we define the eigen values and eigen functions considered
and transform the basic integral equation into a form which exhibits
more clearly the interrelation with analytic function theory and extend
the eigen functions as harmonic functions into the interior and the ex-
terior of the curve. The boundary relations between these harmonic
extensions are discussed and utilized to provide an example of a set of
eigen functions and eigen values for the case of ellipses.

In § 2 we show the significance of the eigen value problem for the
theory of the dielectric Green's function which depends on a positive
parameter ε and is defined in the interior as well as the exterior of
the curve. This Green's function has an immediate electrostatic inter-
pretation and its theoretical value consists in the fact that it permits a
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continuous transition from the Green's function of a domain to its Neu-
mann's function. All dielectric Green's functions permit simple series
developments in terms of the eigen functions and eigen values studied
and the possible applications of these series developments to inequalities
in potential theory are briefly indicated. Finally, it is shown that analy-
tic completion of the dielectric Green's functions leads ultimately to
univalent analytic functions in the interior as well as the exterior
domain. This will lead, on the one hand, to interesting information on
potential theoretical questions by use of the numerous distortion theorems
of conformal mapping. On the other hand, we obtain in this way a
one-parameter family of conformal maps of the domains which start
with the identity and end up with the normalized mapping onto a
circle. This parametrization is of importance in the theory of univalent
functions; it is entirely different from the Lδwner parametrization of
univalent functions [8].

In §§ 3 and 4 we derive formulas for the variation of the various
eigen values and dielectric Green's functions. We use at first interior
variations and are thus able to derive precise variational formulas with
uniform estimates for the error terms. By superposition of interior
variations and simple transformations we can easily derive variational
formulas of the Hadamard type. It is seen that the variational formula
for the dielectric Green's function is surprisingly similar to that for the
ordinary Green's function. It is seen that the circle is a curve for
which all nontrivial eigen values are infinite. Thus, the circle leads to
a homogeneous integral equation with an eigen value of infinite de-
generacy and the usual perturbation theory cannot be applied. We
show, therefore, by a special argument how eigen values for nearly-
circular domains can be obtained.

Finally, we apply in § 5 the variational formula for the eigen
values to a simple extremum problem for the lowest one which leads
ultimately to the desired inequality. A characteristic difficulty, however,
has to be overcome in this problem. It appears that the eigen values
are only continuous functionals of the curve if the curve is deformed
in such a way that normals in corresponding points are turned very
little. Such a side condition is hard to preserve under general varia-
tions. We introduce, therefore, the concept of uniformly analytic
curves which is closely related to the theory of univalent functions.
Extremum problems within the class of uniformly analytic curves are
easy to handle and the problem of the existence of extremum curves is
likewise of very elementary nature. As the end result of our study an
inequality then appears which estimates the lowest nontrivial Fredholm
eigen value from below in terms of the modulus of uniform analyticity.
This quantity is, however, easy to determine if a specific analytic curve
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is prescribed. It seems that the concept of uniform analyticity may
play a useful role in many further extremum problems and variational
investigations. As a side result of our study we obtain a new class of
plane curves for which the Fredholm eigen functions and eigen values
can be computed explicitly.

l The Fredholm eigen values. Let C be a closed curve in the

complex z-plane which is three times continuously differentiable; we

denote the interior of C by D and its exterior by D. The kernel

Λ 1

(1) k(z, C ) = — log — —
drtζ \z—ζ\

is a continuous function of both argument points as these vary on the

curve C only. We understand by the differentiation in direction of
dnζ

the normal at ζ on C pointing into D.
The first boundary value problem of potential theory with respect

to the domain D can be reduced to the inhomogeneous integral equation

(2) βz)=φ(z) + M k(z, ζ)φ(ζ)dsζ , zeC,
π JO

while the second boundary value problem can be solved by reduction to
an integral equation with transposed kernel

(2') f(z)=<K*)--\ *(C, z)ψ{ζ)d8ζ, ze C.
π jc

In view of the Fredholm alternative in the theory of integral equations
one is then led naturally to discuss the eigen values and eigen functions
of the corresponding homogeneous integral equation

( 3 ) ΦvOsH-M Hz,
π JO

These functional of C play an important role in the potential

theory of the domains D and D as shall be seen in the following con-

siderations. In this section we shall give a brief survey of their theory

and various transformations of the integral equation (3) which will be

used later.
We introduce the harmonic function

( 4 ) />>(*) = -
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which is defined in D and £>; for the sake of clarity, we shall denote

it by h{z) if its argument point lies in D. By the well-known discon-

tinuity behavior of the kernel (1), we have the limit relations, valid for

an arbitrary point zoeC:

( 5 ) lim Λv(z)=(l 4- Λv)Φv(zo), lim fφ)=(l - λv)φv{zQ) .

On the other hand, the normal derivative of a double-layer potential
goes continuously through the curve C which carries the charge and,
hence,

( 6 ) ~K(*)=-%JΦ), for z e C,
dn dn

where — denotes normal differentiation into D.
dn

By Green's identity, we have

( 7 )
2πicL dnζ \ζ-z\ \ζ—z\

and

(7') ί —z\

where δ(z) and δ(z) are the characteristic functions of D and D, that is,

,1 if zeD
( 8 ) )

(0 if

Combining (7) with (7') and observing the boundary relations (5)

and (6) between hv{z) and hv(z), we obtain

( 9 ) —FΓ^ t l o g T^~Ί ΊΓ
π(λy— l)Jc \ζ—z\dn

(10) — - A — ( log - J — l ^ O ώ ^ A v W , « e ί>.
(Λ4l)Jtf |C ^| 9^

Define two analytic functions in D and D, respectively, by the
formulas

(11) Vv(z)=^k,(z), £v(z) = |
dz dz

Differentiating (9) and (10) with respect to z, one obtains easily
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(12) tΦH-M ffiE , ̂ H U β .

These are elegant integral equations for the analytic functions vv{z) and

vv(z) which are valid for zeD and zeZ), respectively.

We can also bring (12) into the form

(13) v >to_£jy^ r fovzeD

and

Aff gy(C) ^Γ for 5

which expresses vv(z) and vv(z) as solutions of integral equations with
improper kernels. The integrals involved have to be understood in the
Cauchy principal value sense.

In the transition from the integral equations (3) defined on C to

the integral equations (13), (13') defined in D and D, we have lost one
particular eigen function. Indeed, if h(z)=const, were one of our eigen
functions h^(z) it would have been cancelled out in the differentiation
(11). But by (5), &v(2)=const. implies φv(^)=const. on C and from (3)
and the identity

(14) -If k(z,
π JO

follows, in fact, that each constant is an eigen function of (3) with the
eigen value λ=-hl. The eigen value Λ=+l plays an exceptional role
in the entire Poincare-Fredholm theory of the boundary value problem;
the fact that the equations (13), (13') lead to all other eigen values and
their corresponding eigen functions and eliminate λ = 4-1 represents,
therefore, a strong argument in favor of this transition.

Let z(s) be the parametric representation of C in terms of its length
parameter s. Then

(15) 2'=^?
ds

will be the unit vector in tangential direction to C. The boundary

relations (5) and (6) for hv and hv go over into the equations on C:

(16) K{vJίzy}=\ + Yft{vJtzY}
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(17) 3K(Φ'}-3R(Φ'}

which can be combined into the one complex equation

(18)
JL Λ v

This relation combined with (12) throws an interesting light on the
connection between vv(z) and vv(z). In fact, if we insert (18) into the
first equation (12) and apply Cauchy's theorem, we find

(19)
2πil-λ)G ζ-z

zeD

Observe that the second formula (12) yields vy(z) for z e D; now we see
that the same expression yields vj^z) for zeD, except for the factor
1 —Λv. Similarly, one shows easily

(20) VΛZ) = -
2πil+

zeD.
ζ-z

If f(z) is an arbitrary complex-valued function in the entire z-plane
of the class .Sf\ the equation

(21)

defines a new function in Jtf2, its Hubert transform. It is well-known
[2] that the Hubert transformation is norm-preserving, that is,

(22)

Our formulas (13), (13') and (19), (20) imply that the functions

(23)
in D

and
0 in D

have the Hubert transforms

0 in D

(24)

in D

+ l W ) in D

v,(z) in D

ί/1

and Fy(z) =

in D

in Z).

