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1. Introduction, Definitions and Examples. In this paper an at-
tempt is made to generalize the well-known representation theory of
commutative Banach algebras by functions on the maximal ideals of the
algebra [4]. The present paper is devoted almost exclusively to alge-
braic questions; topological aspects of the theory will be treated
elsewhere.

In considering commutative algebras A over the complex field C,
there are relatively few cases in which one can assert that the quotient
A/M of the algebra by a maximal ideal is isomorphic to C. Apart
from Banach algebras, there are the locally m-convex algebras of E.A.
Michael [6] and R. Arens [1], and the ‘algébres a inverse continu’ of
L. Waelbroeck [8], [9] (=Q-algebras, in the terminology of Kaplansky
[5], with continuous inversion). There are many interesting algebras
which do not belong to either of these classes, and it would be desirable
to have a theory to cover them as far as possible.

The basic idea is derived from the classical work of Carleman, von
Neumann, and Stone on unbounded self-adjoint linear operators 7' in
Hilbert space (see, for example, [7]). Here the analysis is carried out
with the aid of the bounded transformations (7'—2I)~!; the spectrum of
T is the set of complex numbers 2 such that (7'—2I)~* does not exist
as a bounded transformation. This suggests that if we start with a
commutative algebra A4, and a suitable sub-algebra B (corresponding to
the ‘bounded’ elements of A) we may be able to effect a useful analy-
sis of A, and somehow represent an element a € A by a function whose
values are those complex numbers 1 such that (¢a—1e)~' does not exists
in B (¢ being the unit of A). It turns out that this is basically cor-
rect, although there are certain complications of detail. For instance,
the representing functions may take infinite values; this is unavoidable.
The space on which the functions are defined is that of the °maximal
B-ideals’ or ‘ maximal ordinary B-ideals’ of the algebra, not the space
of maximal ideals in the ordinary sense.

Much of the theory of this paper applies to algebras over fields of
fairly general type; for instance, many results are true for any algebrai-
cally closed field. It is no more difficult to develop the theory for the
general case than for the case of the complex field. Let K be any
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(commutative) field, 4 a commutative linear algebra over K, with a unit
e, and B a sub-algebra of A, containing e¢. A restriction will presently
be put on B (immediately following Lemma 4), and after Theorem 1,
K will be taken to be algebraically closed. Further special assumptions
on A and K will be made in the later sections of the paper.

DEFINITION 1. A subset J of A is a B-ideal of A if

(i) x—yedJ whenever xedJ, yeJ, and

(ii) xbeJ whenever xzeJ, beB.

The B-ideal J is admissible if e& J; it is ordinary if xy € J whenever
xed, yeJ; otherwise it is exceptional. (B-ideal=B-submodule; ordinary
B-ideal=B-submodule which is a sub-algebra).

It may be useful to remark that a B-ideal which is a proper subset
of A is not necessarily an admissible B-ideal, by the above definition.
For instance, B itself is clearly a B-ideal of A; it may be a proper sub-
set of A but it is never an admissible B-ideal.

We give now one or two examples of the type of system under
consideration.

(i) Let A be any algebra of the type specified above, and take
B=A. The B-ideals of A are the ideals (in the usual sense) of A; all
are ordinary.

(ii) Let A be as in (i), and take B=Ke (which we shall sometimes
write as K, if no danger of confusion exists). The B-ideals of A are
the linear subspaces of A.

In particular, let A be the algebra of pairs of complex numbers
(ay, @), with pointwise addition and multiplication. The admissible B-
ideals of A are the proper linear subspaces not containing (1, 1). They
are thus (a) the element (0, 0), and (b) for each complex az£1, the
subspace generated by (1, @), and the subspace generated by (0, 1).
There are precisely three ordinary admissible B-ideals, namely (0, 0)
and those generated by (0, 1) and (1, 0).

(iii) Let A be the algebra of polynomials, with complex coefficients,
in the indeterminate ¢, and let B be the sub-algebra of constants. The
sets {a: a(t,)=0} (¢, a complex number) are clearly ordinary B-ideals of
A. An elementary argument shows that they are maximal admissible
ordinary B-ideals; it will appear later (after Theorem 2) that these are
the only such B-ideals.

