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ALEXANDER DONIPHAN WALLACE

A topological lattice is a pair of continuous functions

Λ" LxL->L, /\: LxL-+L

(L a Hausdorff space) satisfying the usual conditions for lattice opera-
tions. A set A is convex if x,yeA and x<La<Ly implies aeA. This
is equivalent to A=(A f\L)f\(A\/ L).

After proving a separation theorem involving a convex set we show
that a compact connected topological lattice is a cyclic chain in the sense
of G. T. Why burn and that each cyclic element is a convex sublattice.
In doing so we rely on some results recently obtained by L. W.
Anderson.

THEOREM 1. Let L be a connected topological lattice and let A be a
convex set such that L\A is not connected. Then L\A is the union of
the connected separated sets {A /\ L)\A and (A V L)\A which are open
(closed) if A is closed (open). If L is also compact then A is connected
if it is either open or closed.

Proof. Let L\A=U\J V with U*Γ\ V=φ=U Γ\ V* and let pe U,
qe V. The connected set (p /\L)\J(q /\L) meets both U and V; hence
it meets A. Adjust the notation so that (q /\L)f\ Aφφ and thus
qeA\/L. If (q\J L)f\Aφφ then qeA/\L and hence q e (A /\ L)
Γ\(A\J L)=A. This being impossible we infer that (q\f L)[\A=φ
and qe(A\J L)\A=(A\/ L)\(A /\L). The connected set (p\/L)\J
(q\/L) intersects U and V and so intersects A. But (q\/ L) Γ\A=φ
so that (p V L) Γ\ A Φφ and hence pe A /\ L. Were (p /\L)f\Aφφ
we would also have p e A V L and so p e A, a contradiction. Thus
(p^L)Γ\A=φ and pe(A\J L)\A=(A V L)\(A Λ L). Now take y e V
and suppose that y is not in A V L so that (y /\L) f\ A=φ; then (pj\L)
Γ\Aφφ since (p /\L)\J(y /\L) is a connected set meeting U and V.
But this is contrary to the proven fact that (p /\L) Γ\ A=φ. We con-
clude that V C(A\J L)\A and, dually, that U C(A/\ L)\A. It follows
that L^(A/\L)\J(A\/ L). Now xe(A\/L)\A and xeL\V gives
xeUCZ(A/\L)\A and this contradicts the convexity of A. Hence
U=(A Λ L)\A and V^(A V £ ) \ A To see that U J\L=UWQ need only
note that xeU gives (x/\L)Γ\A=φ and thus (x/\L)Γ\ V=φ (since x/\L
is connected and contains x) and hence x /\ L (Z(A /\ L)\(A\/ L)=U.
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Dually, V /\L=V and these equalities imply that U and V are con-
nected. If A is closed (open) then U and V are open (closed). This
completes the proof of the first sentence of the conclusion. If L is
also compact then iί1(L)-=0 [3] so that (as is well known) L is un-
icoherent. But L is locally connected, L=(A /\L)\J (A\/ L), and the
sets A /\ L and A\f L are connected, and open (closed) [1] if A is
open (closed). Hence by a known result [2] we see that A=-{A/\L)Γ\
(A V L) is connected.

We assume that the reader is familiar with the cyclic element
theory of locally connected continua as given in [4]. We recall that a
locally compact connected topological lattice is locally connected [1].

THEOREM 2. Let L be a compact connected metrizable topological
lattice. Then L is a cyclic chain, each cyclic element of which is a con-
vex sublattice. If L is topologically contained in the plane then each true
cyclic element of L is 2-cell and L has the fixed-point property.

Proof. Let C be a true cyclic element of L, let x, yeC with x<Ly
and let peL such that %<Lp<Ly. If T is a maximal chain containing
x, p, and y then T is an arc from 0 to 1, as is well known [1].
Hence the set [x, y]={t\teT and x<Lt<^y} is an arc from x to y [1].
Since C is an A-set [4] we know that [x, y]CZC and thus pe C.
Hence C is convex. Let D be the cyclic chain from 0 to 1, that is, D
is the smallest -A-set containing 0 and 1 [4]. Then, by definition, TC.
D and if xeL\D then the maximal chain T containing 0, a;, 1 is an
arc from 0 to 1 and thus TC.D, a contradiction. Hence D^L and L
is the cyclic chain from 0 to 1. Let TQ be 0, 1 and all points which
separate 0 and 1. Then L is the union of To and all true cyclic ele-
ments meeting To in two points [4]. Suppose that the true cyclic
element C meets To in the cutpoints p and q. Note that neither 0 nor
1 is a cutpoint [3]. If z is a cutpoint then, since {z} is convex, L=
(z /\L)\J(z\J L) and thus z is comparable with each xeL, by Theorem
1. We may assume that p < g . We will show that C= {x\p<Lx^q}
The convexity of C proves the containment Ό " If α e C and if,
say, x <: q is false then we have q < x. By Theorem 1, L\q=((q Λ L)\Q)
\J ((q V L)\q) is a separation and C meets both members, contrary to
the fact that C is a true cyclic element [4] . Dually, x<Lp cannot be
false, proving the containment "cZ" of the desired equality. It fol-
lows that C is a convex sublattice. The cases p=0 or q=l are treated
similarly. The remaining results follow from the fact that /iΓ(L)=0
[3] so that L is a locally connected continuum [1] which does not cut
the plane [4].
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