Hence (22) yields
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(25) (Λv~

From (25) we conclude easily that

(26) U v i > l .

For if, for example, Λ v=l, we would have £v = 0 in D, λv(s)=const,
and hence by (6) also Av(^)=const. But this would imply, in turn,
vjz) = 0 and no eigen functions would exist.

With each eigen value λv of (4) the eigen value ~~λv also occurs,

except for Λ=l. In fact, if we denote the conjugate functions of h»(z)

and hv(z) by gy{z) and gv(z), we have by the Cauchy-Riemann formulas

the relations

(27) fgy(z) = ^ U Z ) , f f l φ ) M*)
dn 1 — λv dn ds ds

Hence, putting

(28) J7ί(*H(l"~K)9&), dm=(l + IJfaz)

and adding an appropriate constant we find for z e C:

(29) ^ ( ^ l ^ . ^ ) , Lg*(Z)=-0ft(Z).
1 + λv dn dn

These are the boundary relations between hv and hv but with —λv in-
stead of /lv This proves our assertion.

If we start conversely from the complex integral equations (13) and
(13') and consider any eigen function vv(z) with the eigen value λv, it
will be observed that eiavv(z) is also an eigen function to the eigen
value λve~n<*. Hence, if we focus our attention on the integral equations
(12) or (13) we may assume without loss of generality that Λv is a real
positive eigen value. Calculating backward, we can easily see that
each such eigen value is also an eigen value of the Fredholm integral
equation (4) and so is — λv.

It is readily verified that eigen functions vv(z) and vμ(z) which be-
long to different eigen values λv and λμ satisfy the orthogonality relation

(30) I vy(z)v,(z)dτ^0.

This condition can be extended to the case of any two linearly inde-
pendent eigen functions. Similarly

(31)
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for any two different eigen functions vv, vμ. In view of (25), we
define

(32) wv{z)=VI^-ί vv(z),

Then we can assume the orthonormality relations

(33) 11 WyWμjdτ^δyμ,, 11 w»Wμ.dτ=δvμ .

We have in view of (18) the boundary relations on C:

(34) w ^ y ^ ^ δ ^ ?

from (19) and (20) follows

(35) Wy(z)= - /y [
2πVλl-llG ζ-z

and

(36) ^ v ( z ) = . _ ^ v _ ( S M 9 , z e
2Vλ\\ϊ ζ

If we were able to guess two functions w{z) and w(z) which are

analytic in D and D, respectively, and which satisfy on C the relation
(34) for a properly chosen λ, we would have obtained a particular solu-
tion for the eigen value problems (13) and (13'). It is sometimes pos-
sible to construct such pairs of functions and to obtain thus eigen
values and eigen functions for the Fredholm integral equation. One
possibility of construction is the following: We refer the curve C by
conformal mapping to the unit circumference. Let

(35) z=f(ζ)

be analytic on and near |Cl = l and map it onto C. The condition (34)

can now be referred to \ζ\ = l and reads:

(38)

Since the conjugation ζ means just — on |C 1 = 1 it is easier to guess

solutions in this form.
Let, for example,

(39)
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This means that C is an ellipse. Let us put

(40)

and

(41)

Condition (38) will be fulfilled if we put

1 b(42) a= .1 , b ^ l .

Define TF(/)=Ud/and W(f)=\wdf. Then (40) and (41) yield

(43) 1 L
n

(44) [/(C)]
n

Now the function (39) is univalent outside of \ζ\=ρ and, hence, we

may consider ζ as a regular analytic function of zeb. Thus, W(z)

and w{z) are regular analytic in D. In order that W{z), w{z) be analy-
tic in D we must require that

(45) λ=p-*n.

In fact, ζw+•-n-
 c ^n be expressed as a Chebysheίf polynomial of «. Thus

n

we have guessed an infinity of eigen values and eigen functions for the
case of the ellipse. It can be shown that λn=±p~2n gives all eigen
values of the ellipse for n=l, 2, ••-. Since ^ = 0 describes a circle, we
recognize, in particular, that all eigen values λv for a circle have the
the value infinity [3].

If we know the eigen values and eigen functions of a given do-
main D we can find immediately the eigen values and eigen functions
of every domain D* which is obtained from D by a linear transfor-
mation

(46) z*=^_±L=Z(z).
cz +d

In fact, let

(47) wϊ{z*)V(z)=wJiz), w*(z*)l'(z)=wάz), Λ*=ΛV.
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It follows from (33) that the w* and ί&* form an orthonormal set of

analytic functions in Z?* and D*y respectively. Since we have on C*

(48) z*'(z)=l'(z)

it is also obvious that (34) is fulfilled which shows that wf and w* are,

in fact, the normalized eigen functions of the domains Z)* and Z)*. In
particular, we note that the eigen values λv of a domain are unchang-
ed under linear transformation. Similar domains, for example, have the
same set of eigen values.

2 The dielectric problem. The consideration of the electrostatic
field of a point source at ζ in the presence of a dielectric medium in
D with the dielectric constant e leads to the following heuristic defini-
tion of a Green's function GAz, ζ):

(a) Gt(z, C) is harmonic in D and Z), except for z=ζ.

(b) GAz9 C)-log -—— - is harmonic at ζ if ζeD.

ι«-cι
(b') Ge(z, ζ)-e\og —*—- is harmonic at ζ if ζeD.

|z-Cl
(c) Ge(z, C) is continuous through C.
(d) ®-Gβ(β, O+ε-^Gsfe C)=0 on C for ζeD or Zλ

(e) \og\z\-hG9(zf C)->0 if a:->oo, for ζeD or CeZλ

It is easily seen that Gs(z, ζ) is uniquely determined by these con-
ditions and that it satisfies the symmetry condition

( 1 ) Gs(ζ, η)=GJLη, ζ).

We may construct Gs(z, ζ) by means of a line potential as follows. Let

ζeD and put

(2) Gs(z, c ) = l o g - A -

This set-up satisfies automatically conditions (a), (b) and (c); we can
fulfill condition (e) by the requirement

(3) \ μ(η, ζ)dsv=0

and finally (d) by solving the integral equation

(4) -j-7- - 1 - / log -±-=μ{z, O - J — λ\ Kη, C)/ IcβΓA--Λ,.
1 + e π dnz \z — ζ\ l - f ε 7 r J c dnz \η — z\
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As long as ε > 0 this equation can be solved in a unique way since

—~ < 1 and all eigen values of the corresponding homogeneous in-
1-f ε

tegral equation are larger or equal to one in absolute value. One veri-
fies also from (4) that condition (3) is automatically fulfilled. In a
similar way we proceed for ζ e D.

The integral equation (4) indicates already the close relation between
the Green's function Gζ(z, ζ) and the Fredholm eigen functions. We
obtain a further insight from the Dirichlet identities:

(5) [[ FGE(z, ζ)Vhv{z)dτ^Λ G2(z, ζ)^hv(z)dsz

\ ^ , ζ)dsz\ hy(z)^
Jo dn

and

(6) [\jGt(z, ζ).Fhv(z)dτ=-\ GB(z, ζ)ξ,hy(z)dsz

}}n ic On

Mz)~G2(zy ζ)dsz.dn

Here we use δ(ζ) and δ(ζ) as defined in (1.8). Identity (6) is valid in
spite of the logarithmic pole of Gz at infinity since Jιv(z) vanishes there.

Adding (5) and (6) and using (1.6), we obtain

( 7 )

Putting

(8) P^Γ^Ί

and using the boundary relations (1.5) and (d), we find:

( 9 ) - e

Thus, finally,

(10) \\ V
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The eigen functions h^{z) connected with the Fredholm equation ap-
pear thus as the eigen functions of the integral equation in D :

(10') ^ΊΓ^W FG&' O'Fh{z)dr=h{ζ), C6 D .

Let G(z, C) be the ordinary Green's function of D; obviously

(11)

Hence we obtain for hv(z) the integral equation

(12)

with the regular harmonic kernel

(13) Ks(z, ζ)=G9(z, ζ)-eG(z, C).