(iv) As for (iii), but with ‘ polynomial’ replaced by ‘rational func-
tion’. Here the maximal ordinary B-ideals are the sets {a: a(t)=0}
for each complex ¢, and the set {a: a(w)=0}.

(v) Let A be the algebra of (equivalence-classes of) complex almost
everywhere finite Lebesgue measurable functions on (0, 1), B the sub-
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algebra of essentially bounded functions. Among the B-ideals of A are
(a) the set of all functions of A which are zero (almost everywhere) on
E, for any fixed subset E of (0, 1) of positive measure (this is an or-
dinary B-ideal, and in fact an ideal); and (b) the set of functions f(¢)
such that |f(¢)| < kn-' almost everywhere in E,, for each n, where E,
is a decreasing sequence of measurable sets such that the measure of
E, tends to zero as » tends to infinity (¥ depends on f only). This is
an ordinary B-ideal, but not an ideal.

(vi) Let A be an algebra of (possibly unbounded) self-adjoint or
normal linear transformations of a Hilbert space into itself, and let B
be the sub-algebra of bounded operators. This type of algebra will be
considered in § 7.

In what follows it will be important to distinguish clearly between
ordinary maximal B-ideals, that is, admissible B-ideals which are ordina-
ry and which are not properly contained in any admissible B-ideal, and
maximal ordinary B-ideals, that is, admissible B-ideals which are or-
dinary and which are not properly contained in any admissible ordinary
B-ideal (maximal=maximal admissible). In example (ii) above, all the
B-ideals (b) are clearly maximal. Of these only the ideals generated
by (0, 1) and (1, 0) are ordinary; and these two are clearly also the
only maximal ordinary B-ideals of A.

LemMaA 1. (i) If J is a mawximal B-ideal of A, then BN\ J is a
maximal ideal of B; of I is a maximal ideal of B, there is a maximal
B-ideal of A containing I.

(i) If J is @ maximal ordinary B-ideal of A, then BN\ J is a
maximal ideal of B; if I is a maximal ideal of B, there is a maximal
ordinary B-ideal of A containing I.

Proof. (i) It is clear that B N\ J is a proper ideal of B. Suppose
that J is a proper ideal of B which properly contains B N\ J; then J
+J’ is a B-ideal of A which properly contains J and does not contain
e. Since J was assumed to be maximal, this is a contradiction, and so
B N J is a maximal ideal of B.

The second assertion follows, by a simple application of Zorn’s
lemma, from the fact that any proper ideal of B is an admissible B-
ideal of A, and the fact that the union of an ascending chain of admis-
sible B-ideals is clearly an admissible B-ideal.

(ii) As for (i), with ¢ B-ideal’ replaced by °ordinary B-ideal’.

In general, a maximal ideal of B is contained in many maximal (or
maximal ordinary) B-ideals of A; but in some cases it is possible to
assert that the extension is unique; see §4, Proposition 5 and §7,
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Lemma 13.

2. A representation theorem. Let « be a symbol such that oo 42
=oo for all e K, «-c0o=c0 and Aco=co for all nonzero 1e K. Denote
the field K augmented by o by the symbol K’. Now let J/ be any linear
subspace of A, not containing e. Define a function with values in K’
as follows:

DEFINITION 2.

=11if a—2leeJ,

Si(a@)
=oo if a—2e&J for all 1¢e K.

It is clear that the function is uniquely defined for all e A. There
are one or two immediate consequences of the definition:

LEMMA 2. (i) fraa)=af(a) for all ae K, ac A (0-c0 =0 here).
1)  Sfra,+a)=Fa)+Fr(a,), (when the right-hand side is defined).

Proof. (i) If f,(a)=2€ K then a—leeJ, whence aa—aleeJ and
frlaa)=al=af;(a). If f(a)=o, then a—2legJ for all 1€ K; clearly if
a0 then aa—pe&J for all pe K, and so fr(aa)=o. If a=0 then
fraa)=f;(0)=0 for all ae A.

(ii)y If fa)=2 €K, fra)=2 €K, then a,+a,—(4,+4)ec K and the
result follows. If fi(a)=1¢ K, and f(a)=oo, then if fi(a,+a,)=pe K,
we would have f;(a,)=f,(a,+a,—a,)=p—2€ K, a contradiction.

Next we turn to the multiplicative properties of the function f,(a).
It is clear that if we are to obtain any general results we must take
J to be a B-ideal of A4, and moreover an ordinary B-ideal; if J is not
ordinary we could find a,e J, a,eJ, with aa,&J, that is,

Silaa,) 7 fr(a)fi(a,)=0.

The first result, however, is valid for any sub-algebra J:

LEMMA 3. Let J be any sub-algebra of A not containing e. Then
of neither of fi(a,), fi(a,) is o, we have fi(a,a,)=[fr(a)f:(a.).

Proof. Let a,=f,(a)e+7,, a,=fs(a)e+7,, where j, €J, j,€J. Then
a,a,=[fr(a;) fr(az)e+ Fr(a,)j +Fr(a)g, +5.5.; the required result follows at
once.

Difficulties arise when one or both of fi(a), fr(a,) is .
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LEMMA 4. If J is a sub-algebra of A and f(a) o then aJ C J.

Proof. If a=ie+j (jeJ) then for any j'eJ we have aj'=21j5
+57 ed.

For the next lemma, and for all future developments, we require
to make the following assumption.

Assumption. If M is any maximal ideal of B then B/M ~ K.

This assumption is satisfied in the cases in which we are interested.

LEMMA 5. If J is a maximal B-ideal of A and aJ CJ then fi(a)
£ oo

Proof. The result is trivial if aeJ; we then have fy(a)=0. If
a&J then J+aB is a B-ideal properly containing J; since J was maxi-
mal, e=j+ab for some je.J, be B. We have b=2¢+5 for some 1€ K,
5 € J, by assumption; hence e—la=j+aj’eJ. We clearly cannot have
A=0; hence a—1"'eeJ and fa)=21""5£ .

COROLLARY. If J is maximal and fi(a)=oo, then e=aj+j’, where
7, 7 ed.

Proof. aJ+.J is a B-ideal of A properly containing J and hence
containing e.

LEMMA 6. If J is an ordinary maximal B-ideal of A, then f(a,a,)
=fa) fr(a,), whenever the right-hand side is defined.

Proof. The case in which f,(a,) and f;(a,) are both finite has already
been covered (Lemma 3). Suppose then that fi(a;)=o. By Lemma 5,
Corollary, we have e=a,j+7’, where j, 7 edJ. If a,—le=j"edJ (A£0)
we have aa,j=12¢+j5"—25'—75" &J, whence fraa,)=c, by Lemma 4.
If e=ay,+5: (i, j.€J) then a,jj,=e—j —j,+57.&J, whence f,;(a,a,)
=oo as before.

We can now collect the results obtained.

THEOREM 1. Let /4 be the set of ordinary maximal B-ideals of A.
Then there is a mapping of A into the set of K'-valued functions on
o a— fi(a), so that the structure of A is preserved as far as it can be,
that s faa)y=af(a), fi(a+a)=Ff(a)+[ (@), and fiaa)=F(a)f(a),
whenever the right-hand sides of these equalities are defined.
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The above theorem has one serious flaw; given A4 and B, the set
_% may be empty. For example, let A be a field properly containing K,
and take B=Ke. Then any maximal B-ideal is a maximal linear sub-
space of A not containing e; any ae A can be expressed uniquely as a
=Jle+j, where jeJ. If J were ordinary we would have aJ CJ+JJ
=J, that is, J would be an ideal of A in the usual sense, which is
impossible.

It is uncertain whether, given A, it is possible to choose B so that
there is at least one ordinary maximal B-ideal. In any case, B will
often be prescribed in advance, so that no choice is possible.