Let

(14) G(z, oo)=

represent the Green's function of D with the source point at infinity.
By (1.5) we have obviously

(15) ί /^)^^)<fc = l±A Γ
jc dh 1 — λyi

2 ^
dn 1 —

We now define the linear space Σ consisting of all functions h(z)
which are harmonic in D, have a finite Dirichlet integral there and
satisfy the linear homogeneous condition

(16) \ h(z) ds0 .
jc dn

Observe that the only constant element in 2 is the function h = 0.
All hv(z) lie in Σ; in view of (12) and the symmetry of Ks(z, ζ) we may
assume that they are orthonormalized by the conditions

(17) J j / A v .
and it is easily seen that they form a complete orthonormal set in Σ

[3].
If we use the conditions (c) and (e) in the definition of Gε(z, ζ),

we can show that the function
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(18) h(z)=Ke(z, O-r

lies in Σ. Hence we have for it the following series development

(19) Gf(s, ζ)-εG(z, ζ)=?+±fψ^Q'2πe, ζeD.
v - i

The Fourier coefficients in this development have been calculated from
(12); the series converges uniformly in each closed subdomain of D.

Suppose next ζeD and consider the harmonic function

(20) h(z)=G9(z, ζ) + G(ζ, co)-f .

It is easily seen that h(z) e Σ. Hence we may develop h(z) into a series
in the complete orthonormal system hy(z). Using (10), we find

(21) G&, CH? ^ ^
v=i 1-f εpv

This series converges for ζeD and z in a closed subdomain of D.
Observe that by definition of Gs(z, ζ) we have for e = l

(22) G1(zf c ) = l o g — ΐ — .

Hence (19) contains the following series representation for the ordinary
Green's function of D:

(23) G{z, CHlog f 2 7 r Σ
\z-ζ\ v-α 1-f /θv

On the other hand, (21) reduces for ε = l to

(24) ±^ h
i 1 -f pv

In a similar way we can derive series developments for Gz(z, ζ) in
the exterior D of C. Observe that in view of the boundary conditions
(1.5) and (1.6) the normalization (17) of the hv{z) implies

(25) ί f

Let Σ be the linear function space consisting of all functions h(z) which

are harmonic in Z), have a finite Dirichlet integral there and which

vanish at infinity. Clearly the {ρ\nhv{z)} form a complete orthonormal

set in Σ.
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On the other hand, let G{z, ζ) be the Green's function of D. Then
it is easily verified that by condition (e) and (14)

(26) h(z)=Gs(z, ζ)-G(z, ζ) + G(ζ, ™) + G(z, co)-f, z, ζeD,

lies in Σ. Again using the Dirichlet formula (10), we find

(27) Gs(z, ζ)-G(z,

Putting, in particular, e=l , we obtain by virtue of (22):

(28) G(z, ζ)-G(ζ, co)-G(sf co γ2π Σ
\z-ζ\ «-i

We have thus shown that all dielectric Green's functions can be con-

structed simultaneously and in D as well as in D, once the system of

eigen functions hv(z) and the corresponding eigen values λv are known.

Numerous inequalities can be drawn from these representations.

We shall restrict ourselves to one single example. Denote, for ζeD,

(29) G9(z, ζ)-ε\ogΓλ~=g2(z, C), G(z, O-log- 1 — =g(z, 0 .

The functions gs(z, ζ) and g(zf ζ) represent the potentials induced by a
unit pole at ζ in the presence of the dielectric in Ό, and in the pre-
sence of the grounded conductor C, respectively. We find from (19)

(30) 0β(C, ζ)~eg(ζ, ζ)^γ.

Since e~y represents the electrostatic capacity of the conductor C, we
obtain an interesting estimate for the dielectric reaction potential in
terms of capacity constants connected with the conductor surface C.
For ε = l , we have gx{ζ, ζ)=0 and hence

(31) ?^-<7(C, C).

This is an inequality connecting the inner and the outer Green's func-
tion of C; in the case that C is a circumference and ζ is its center,
this inequality becomes an equality.

Up to this point we stressed the connection between the Green's
function G{z, ζ) and the eigen functions hv{z). Since the Fredholm eigen
functions appear also in the theory of the second boundary value pro-
blem, we should also expect some relations between the hv{z) and the
Neumann's function of the domain D.
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The Neumann's function is usually defined by its constant normal

derivative on C

(32) dM^Jl=Jπ, 9 zeC, ζeDf L=length of C,
dnz L

and by the linear homogeneous side condition

(33) ί N(z, C)ώ,=0, ζeD.

In order to operate within the class Σ, characterized by (16), we in-
troduce the functions

(34) φ)=λ \ N(t,
2πJc θn L

and

(35) h(z)=N(z, ζ)-G(z, ζ) + a(z)+a(ζ)

co dn dn

It is easily verified that h{z)eΣ. Since obviously

(34')
dn L

the function a(z) is harmonic in D and has the normal derivative

dn θn L

Hence, finally, we have for ze C

dn dn dn

and consequently in view of (16) valid for each h^z):

(36) [( Fh-Fh,dτ^ -f h,~ds^2πhv(ζ).
JjD jo dn

Since h(z) 6 Σ and the hy(z) are a complete orthonormal system in
Σ, we have the Fourier development
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(37) N(z, ζ)-G(z, C) + f ( N(t, zfM-^ds + M N{t,
2i dn 2Jc

( N(t, z f d s + M N{t, ζf
πic dn 2πJc dn

This formula is useful to establish the exact asymptotics of the func-
tion Gε(z, C) as ε -> 0 as can be seen from formula (19).

The dielectric Green's functions Gε(z, ζ) are closely related to a set
of interesting univalent analytic functions. In order to show this con-
nection we complete the harmonic functions Gs(z, ζ) to analytic func-
tions in z. We will obtain, of course, two entirely different functions
when z lies in D or D. Let us denote the analytic completion of Gε(z, ζ)

by Pz{z, ζ) iΐ zeD and by Ps(z, ζ) if zeD. We want to show that for
fixed ζeD

(38) Uz)=e-ιlΐP^\ Uz)=e-^^

represent univalent analytic functions in D and D, respectively.
For the sake of simplicity, we shall assume in the following con-

sideration that C is an analytic curve. There exists, therefore, an
analytic function z=f(t) which maps a neighborhood of a segment of
the real axis in the ί-plane onto a neighborhood of a given arc of C.
The function Gs(z, ζ) becomes a harmonic function g(t) to both sides of
the segment. It goes continuously through the segment, but its normal
derivatives satisfy the discontinuity law

(39) δ ? + e ^ ? = o for real t.
dn dn

Let

(40) P(t)=Ps(f(t), 0, v(t)-Hf(t\ ζ).

We find easily for t in the segment and in view of the described dis-
continuity behavior of g(t):

(41)

We can combine the two relations (41) into the one equation:

(42) ^ ^ W

This formula allows an analytic continuation of p'(t) into the upper
halfplane and of p\t) into the lower. This proves that p\t) and p'{t)
are still analytic on the segment of the real axis in the ί-plane. Re-
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turning to the z-plane we can infer that the functions

(43) P£(s, ζ)=^-Ps(z, C), P&z, CH~A(z, 0
dz dz

are analytic beyond the curve C. Thus we proved that the two deter-
minations of the Green's functions Gz(z, ζ) are still regular harmonic on
C if C is an analytic curve.

We derive from (40) and (42) that

(44) ξ}&LJl = λ±-e. +β-«*ίH-? , α=arg p'(t).
P's(z, 0 2 2

Since we assume throughout e > 0, we see that the ratio (44) always
lies in the right half of the complex plane. This implies

(45) ΛargP;(z, ζ)=Δκc«P[(z, ζ)

if z runs through the curve C in the positive sense with respect to D.
But by the argument principle we have

(46) Δ arg Ft(z, ζ)=Z-P , A arg P8'(«, 0=P~Z

where P, Z are the numbers of zeros and poles of P'z in D and P, Z

have the same meaning with respect to Ps and D. In case some zero
of Pg should lie on C, we can deform the curve in such a way that it
does not contain any zero and draw the same conclusion in view of the

analyticity of Pg' and P'z on C.
We know by definition that if ζeD we have

(47) P = l , Z^O; P=0, Z ^ l .