We are thus obliged to look at maximal ordinary B-ideals rather
than ordinary maximal B-ideals. We have, by Lemma 1 (ii), the as-
surance that there always exist at least as many maximal ordinary B-
ideals of A as there are maximal ideals of B, that is, always at least
one.

3. A better representation theorem. We now consider maximal
ordinary B-ideals instead of maximal B-ideals. This introduces some
technical difficulties (which can, however, be overcome), and also makes
it necessary to confine attention to fields K which are algebraically
closed. We shall make this assumption from now on. The sort of
difficulty which arises if the field is not algebraically closed is adequate-
ly illustrated by considering the complex field C, as an algebra over
the real field R. Here there is a unique maximal ordinary R-ideal J
= {0}; if @ is any complex number with a nonzero imaginary part, then
f(@)=o. Clearly the multiplicative properties of f are quite un-
satisfactory.

LemMA 7. If J is a maximal ordinary B-ideal and aJ C J then
J J(a/) 7 oo,

Proof. If aed then f,(a)=0; suppose then that a&J. The set
J+aB+a’B+--- is an ordinary B-ideal of A, properly containing J;
hence e=j+ab,+a’b,+ ---+a", for some je., b, -+, b,€B. We shall
show that we can take n=1 here. First, it is to be noted that there
is no loss of generality in supposing that b, ---, b, are all scalar multi-
ples of ¢; if in the above representation we had b,=2¢+j, A < r < n)
then we could also write

e=7 + La+ 1La*+ -+ +2,0", where j/=j+ja+ - +j.a"€J.

Second, it is clearly permissible to assume that the representation
of e in this way is of minimum degree. We do this. Let g(a) be a
polynomial in @, with coefficients in K, which is in J, and of minimum
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degree. Assume that the degree of s is n > 1. Let (a—ae) be a fac-
tor of p(a), and write p(a)=(a—ae)x. By assumption x&J, and so the
set J+axB+a'B+ --- is an ordinary B-ideal of A, properly containing J.
We thus have

e=7"+wb + « -+ +a™b,, where j7¢J, b, -+-,b,€B.

This gives
a—ae=(a—ae)j” + p(a)b; +xp(a)o,+ « « - + 2™ '(a)b, € J ,
which contradicts the assumption that #(¢) was of minimum degree.
Thus p(a)=a—ae, and f(a)=a 5% « .
COROLLARY. If J is a mawximal ordinary B-ideal and f,(a)= oo

then

e=7jy+aj,+a*,+ « -+ +a", for some j, j,, *+*,Jn€dJ.

Proof. The set J+aJ+a*J+-+- is an ordinary B-ideal of A, pro-
perly containing J. Hence it contains e.

It will appear later (Lemma 9, Corollary) that we can always take
n=1 in this representation. In the meantime it is convenient to
formulate this as follows.

Property P. Let J be a maximal ordinary B-ideal of A, and « an
element of A4 such that f,(a)=o. We shall say that property P holds
(for a and J) if e=aj+j’ for some j, j €.

LEMMA 8. If fi(a)=c0, and property P does not hold, them we can
find j* e J such that f,(aj*)=co.

Proof. Clearly, by Lemma 7 we can find j* such that aj*&J. If
firlaj*)=a, we would have aj*—aeeJ, whence e=a~'aj*+j’, that is,
property P would hold. Since we assume the contrary, f;(aj*)=co.

LEMMA 9. If J is a maximal ordinary B-ideal of A, then f,(a.a,)
=f(a)f;(a,), whenever the right-hand side is defined.

Proof. (a) The case in which both factors on the right are finite
has already been covered (Lemma 3).

(b) Suppose that f,(a,)=c, with property P, and f,(a)=« (;‘: 0).
Then e=a,j+5’, a,=ae+j", so that

amj=ae—aj +j"—jj"' &J .
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Hence f,(a,a,)=o, by Lemma 4.
(¢) Suppose [ (a)=f;(a,)=oo, property P holding for both. Then
e=a.J,+71, e=a,J,+Js and so
a1a2j1jz=9_j;"j;+j;j;$<]»

whence f,(a,a,)=o0, as before.
(d) Now suppose that f,(a,)=co, property P not being true, and
fHa)=a 0. We shall show that f,(a,a,)=p¢€ K is impossible. Let

=0+t +7.07
and a,a,=pPe+j. Then
@i =gjoa; +Ji(Pe+7)a; " + « - - +7.(Fe+7)"
that is,
(ae+3")"=jlae+5')" +5(Pe+j)ae+5) """+ -+« +5.(Be+7)" .

This gives at once a”"eeJ, which is impossible. Hence f,(a,a,)=co.

(e) Finally suppose that f,(a,)=oo, property P not holding, and
fi(a,)=oco (property P possibly holding, possibly not). We note first
that it will be enough to prove that under these hypotheses f,(a,a,)=0
is impossible. For, if f,(a.a,)=a %40, we could choose j* as in Lemma
8, and replace a, by a,7*. Then property P fails to hold for a,5*, and
we would have f,(a,7*)=f,(a,)=o0, fa,7%a,)=0. So, assume that f,(a,a,)
=0. Let

e=jo+ii+ s i =0+ 50+ - - - +50a5

where m and n are minimal. It is clearly no restriction to assume
that m >n. If aa,=jedJ, then

ai(e—Jo)=5gar="+ =+ +75.5" .
Multiply this by j.a" ", and we have
Tm@(€—30)=JmJ1JOT 7+ =+« +JJud " .
But also
In@i(e—Jo)=(e—GJo—aty— * + + —F,-107""")e—731) ,

so that, equating the right-hand sides of the last two equations, we
have an expression for e as a polynomial in @,, with coefficients in J,
and of degree << m—1, which contradicts the assumed minimality of
m. Thus f,(a,a,)=c in this case also.

The above five cases exhaust all the possibilities, and so the lemma
is proved.
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COROLLARY. Property P always holds; that is, of J is a maximal
ordinory B-ideal and f,(a)=oo, then e=aj+j for some j, j € J.

Proof. By Lemma 7, Corollary, we have e=ah+j, where h=j,
+ e +j5,07'. By Lemma 9, we must have f,(2)=0, that is, reJ.

As in the case of maximal B-ideals, we collect our results:

THEOREM 2. Let _&' be the set of mawimal ordinary B-ideals of
A. Then there is a mapping of A into the set of K'-valued functions
on _F't a—fi(a), so that fia)=af,(a), fila+a)=Fi(a)+Fa) and
Silaa)=f (@) f (a,), whenever the right-hand sides of these equalities are
defined.

Since, as has been remarked, there always exists a maximal ordina-
ry B-ideal of A, Theorem 2 always has content.

We can now show, as promised, that the B-ideals specified in Ex-
ample (iii) of § 1 are the only maximal ordinary B-ideals. Suppose that
there is a maximal ordinary B-ideal J such that f,(¢)=c. Then, by
Lemma 9, f,(a)=o for every non-constant polynomial ae A; that is,
J=1{0}, which is clearly not maximal. Thus f,(¢) is always finite, from
which it follows at once that J is one of the specified B-ideals.

It may be noted that if J is a maximal ordinary (or ordinary maxi-
mal) B-ideal of A, then the function f,(a) has the properties

1) fAe)=1; f,(b)e K for all be B, and

(2) flam)y=afa), flaa)=fla)f{a), fla+a)=Ff{a)+f{a) when-
ever the right-hand sides are defined. Conversely, if we have a func-
tion f with these properties, the set {a: f(¢)=0} is clearly an ordinary
B-ideal of A but not in general a maximal one (consider Example (iii)
of §1 and write f(a)=a if a=a (constant), f(a)=co otherwise). This
is in contrast to the situation in which J is an ideal and f a genuine
homomorphism.

4. Further general results. The spectrum, etc. We shall for the
most part be concerned with maximal ordinary B-ideals; in one or two
cases we consider maximal B-ideals (which may or may not be ordinary).