Hence, from (45), (46) and (47), we conclude

(48) Z - l ^ - 1 .

This is only possible if

(49) i = l , Z=0 .

Hence we can state that Ps(z, ζ) and P's(z, ζ) do not vanish at any
finite point of the z-plane.

Consider now the system of differential equations (z=

(50) ^ = - i ^ , C), *l = —!rG&> O
dt dx dt dy

Along each solution curve x(t), y{t) of this system we have
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We have just shown that no critical point exists where FGε=0. Hence
the net of solution curves covers the entire 2-plane in a regular manner.
All curves start out from the point z=ζ and run towards infinity. Each
curve possesses the integral

(52) 3{P(z, C)}=const. or 3{Pε(z, C)}=const. ,

according as it is considered in D or in D. From these facts it is
evident that the functions (38) have the asserted univalency properties

in D and D, respectively.
The importance of our result lies in the fact that the numerous

distortion theorems of univalent function theory are now at our disposal
in order to derive estimates of the various potential theoretical quanti-
ties connected with Ge(z, ζ) in terms of the geometry of the curve C.

Let us observe, further, that for ε = l the function/^) represents
the identity mapping while for ε = 0 w e conclude from (21) that

(53) fQ(z)=e-:<-e^z^=z + c1+ A + . . .
z

is the univalent function which maps D onto the exterior of a circle

of radius e~y and which has at infinity the derivative one. Thus we

can interpolate a continuous sequence of univalent mappings between

the identity map of D and its normalized mapping onto the exterior of

a circle.

The preceding considerations show clearly the significance of the
Fredholm eigen values and eigen functions for the dielectric problem
and the general potential theory of the curve C. A generalization of
most concepts to the physically more interesting case of three dimen-
sions is easily done.

3. The variation of the eigen values. The variation of the eigen
values λv under a variation of the curve C can be determined by using
the variational theory of the Green's function and of the various kernel
functions connected with it [3]. In this paper we wish to give a
straightforward and elementary derivation of the variational formulas.

Let z0 be an arbitrary fixed point in D and consider the mapping
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For small enough a this will be a univalent mapping of C into a new
smooth curve C*. Let us denote its eigen values by λ* and its eigen
functions by wt(z). We have used various eigen function definitions in
the domain D; the w*{z) shall play the same role with respect to Z)*
(the domain bounded by C*) as the wv(z) defined in Section 1 played
with respect to D.

We have the integral equation

( 2 ) ^.ifWCW), z*eD*.

Let us define

( 3 ) nφ)=w*(z + a)(l - —£—) .

This is a regular analytic function in D since (1) maps D univalently
onto D* where w*(z*) is analytic. Using (3), we can rewrite (2) into
the simpler form

V (^z o )V 27rίJcL (2-.^)(C-2b)- C-s

We have thus referred all variables back to our original domain D, but
Λ* and mv(z) appear now as the eigen values and eigen functions of an
integral equation with slightly changed kernel.

We may transform the new integral equation (4) by easy calcula-
tions into

( 5 )

Observe that by the definition (3) we have

( 6 ) JJ Jm>(z)\*dτ=^Jw*(z*)?dτ*=l .

We have thus to determine the normalized eigen functions my(z) to the

integral equation (5) which differs from our original equation (1.13) by

an α-term which can be estimated uniformly in z for zQeD fixed.

Let us define the analytic function [3]

( 7 ) L(z, C)« - 2 * G{z, Q=-jl~ -«*, 0
π dzdζ π(z — ζY

It is well-known that for every function f(z) which is analytic in D and

for which fί \f\2dτ < oo holds
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( 8 ) \\D

L{z>

Hence we have the identity, valid for each such f(z),

Under our assumptions about the boundary curve C of D, it can be
shown that l(z, C) is continuous in both variables in the closed region
D+C. Thus (5) can be put into the form:

(10) nφ)=λ*\\ ttz, ζγnjζ)dτ^a^λ\ ^ > _ -dτ ,

while wv(z) satisfies the unperturbed integral equation

(11) wjz)=

Now we can apply the general perturbation theory for regular
kernels [9] and state that the eigen functions mv(z) and the eigen
values λ* are analytic functions of the perturbation parameters a and
a and can be developed in power series in them. For a=0, λ* will
coincide with λy while mv(z) will then lie in the linear space spanned by
the eigen functions of (11) which belong to the unperturbed eigen value

Let wis\z) (j=l, •••, n) denote the eigen functions belonging to λv.
We have the developments

(12) /l* = /lv-f lα|/cv4-O(|αf)

and

(13) mv(z)= Σ AjW^iz) + \a\ωv

Inserting (12) and (13) into (10) and making use of (11), we find

(14) Σ AM»(z)=4- Σ AMJ\z) + \a\λv[ \ l(z,

We multiply this identity with w£*°(z) and integrate over D. We
use the orthonormality of the w^{z)f the symmetry of l{z9 ζ) and the
integral equation (11). We also make use of the fact that by (1.36)



THE FREDHOLM EIGEN VALUES OF PLANE DOMAINS 1207

(15) Iff ^
π J J z ) ( C - ^ o ) 2

Hence we arrive at

(16) A * = ψ Z* + 2 i \ a \ ^ D ή

π^J0 \*) , fc«l, 2, . •, n .

Using the development (12) and comparing equal powers of |α| on both
sides, we obtain

(17) 3 { Λ J = 0 , Λ=real , &=1, 2, •••, w.

Taking real parts in (16) and putting

(18) Γ

we find

(19) KyAk + π(λl-l) Σ Aβ{e^w^{zQ)w?\zQ)} = 0 , fc=l, 2,
l

Thus the possible values of /cv in the development (12) of the perturbed
eigen value λ* are the eigen values of the secular equation

(20) det IMj* + ̂ ;-l)»{βvwSΛ(%)w^fe)}||==0 .

In particular, if Λv is a simple (nondegenerate) eigen value, we
have the simple variational formula

(21) ^v = = |α|./cv== -π(λl-l)R{awJίztf} .

Let us suppose next that we perform a variation (1) of the curve

C but now with zQ e D. Since the mapping (1) is regular and univalent

in I), we can repeat the entire argument by interchanging the roles of

D and D. We thus find

(22) det I |M* + π(λl-1)91 {e^wlj\zQ)wik\z0)} \\=0

as the secular equation for the /cv-terms and

(23) <?;v=|α|/cv= -πiΰ-lWfaWviZoY}

in the nondegenerate case. Formulas (21) and (23) exhibit the complete

symmetry of our theory with respect to D and D.
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We used the method of interior variations (1) in order to reduce
the variational problem for the λv explicitly to the theory of perturba-
tion in classical integral equation theory. The formulas obtained are
also very convenient in various extremum problems regarding the λv as
we shall show later. It seems, however, desirable to give also a varia-
tional formula for deformations of C which are described by the normal
shift dn of each point on C. For this purpose we put

(24)

Applying Cauchy's integral theorem with respect to D, we also find

(25) o=mia(P,-1) f
I2i Jo

Finally, we derive from (1.34) that

(26) (4-1) {wcΛζ)

Hence, if we subtract (25) from (24), we obtain

(27) 5H {π(λl - l)awi»(zo)w?\zo)}

- § 3ΐ{^wij\ζ)wίk)(ζ)~^wCJ)(C)^l)(C)C/a}δn ds

where

(28) dn^
-z

represents the normal shift of C under the deformation (1). Thus the
coefficients of the secular equation for dλ have been expressed in terms
of dn.

In particular, we have in the nondegenerate case in view of (23)

(29) δλv= 1 [λldi {wv{ζ)Xn} - λv\wy{ζ)Y\δn ds .
Jc

It can easily be verified from (1.34) that on C

Thus we may replace w by w in formulas (27) and (29); since transition
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from D to D implies also a change of sign of the interior normal, the
end result is unchanged. Thus the variational formula of the Hadamard
type (29) is entirely symmetric with respect to the two complementary

domains considered. If we had chosen £Qei), we would have obtained
the same end result (29).

We derived (29) in the case of a particular variation of the type
(1). But since a variational formula depends linearly and additively on
the variation, and since we can approximate general (^-variations by
superposition of special variations of the type (1), we can extend (29)
to the most general case of a <5^-variation.

The value of the variational formula (29) is of heuristic nature; it
shows the dependence of λy on the geometry of C For a precise study
of extremum problems it is preferable to apply the variational formulas
based on interior variations of the type (1).

We can derive, however, interesting monotonicity results by means
of (29). Let, for example, z^f{u) give the conform&l mapping of the
unit circle | ^ | < 1 onto the domain Zλ Let Gr be the image under this
map of the circumference \tι\*=*r<l; and let λ(r), w{z, r) denote, say,
the yth eigen value and eigen function of Cr. We assume, for the
sake of simplicity, that λ(r) is nondegetverate and then easily derive
from (29):

(290 j λ(r)= -λ(r) (j) \φ, r ){VW dsu

dr J ι«ι-r

+ λ{rf Stji- I w(z, rffiufu du\ .
( r J \ui ~r )

The function

Fr(u)^w[f(u), r)]f(n)

is regular analytic for \u\<Lr hence the second integral in (29') vanishes
by Cauchy's integral theorem and we obtain

logλ(r)= ~\ \Fr{n)f ds%<0.

The eigen values λ(r) of the level curves Cr are rnonotonically decreasing
if r increases.

For every function F{u) which is regular analytic for \u\<Lr holds
the obvious inequality

\F{u)fdτ.
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Observe now that because of the normalization of w{z, r) inside of Cr

the function Fr(u) is normalized in the circle \u\<Cr. Hence, combining
(29") with (29'"), we finally obtain

(29) ^ ( Λ r ) ^ 0 .
dr

Since we have the trivial estimate Λ(1)I>1 for every curve C, we then
derive from (29iv) the useful estimate

(29Y) ;(r)^__L f o r r ^ l .
1

In order to apply the usual perturbation method of integral equation
theory we had to replace the integral equation (1.13) with singular
kernel by the integral equation (11) which has the regular symmetric
kernel l(z, ζ). The necessity for this transition becomes clear when we
consider the exceptional case that C is a circumference. In this case
(and only then), we have l(z, ζ)=0. The original integral equation
(1.13) has only the eigen value Λ=oo and each function f(z) which is
analytic in D is an eigen function.

In fact, suppose for the sake of simplicity that C is the unit circum-
ference z z=l. We have

Iff
π JJ — j?)a 2ττ£ /ιίι-i ζ-z 2πi Jiίi-i ζz-1

By means of the residue theorem we conclude therefore

iff Wr\ ί°
(32) 1 ΛO \

zr \z /

This equation proves our statement that λ=<χ> is the only eigen value
of (1.13) in this case and that it is of infinite degeneracy.

Our variational theory does not work in this exceptional case.
However, let | z o | > l and C* be the image of \z\ = l under the variation
(1). We define its eigen function w*(z) and by (3) a function mv(z)
which is regular analytic in D. It satisfies the integral equation (5)
which, in view of (32), can be brought into the simple form

(33) ( H A^i) η
{Z-Z^rf \ηj z-Z0

Let
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(34) 7πy(z)=— Λfv(z)

dz

if we choose the right constant of integration in the definition of Afv(z),

we can integrate (33) to the identity

(35) Mv(z) = - λ*Mv{L{z)),

where

(36) L(z)=7]-ι=—ZΣΆ_-

is a linear function of z. Thus we obtain a simple functional equation
for the eigen functions w*(z) and the eigen values λf of the varied
curve C*. a must be sufficiently small in order that the mapping (1)
be univalent in D; but we have not made any neglection of higher
powers of a and (35) will give the precise value of λ*.

If we iterate (35), we obtain

If zl9 z2 are the fixed points of the linear transformation Z=Λ(z), we
can write

(Wl\ ^~~zi ___ r 2 Z — %ι

£j Z 2 Z Zι

where |2X |<[1, |z,|^>l. The eigen functions M-Xz) are of the form

(39) MM =^Y5Z^V, v= 1, 2

\Z Z }'

and belong to the eigen values

(40) i*=±τ-\

Thus all eigen functions and eigen values of the curve C* can be calcu-
lated explicitly. An easy computation shows that for small values of e

\a\

An analogous calculation can be performed if the unit circle is
transformed by a variation (1) with | ^ 0 | < l . If we consider a super-
position of variations (1), we can still derive an asymptotic formula for
the eigen values λ* obtained. Thus we have shown that the eigen
values for nearly circular domains can be obtained asymptotically in
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spite of the fact that the circle has an infinitely degenerate eigen value.
We showed at the end of § 1 that the eigen values of an ellipse

can be calculated explicitly. This result is a particular case of our pre-
ceding investigation since the exterior of the ellipse is obtained from
the exterior of the unit circle by a transformation (1) with £0=0 and

There are relatively few domains for which the eigen values and
eigen functions of the Fredholm integral equation are known. It is,
therefore, important to possess at least an asymptotic formula for the
eigen values of nearly circular domains which admits many arbitrary
parameters. Such formulas are particularly useful when one wishes to
test hypotheses with respect to the eigen values of general domains.

4 The variation of the dielectric Green's function* In this section
we want to derive the formula for the variation of the dielectric Green's
function G2(z, ζ) defined in § 2. It will appear that it possesses a very
simple variational formula which is quite similar to that for the ordinary
Green's function of a plane domain. We shall again consider the in-
terior variation

( 1 ) 3* = 3 + - a --
Z~ZQ

which transforms the curve C into a curve C* defining the two com-
plementary domains D* and D*. Let G?(z, ζ) be the corresponding
dielectric Green's function to the parameter ε.

If zύeD, the mapping (1) will be univalent and regular in D for
small enough a hence the function

z-z0 C—

will be harmonic in D. It will also be harmonic in D, except for the
interior of a circle of radius |α]1/2 around the point zQ. The function Γζ(z, ζ)
will have logarithmic poles at infinity and for z=ζ as follows from the
definition of G2(z, ζ).

We consider now Green's identity:

(3) I
Zπ

= eΓz{ζ, z)δ(ζ)-εGz(z, ζ)δ(z).

Observe that in view of the conformality of (1) on C the function
I\(z, C) has the same continuity (and discontinuity) property on C as
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the original function Ge(z, C) Hence we may transform (3) into

(4) ε[Γ\(ζ, Z)d{ζ)-G2{z, ζ)d(z)]^- £ \
2πic

Gβ(ί, ζf
dn

Now we can apply Green's identity with respect to the domain D after
removing from it the interior of the circle \z-~zo\ = \a\m which we denote
by c. Let us assume that neither z nor ζ lie inside c; then (4) yields

(5) Λ(*, ζ)-G,(z, C H ~ f ( \rΈ(t,
2πJcL

G,(t, ζ f ψ
dn dn

We have now fully utilized the boundary behavior of G9(z, ζ). The
evaluation of the c-integral follows exactly the lines of the calculation
for the ordinary Green's function. We put for tec

( 6 ) ί̂ +WV*

and evaluate the right-hand integral in (5) by power series development.
We define again two analytic functions of z, namely p2(z, ζ) and pf(z, ζ),
by

( 7 )

Further,

(7')

m{i

let

F
α2!

0 , Fί'(z9 ζ)=£-P*(z9 C).
dz

Then the usual calculations yield

(8) G*(z*, C*)-Gεfe O-miaPΓfo, z*)FB(zQ

Further series development leads to the simple result

(9) Gf(z, O=Gt(z, C) + 9t{*[p;(3b, z)P,fo, 0

This is exactly the same variational formula as for the ordinary Green's

function [12, 13]. It has been derived for zoeD.

If we had chosen zoeD instead of D analogous calculations would
have been applicable. We could start with
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,τJ<?L dnU
2,τJ

)-<?.(*, ζ)3(z).