DEFINITION 3. Denote by B, the set of elements of A such that
fia) is finite for all maximal ordinary B-ideals J, and by B, the set
such that f{a) is finite for all maximal B-ideals J. If B=B,, we say
that B is strongly saturated; if B=B,, then B is said to be weakly
saturated.

It is evident that B, 2 B; = B.
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ProproOSITION 1. (i) B, %s a sub-algebra of A.

(ii) The maximal ordinary B,~ideals of A are the same as the
maximal ordinary B-ideals of A.

(iii) If M is any maximal ideal of B,, then B,/M = K.

(iv) (B.),=B,, for any B.

Proof. (i) This is an immediate consequence of Lemma 3. (Note
that in general B; is not a sub-algebra of A).

(ii) Clearly every B,-ideal of A is also a B-ideal, since B, 2 B.
On the other hand, by Lemma 8 every ordinary B-ideal is also an or-
dinary B,-ideal. Hence the result follows.

(ili) By Lemma 1 (ii) the maximal ideals of B, are the traces on
B, of the maximal ordinary B,-ideals of A, that is, of the maximal
ordinary B-ideals. Hence, for any M and any a€ B,, we have a—ae
e M for some « e K, that is, B,/ M~K.

(iv) This follows at once from (ii).

The last part of the above proposition shows that for any A it is
always possible to choose a strongly saturated sub-algebra B; (Ke), is
of the required type.

THEOREM 3. (i) The element a € A has an inverse a~'e€ B &f and
only if it is in no maximal B-ideal of A.

(ii) The element ae A has an inverse a™*€ B, if and only <f it s
wn no maximal ordinary B-ideal of A. If such an inverse exists, it s
expressible as a polynomaal in a with coefficients in B.

Proof. (i) If aa~'=e, where a~'e B, then clearly a cannot be in
any admissible B-ideal of A. If abs%~e¢ for all be B, then aB is an
admissible B-ideal of A, and hence is contained in some maximal B-ideal
J. Then a=aeceJ.

(i) If J is a maximal ordinary B-ideal, it is also a maximal ordinary
B,-ideal, by Proposition 1 (ii). Thus if aeJ, the relation e=aa™!, with
a~'e B,, is impossible.

If @ is such that ¢ is not expressible as a polynomial in a, with
coefficients in B and without constant term, then the set of all such
polynomials clearly forms an admissible ordinary B-ideal of A. There
is thus a maximal ordinary B-ideal containing a. So, if a&J for all
maximal ordinary J, it follows that e—=aa~!, where o' is expressed as
a polynomial in ¢ with coefficients in B. By Lemma 9, since f;(a) is
never zero it follows that f,(a~') is never infinite, that is, a™' € B,.

COROLLARY. If B is strongly saturated, the element a€ A has an
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wnverse in B if and only if it s in no maximal ordinary B-ideal.

In general the expression for ¢! as a polynomial in ¢ will neces-
sarily be of degree >1. Consider, for example, the algebra of §1,
Example (ii). If a %4, and neither « nor B is zero, the element a
=(«, ) satisfies the equation

e=(ap){(a+pla—al,

so that a-'=(af)*{(a+P)e—a}. It is clear that a~' cannot be expressed
as a polynomial of lower degree (a constant multiple of ¢ in this case).

DEFINITION 4. The range of values of f;(a) as J varies over all
maximal B-ideals of A is the B-spectrum of a, denoted o3(a). The range
of values of f;(a) as J varies over all maximal ordinary B-ideals of A
is the B-spectroid of a, denoted rz(a). We write oz(a)=0o%(a) N\ K, and
y(a)=13(a) N K; these may be referred to as the finite parts of the
respective sets.

The set oz(a) consists of those scalars « such that a—ae has no
inverse in B; the set rz(a) consists of those scalars « such that a
—ae has no inverse in B,. In general if D is any subset of A4, we
shall denote by o,(a) the set of scalars 1€ K such that (a—2ie) fails
to exist in D. It is clear that neither o%3(a) nor zj(a) can be empty,
although each set may consist of the element « only; an example of
this is easily found in the algebra A of formal power-series in an in-
determinate, with B the sub-algebra of series with nonnegative powers
only. Here there is a unique maximal B-ideal, which is ordinary, con-
sisting of series with positive powers only; if J is this B-ideal, and «
& B, then clearly f;(a)=oo.