Using the discontinuity of —ί? on C, we find
dn

(11) ε[Γε(C, z)d(ζ)-G9(z,

-Ge(t, ζ)
ΘΓ#>

and by means of Green's identity

(12) ε[Γε(z, C)-<?.(s, C ) ] = - f t f ^ ^ - ^ Λ - 1 ) *

where c denotes again the circle |2—20l = M1/2 In this case the same
procedure as before yields the result for zdeD:

(13) Gε*(z, ζ)-Gs(z, CH^{tf[~P;(Zo, 4Pί(*b, 0

Observe the factor which is now introduced into (13) and causes
e

a slight change in the variational formula.
We have thus derived a very elegant variational formula for the

dielectric Green's function its significance is seen from the numerous
applications of its analogue in the case of the ordinary Green's function
[12, 13, 14].

As mentioned in § 2, the function Ps(z, ζ) consists in reality of two

analytic functions, say, P8(s, ζ) iίzeD and P2(z, ζ) if zeD. The bounda-
ry behavior of Gs(z, ζ) as described in § 2 implies for zeC

We can combine the variational formulas (9) and (13) into the integral
form:

(15) Gf(z, ζ)-Gt(z, C)

PΊf ?\P'(f r\ — P(t ΆP'(f Γ\

ί
— e \ w 7 " " / — c \ " j ^ /

•2m Jo t-za
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By use of (14) this can be simplified to

(16) δG,(zf C)

2π\ε ))cL ds ds dn dn

with

This is the Hadamard type variational formula for the dielectric Green's
function which has been proved in a precise manner through use of our
interior variational method.

Since we can also write (16) in the form

(18) SG&, C)

2π\ε ))c\_ ds ds ε dn dn

it is evident that if ζeD the expression (Ge(z, ζ) + εϊog \z~-ζ\)z=ζ depends
monotonically upon the domain D while for ζeb the same is true for
(G9(z, ζ)+\og\z — ζ\)β.ζ. In a similar way many other expressions can
be constructed which have a definite factor of δnds under the integral
sign and which depend, therefore, monotonically upon D. The appli-
cation of Hadamard?s formula in order to obtain inequalities and com-
parison theorems for functional connected with G2(z, ζ) is obvious.

For e = l , we have Ge(z, ζ)= — log\z—ζ\ independently of the domain.

For this reason the factor ( 1) must occur in the variational for-
\ ε /

mulas (16) and (18).
We showed at the end of § 2 that the mapping of a domain onto a

circle can be connected with the identical mapping by a one-parameter
family of univalent functions which are closely related to the dielectric
Green's functions. For this reason it is of interest to compute the
derivative of GB(z, ζ) with respect to ε.

We start with Green's identity and with ε > 0 , e > 0 :

(19)

2πi2πic

Using the boundary relations of G8 and Ge on C and Green's identity

with respect to D, we find
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(20) ^ > J z ) ^ ( c , j 7 j = i G ε ( c > vm)+A_\ Gi(z, v)
d?Az, O ώ .

ε — e ε 2πε Jc On

Passing to the limit ε=e, we then obtain

(21) %- Gε(C, v)=--Gt(ζ, v)δ(ζ)+~- \ Gt(z, y)dG^J~ζ)ds .
oε e ZπεJc dn

The symmetry of this expression is more clearly exhibited in the form

(22) ^Gε(ζ, η)

This result could also have been obtained by straightforward calcu-
lation from (2.19) and its analogues.

It is obvious how numerous monotonicity results can be derived from
expression (22) by considering combinations with positive derivative.
This formula can also be used in order to develop Gs in powers of ε.
The formula is particularly useful in a more detailed discussion of the
mapping functions fe(z), defined in § 2 however, we do not enter into
this subject in the present paper.

5, An extremum problem for the Fredholm eigen values* We
shall now proceed to apply the variational formulas of § 3 to an impor-
tant extremum problem for the lowest Fredholm eigen value of a given
curve C. In order to explain the formulation of the problem considered
we start with the following observation. Let C be a three times con-
tinuously differentiable curve as was supposed throughout if λ1 is its
lowest eigen value we have shown that λλ^>l. Now let C* be a con-
tinuum which consists of all points of C plus a segment which has one
endpoint on C and the other in D let λf be its lowest eigen value.
It can be shown that λf = l however small the additional segment of C*
is thus two curves in an arbitrary Frechet neighborhood can have very
different lowest Fredholm eigen values.

The fact that λ1 depends in this discontinuous way on its defining
curve C makes it difficult to frame significant extremum problems for
it. The side condition on C of three continuous derivatives is, on the
one hand, somewhat unnatural and, on the other hand, hard to preserve
under variation. We shall restrict ourselves, therefore, in this section
to the consideration of analytic curves, but even in this case λ1 can
come as near as we wish to 1. In fact, formula (1.45) shows that we
can find ellipses with λΎ arbitrarily near 1. We have, therefore, to
sharpen the concept of an analytic curve by introducing the concept of
uniform analyticity of a curve. A curve C is called analytic if it is
mapped by a regular univalent function z=f(ζ) from the unit circum-
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ference |Cl = l. f(ζ) must be regular and univalent in some circular ring
r < | C | < i ϋ w i t h r < l < j β . The class of all curves C which are analy-
tic and belong to functions f(ζ) which are regular and univalent in a
fixed ring (r, R) shall be called the class of uniformly analytic curves
with the modulus of analyticity (r, R).

Because of the normality of the family of univalent functions in a
fixed region the concept of uniform analyticity lends itself easily to the
construction of significant extremum problems. In particular, let us ask
for the minimum value of λx within the family of all uniformly analytic
curves with modulus (r, R).

We may consider our problem as an extremum problem on univalent
functions. Given the class of all functions f(ζ) which are regular and
univalent in r <^\ζ\<^R, to find one in the class which maps the unit
circumference onto a curve C with minimum λλ. The existence of such
a function follows easily from the usual normality arguments and we
proceed at once to characterize the extremum function by varying it
and comparing it with nearby competing functions.

Since the curve C mapped by the extremum function is analytic
and since its λι is obviously finite, the lowest eigen value can have only
a degeneracy of finite order. Let w[Ό(z), , w?\z) be a complete and
linearly independent set of eigen functions belonging to λλ in Z>, while

wiΌ(z)> ••*> w^iz) are the corresponding eigen functions in D. Suppose
that the image of \ζ\=r forms a continuum Γ in D while the image of

\ζ\=R forms the continuum f in D. Let zoeΓ; there exists an infinity

of analytic functions which are univalent outside of the continuum Γ
and which have a series development [11]

/ 1 \ _,̂ c M , v ^vP

which converges for \z—zQ\^> p. The coefficients av of this development
are uniformly bounded

(2) K l < ^ + 1

and p is a positive parameter which can be chosen arbitrarily small.
Let us insert the extremum function z=f(ζ) into (1); we will thus

obtain an infinity of competing functions regular and univalent in
of the form

They define curves C*, the images of |Cl = l by /*(C). If Λ* denotes
the lowest eigen value of C*, it defines a root of the secular equation
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derived in (3.20):

(4) det l l ^ ^ + ^ ^ - l ^ ί ^ W

with dλ1==^ — λ1 + o(pz). dλτ is the lowest root of (4); on the other hand,
we conclude from the minimum property of C that

(5) d^o(p>)

and this holds, a fortiori, for all other roots of (4). Hence we can
assert that the quadratic form

( 6 ) Qβ(t)= ± 3ΐ {a^wγ\zύ)w?\zQ)} tόtk

satisfies the inequality

(7)

for every choice of the unit vector tl9 •••, tn. Dividing by p1 and pas-
sing to the limit ρ=0, we obtain

(8)

In particular, we obtain

(8') 31 {afiizo)1} ^ 0 , w(zQ)=wίL\zQ).

This inequality holds for every choice of the univalent variation function
(1). We now apply the following theorem [11, 14]:

If for every point zύeΓ and every univalent function (1) holds

(9) 9ΐ {cLιs(zQ)\ < 0

where s(z0) is regular analytic on Γ, then Γ itself is an analytic curve
z(t) which satisfies the differential equation

(10)

Hence we can deduce from (8') that Γ satisfies the differential
equation

( 1 1 ) \*>
\dt

In exactly the same way we prove that the extremum function f(ζ)
maps the circumference |C|=r onto an analytic arc Γ which satisfies the
differential equation
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(12) (dzJw[z(t)f=l.

Let us put

(13) z(φ)=f(re^)

if φ runs from 0 to 2π the image point z(φ) will vary over Γ. We
deduce from (12) the inequality

(14) C2/'(C)W(C)]2 < 0 for |C |-r . .

Similarly, we derive from (11) the inequality

(15) C2/(C)W(C)]2<0 for |C|=22.

We introduce the analytic functions

(16) A(c)=cf(CM/(O];

Clearly, A(ζ) is regular analytic in the ring domain r < \ζ\ < 1 while
B(ζ) is regular analytic for 1 < | C | < # . (14) and (15) can be expressed
a s - , \<.aΛ

(14') A(ζ)=imaginary for |Cl=τ

(150 J5(C)=imaginary for |C|=JB

while equation (1.34) leads to

(17) -iA(ζ)=-^=JLB(ζ) + λMOΊ for ICH1 .

We have by the Schwarz' reflection principle in view of (14') and

(150:

(is)

Now we can rewrite (17) into the form

(19) ^iA(ζ)=(λl-imB(ζ)-λιB(RX)] for |C| =

since ζ=ζ-τ for |Cl = l. By (18) we see that A(ζ) is analytic in the ring
r2<ICl< 1 while B(ζ) is analytic for 1 < |Cl<R* From (19) we can
continue B(ζ) into the ring fe<ICl<l where fe=max(r2, R'2). By (18)

732

again B(ζ) is, therefore, analytic in the ring fe<ICl<C— and by (19)
k

we may continue A(ζ) beyond the unit circumference. Thus A(ζ) and
B(ζ) are certainly analytic for £1 = 1. The interrelation between A(ζ)
and B(ζ) is, however, best understood by the use of Laurent series
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development.
We put

and are sure that both series have a ring of common convergence

which contains the unit circumference. The functional equations (18)

are reflected in the coefficient relations

(21) a-n=anr*n, b-n=bnR™ .

On the other hand, a comparison of coefficients in (19) yields

If we replace n by — n and apply (21), we also find

But (22) and (23) lead obviously to the alternative

(24) α w =δ w =0 or λι = -

Thus A(ζ) and B(ζ) are necessarily rational functions and the possible
values of λt are restricted to the various values in (24) for integer n.
Observe that n=0 is excluded since λx is surely greater than one. It
is sufficient to consider only positive values of n since — n yields the
same Λi-value as Λ-n, We may put equation (24) into the form

— 1 ~R%n —• 1 Λ — r2n

This form makes it evident that the minimum value of λλ for fixed r
and R is attained for n=l. Hence, for the lowest eigen value λx which
belongs to a uniformly analytic curve C with the modulus (r, R), we
have established the inequality:

(26) λ,2

In order to conclude the investigation we have to show that there
exists, in fact, a curve C within the class considered for which equality
is attained in (26). This curve can be found by a careful analysis of
the variational conditions (11) and (12). At first we shall state the
nature of an extremum curve C and compute its Rvalue from its defi-
nition. Later we shall show that C is uniquely determined up to linear
transformations,
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Let us consider the £-plane slit along the linear segment — iμ, + iμ
of the imaginary axis and along the segments \x\ ^> 1 of the real axis.
Every circular ring r<L\ζ\<LR can be mapped on such a canonical do-

7-)

main the real parameter μ depends on the ratio . For reasons of
r

symmetry we can obtain that the points ζ=R and ζ=—R are mapped
into z=l and z= — l, respectively, while the points ζ=ir and ζ=— ir
go into iμ and —iμ. The mapping function f(ζ) has the symmetry
properties :

(27)

and is uniquely defined. Let C be the image of the unit circumference
|CI=1 under the mapping z=f(ζ). We want to prove that C is the re-
quired extremum curve.

We denote again the interior and exterior of C by D and D} re-
spectively. Observe that the functions

(28) Wn(z)=An(ζ« 4- {^p^) , ζ-f~ι(z)

are regular analytic in the entire domain D while the functions

(29)

are regular analytic in D. Let us define the eigen functions of D and

D by

(30) υ>n(z)=-fwa(z), wn(z)=j-Wn(z)
dz dz

Differentiating (28) and (29) with respect to ζ, we find

(31)

and

(32)

The boundary conditions (1.34) for the eigen functions of D and D will
lead to the requirement

(33) -
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for |Cl = l. This can indeed be fulfilled by satisfying the conditions

(34) -iAn(K-l)ll*=Bn-

-iAn(-rT(λl-iy<*

which is always possible if and only if

(35) λn=
κ -y-r

| l ( a J B

Conversely, it is evident that the values λn determined by (35) for

n=l, 2, ••• lead to actual eigen functions for the domains D and D.
Observe, in particular, that

(36)
l+rzRz

which verifies that C is indeed an extremum curve and that our esti-
mate (26) is the best possible one.

There remains finally the uniqueness question relative to the ex-
tremum curve C. In order to answer it we return to the functions
A(ζ) and B(ζ) connected with the extremum function /(£). Since we
know now that in their Laurent development all coefficients vanish ex-
cept for aly α_! and bl9 6_i, we have by (16), (21) and (22)

(360 ζf(ζ)wίf(ζ)]=ia^ζ 4-

and

(37)

with

(38) ^ ( Λ 2 - ! ) 1 ' 2 - ^ 2 - ! ) ^ .

We made the unessential assumption that αx is real which leads to the
consequence that 6X is pure imaginary.

We integrate (36r) and (37) and find

(39)

where W(z) and W(z) are properly chosen integrals of w(z) and w(z).
The function W(z) is single-valued in D; f(ζ) is regular analytic on
\ζ\=r and can be continued somewhat beyond this circumference. It
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will take values near the continuum Γ after this continuation but these
values in the z-plane were already attained for some values ζ in \ζ\ > r.
Hence TΓ [/(£)] must take the same values for \ζ\ somewhat larger than
r and for some \ζ\ less than r. From (39) we recognize that these
corresponding ζ-values must be connected by the equation

(40) ^-Γ^^-l! .
SI S2

Hence we proved the functional equation for f(ζ):

(41)

In exactly the same manner we derive from the second formula
(39) the functional equation

(42) f(ζ)=f(ψj .

We know already that the extremum function f(ζ) will remain an
extremum function after a linear transformation since we showed at
the end of § 1 that λλ does not change under linear transformations.
Hence we may assume without loss of generality that

(43) f(r)=0,

From (41) and (42) conclude then that

(44) /(-r)=0, j\-iR)=«>

and in view of the univalent character of f(ζ) in r<C\ζ\<CR we con-
clude that f(ζ) has simple zeros and simple poles at these points. It is
now easy to obtain for f(ζ) a product representation in terms of its
known zeros and poles in the entire C-plane and to identify it with the
function which maps the ring r<^\ζ\<^R on the above described slit
domain. This completes the uniqueness argument.

Let us return to the inequality (26). An important special case
deals with all uniformly analytic curves with the modulus (r, oo). This
is the class of curves which are images of |Cl = l mapped by functions
which are regular and univalent for \ζ\^>r. We find the estimate

(45) Λ ^ r - 2

and the extremum curve in this case is the ellipse C which is obtained
from |C|=1 by the mapping

(46) z=C + y
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This follows directly from (1.45) as well as from our preceding character-
ization of the extremum domain. The inequality (45) can also be easily
derived from the estimate (3.29V) thus this particular result could have
been proved by means of a Hadamard type variational formula.

As for the class of uniformly analytic functions with the modulus
(0, R), we have analogously the estimate

(47) Λ ^ # 2 .

The extremal curve C is obtained from the unit circumference by the
mapping

(48) z= 2 R ζ

This mapping is best understood if we consider the intermediate step

(49) ?=Λ-'C + -J

which maps the unit circumference onto an ellipse with λτ=R2 and the
/ 2 2 \

circumference \ζ\=R onto the linear segment <̂  — , \ The ad-
\ R R /

2
ditional linear transformation z= does not affect the eigen values

Rrj

and leads to a regular univalent function in \ζ\<^R. We could have
obtained the mapping (48) also as a special case of the preceding
characterization of the extremum curve C.