Since every maximal ordinary B-ideal of A is contained in a maxi-
mal B-ideal, it follows that o3(a) = x(a) for all ae A. The following
lemma describes a case in which the two sets are equal:

PROPOSITION 2. If B is strongly saturated then oy(a)=rty(a) for all
acA.

Proof. It is clear, in view of the remarks following Definition 4,
that if B=B, then oy(a)=rx(a). If B=B, and o &7j(a) then by defini-
tion @ € B,=B, and so o« §o3(a), in view of the assumption on B made
after Lemma 4. In view of the relation oj(a) =2 r3(a), this completes
the proof.

It is of course, not true that if B=B, then the maximal ordinary
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B-ideals coincide with the maximal B-ideals - consider the algebra of
§ 1, Example (iii).
Suppose that

(a’—'ale)—l: M) (a’_are)_l
exist in 4. Then if

Wa)=(a—a,e)r- - -(a—a,e)'r,

where ¢, ---, t, are positive integers, and p(a) is any polynomial, the
rational function r(a)=p(a)/g(a) certainly exists as an element of A.
If this is so we have the ¢ spectral mapping theorem ’:

THEOREM 4. If the rational function r(a) of a exists in A then the
B-spectroid of r(a) is the image under r(.) of the B-spectroid of a; that
18, a€ty(a) iof and only if r(a)e tx(r(a)), (xe K').

Proof. This follows at once from Theorem 2.

Notice that the spectroid, not the spectrum, is involved; the result
is false in general if ‘spectrum’ is substituted for ¢ spectroid.’

COROLLARY. A necessary and sufficient condition that the rational
Sunction r(a) should exist as an element of B, is that r(tx(a))< K.

Proof. If
r(a)=I(a—a,e),
then
H(fi(@)—aeyie K

for all maximal ordinary J. Thus if p, <0 we cannot have f,(a)=a;,
and so (a—a,e): exists (in B, and, a fortiori, in A) for all ¢+ with p, <0.
Thus r(a) exists in A and the result follows at once from the theorem.

THEOREM 5. If a and &' are any elements of A, then
Th(an’) = t4(a).75(0") and t(a+a’) = th(a) +h(a) .

These relations are also true when t s replaced by ©', provided that the
sets which occur on the right-hand sides do mnot contain a product 0-co
or a sum oo+ co, respectively.

Proof. This also follows at once from Theorem 2.
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Theorem 5 can of course be extended to several elements of A,
and combined with Theorem 4 to give information about the spectroid
of a rational function of several elements of A.

Next, a condition that the spectrum should consist of the whole of
K:

PROPOSITION 3. If o« &oy(a) (that s, a€ B;) and a& B, then oya)
=K.

Proof. Suppose that € K is not in ox(a). Then f,(a—«e) is never
zero, for any maximal B-ideal J; hence, by Theorem 3 (i), (a—ae)™
exists in B. Since f;(a—we) is never o, it follows that f;({(a—ae)™)
is never zero. This implies that ((a—ae))*=(a—«ae) is in B, and
hence that a e B.

PROPOSITION 4. Let ae K be such that (a—ae)-'€ B. Then either
a€ B, or o €y(a).

Proof. Suppose that a& B. The set (a—ae)"'B is clearly an ideal
of B; it is admissible, since (a—ae)~'b=e¢ would imply @€ B, which is
not so. Hence, by Lemma 1 (ii) there is a maximal ordinary B-ideal,
J say, containing this set. Then we must have f;(a)=co; for (a—7fe) e J
would imply (a—pfe)a—ae)-teJ, that is, e+ (a—B)a—«ae)teJ, that is,
e€J, which is impossible.