6. Concluding remarks. We have restricted ourselves in the pre-
sent paper to the case of simply connected domains. It is possible to
extend a considerable amount of the results to the case of multiply-
connected domains [3, 10, 14]. The investigation becomes, however,
more complicated for two reasons. First, we will have a larger number
of complementary domains and, second, we will have additional eigen
functions belonging to the eigen value one. In fact, let C19 C2, •••, Cn

denote the n components of the boundary C of the domain D let <ov{z)
be that harmonic function in D which takes on Cμ the boundary value
dyμ. Then it is easily seen that

)=i^ ωv(z)
dz

will satisfy the integral equation
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AH other eigen functions of the integral equation (1.13) belong, how-
ever, to eigen values which are larger than one.

The concept of the dielectric Green's function carries over to the
case of higher multiplicity and analogous series developments in terms
of the eigen functions of the Fredholm integral equation are possible.
Likewise, the different variational formulas can be extended to multiple
connectivity. But, clearly, it will be much more difficult to draw simple
conclusions from these formulas. One has only to consider the great
use made in the preceding section of Laurent series developments in
order to appreciate the great simplification introduced by the assumption
of a simply connected domain.

1. L. V. Ahlfors, Remarks On the NeumannPoincwi integral equation, Pacific J. Math.,
2 (1952), 271-280.
2. —, Conformality iPith respect to Biemann metrics, Ann. Acad. Sci. Fenn., Series
A 202 (1955).
3. S. Bergman and M. Senior, Kernel functions and cov formal mapping, Compositio
Math., S (1951), 205-249.
4. G. Bίrkhoff, D. M. Young and E. H. Zarantanello, Effective conformal transformation
of smooth simply-connected domains, Proc. Nat. AcacL Sci., 3*7 (1951), 411-414.
5. — _ _ , Numerical methods in con formal mapping, TroC- Symposia in Appl. Math.,
IV (1953), 117-140.
6. G. F. Carrier, On a conformed mapping technique, Quart. Appl. Math., 5 (1947), 101-
104.
7. S. Gershgorin, On conformal mapping of a simply-coniieoted region onto a circle,
Math. Sb. 40 (1933), 48-58.
8. K. Lowner, Untersuchuτtgen ύ'ber schlichte konforme Abbildwngen des Einheitskreises,
Math. Ann., 8 9 (1923), 103-121.
9. F. Reilich, Stδrungstheorie der Spektralzerfogwnp, 1. Mitfeilung, Math. Ann., 113
(1937), 600-619.
10. H. L. Royden, A modification of the Neumann-Pvincare method for multiply-con-
nected regions, Pacific J. Math., 2 (1952), 385-394.
11. M. Schiffer, A method of variation within the family of simple functions, Proc.
London Math. Soc, 44 (1933), 432-449.
12. _ _ _ , Variation of the Green's function and theory of the p-valued functions,
Amer. J. Math., 6 5 (1943), 341-360.
13. ______^f Hadamard's formula and variation of domain functions, Amer. J. Math.,

βS (1946), 417-448.
13. M. Schiffer and D. C. Spencer, Functional of finite Rίemann surfaces, Princeton
(1954).
14. S. E. Warschawski, On the effective determination of eoφformal maps, Contribution
to the Theory of Riemann Surfaces, Princeton (JA5&).

STANFORD UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. L. ROYDEN A. L. WHITEMAN

Stanford University University of Southern California
Stanford, California Los Angeles 7, California

R. A. BEAUMONT E. G. STRAUS

University of Washington University of California
Seattle 5, Washington Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH A. HORN L. NACHBIN G. SZEKERES
C. E. BURGESS V. GANAPATHY IYER I. NIVEN F. WOLF
M. HALL R. D. JAMES T. G. OSTROM K. YOSIDA
E. HEWITT M. S. KNEBELMAN M. M. SCHIFFER

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF UTAH
UNIVERSITY OF CALIFORNIA WASHINGTON STATE COLLEGE
MONTANA STATE UNIVERSITY UNIVERSITY OF WASHINGTON
UNIVERSITY OF NEVADA * * *
OREGON STATE COLLEGE AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CALIFORNIA RESEARCH CORPORATION
UNIVERSITY OF SOUTHERN CALIFORNIA HUGHES AIRCRAFT COMPANY

THE RAMO-WOOLDRTDGE CORPORATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any of the editors. All other communications to the editors should be addressed to
the managing editor, E. G. Straus at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers
are available. Special price to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $4.00 per volume; single issues,
$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 10,
1-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,

but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 7, No. 2 February, 1957

William F. Donoghue, Jr., The lattice of invariant subspaces of a completely
continuous quasi-nilpotent transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

Michael (Mihály) Fekete and J. L. Walsh, Asymptotic behavior of restricted
extremal polynomials and of their zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037

Shaul Foguel, Biorthogonal systems in Banach spaces . . . . . . . . . . . . . . . . . . . . 1065
David Gale, A theorem on flows in networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073
Ioan M. James, On spaces with a multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 1083
Richard Vincent Kadison and Isadore Manual Singer, Three test problems in

operator theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
Maurice Kennedy, A convergence theorem for a certain class of Markoff

processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
G. Kurepa, On a new reciprocity, distribution and duality law . . . . . . . . . . . . . 1125
Richard Kenneth Lashof, Lie algebras of locally compact groups . . . . . . . . . . 1145
Calvin T. Long, Note on normal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163
M. Mikolás, On certain sums generating the Dedekind sums and their

reciprocity laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
Barrett O’Neill, Induced homology homomorphisms for set-valued

maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
Mary Ellen Rudin, A topological characterization of sets of real

numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185
M. Schiffer, The Fredholm eigen values of plane domains . . . . . . . . . . . . . . . . . 1187
F. A. Valentine, A three point convexity property . . . . . . . . . . . . . . . . . . . . . . . . . 1227
Alexander Doniphan Wallace, The center of a compact lattice is totally

disconnected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237
Alexander Doniphan Wallace, Two theorems on topological lattices . . . . . . . . 1239
G. T. Whyburn, Dimension and non-density preservation of mappings . . . . . . 1243
John Hunter Williamson, On the functional representation of certain

algebraic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251

Pacific
JournalofM

athem
atics

1957
Vol.7,N

o.2

http://dx.doi.org/10.2140/pjm.1957.7.1031
http://dx.doi.org/10.2140/pjm.1957.7.1031
http://dx.doi.org/10.2140/pjm.1957.7.1037
http://dx.doi.org/10.2140/pjm.1957.7.1037
http://dx.doi.org/10.2140/pjm.1957.7.1065
http://dx.doi.org/10.2140/pjm.1957.7.1073
http://dx.doi.org/10.2140/pjm.1957.7.1083
http://dx.doi.org/10.2140/pjm.1957.7.1101
http://dx.doi.org/10.2140/pjm.1957.7.1101
http://dx.doi.org/10.2140/pjm.1957.7.1107
http://dx.doi.org/10.2140/pjm.1957.7.1107
http://dx.doi.org/10.2140/pjm.1957.7.1125
http://dx.doi.org/10.2140/pjm.1957.7.1145
http://dx.doi.org/10.2140/pjm.1957.7.1163
http://dx.doi.org/10.2140/pjm.1957.7.1167
http://dx.doi.org/10.2140/pjm.1957.7.1167
http://dx.doi.org/10.2140/pjm.1957.7.1179
http://dx.doi.org/10.2140/pjm.1957.7.1179
http://dx.doi.org/10.2140/pjm.1957.7.1185
http://dx.doi.org/10.2140/pjm.1957.7.1185
http://dx.doi.org/10.2140/pjm.1957.7.1227
http://dx.doi.org/10.2140/pjm.1957.7.1237
http://dx.doi.org/10.2140/pjm.1957.7.1237
http://dx.doi.org/10.2140/pjm.1957.7.1239
http://dx.doi.org/10.2140/pjm.1957.7.1243
http://dx.doi.org/10.2140/pjm.1957.7.1251
http://dx.doi.org/10.2140/pjm.1957.7.1251

	
	
	