Note that it is possible to have a & B, oo &r(a)—consider Example
(iii) of §1. In this case, of course, if a& B there is no a e K such that
(a—ae) e B.

ProposiTiON 5. If, for each a€ A, there exists ae K such that
(a—ae)'e B, then

(i) B s strongly saturated, and

(ii) each maximal ideal of B is contained in o unique maximal
ordinary B-ideal of A.

Proof. (i) This follows at once from Proposition 4.

(ii) Suppose that M is a maximal ideal of B, contained in two dis-
tinet maximal ordinary B-ideals of A4, J and J'. Let ae A be such that
fi(a) £ fr(a), and a € K such that b=(a—ae)~! is in B. Then

Fu®)=F:(0)=(Fs(@)— )™ 7= (fi(a) — @) =[5 (0)=Su(D) ,

which is a contradiction.
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5. The B.radical, semi-simplicity, etc. The theory given in this
section is based on the definition of the B-radical of A as the intersection
of all maximal ordinary B-ideals of A. There is, of course, a parallel
theory based on the definition of the radical as the intersection of all
maximal B-ideals; this set is a B-ideal but not in general an ordinary
B-ideal. The two theories resemble each other so closely that there
seems to be no point in writing out both sets of results explicitly.

DEFINITION 5. The intersection of all maximal ordinary B-ideals of

A is the B-radical of A.
It is evident that the B-radical is an ordinary B-ideal.

PROPOSITION 6. If t(a)= {0} implies a € B (in particular, if B s
strongly saturated) then the B-radical of A consists of theose elements
be B such that (e—ab) has an inverse in B for all a€ K.

Proof. If a is in the B-radical then cj(a)={0}, and a€ B, by as-
sumption. If e—aa had no inverse in B, then (e—aa)B would be a
proper ideal of B, and would be contained in a maximal ordinary B-
ideal of A, by Lemma 1 (ii). If J is this B-ideal then f,(e—aa)=0,
hence f;(a)=a"'s40, a contradiction. So e—aa has an inverse in B
for each a e K.

On the other hand, if ae B, and a is not in the B-radical, there
will be a nonzero a e K such that f,(a)=a for some J. Then we cannot
have (e—a~'a)~' € B; if this were so then e=(e—a~'a).(e—a'a)™* ¢ JBEJ,
which is impossible.

DEFINITION 6. If the B-radical of A is {0} then A is B-semi-simple.
If, whenever a = o’ there is a maximal ordinary B-ideal J such that
fr(@)5£ f;(a'), then A is completely B-semi-simple.

In the case of a Banach algebra, semi-simplicity implies complete
semi-simplicity. Whether this is so in the present more general case
remains an open question. We shall obtain partial results in this direc-
tion under restrictive hypotheses.

PROPOSITION 7. If A is B-semi-simple, a 7% ', and ti(a) is not the
whole of K', then there is a mawximal ordinary B-ideal J such that f,(a)

= fs(a@).

Proof. 1If f,(a) never takes the value o, then clearly f;(a)=f(a")
for all maximal ordinary J implies a=a’, by the definition of B-semi-
simplicity.
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If f;(a) never takes the value «, then by Theorem 3, (a —ae)~' € B,.
If fi@)=ri(@) for all J then f;((a—ae))=f;((a'"—ae)™") for all J,
whence (¢ —ae)"'=(a’'—ae)™!, by the assumed B-semi-simplicity. Hence
a—ae=a —ae, and a=a’.

LEmMA 10. If A is B-semi-simple, and ti(a) contains no nonzero
elements of K, then a=0.

Proof. Since K is assumed to be algebraically closed, there will be
in K an element different from 0 and from 1; let « be any such ele-
ment. Since f;(a) is never 1, (a—e)~* exists in B,, by Theorem 3. Similar-
ly, (aa—e)™" exists in B,. Clearly f;((a—e)")=f;((aa—e)~") for all J
(=0 if fy(@)=o, =—1 if f,(a)=0). Hence (¢ —e)'=(aa—e)~!, whence
a—e=aa—e, giving a=0.

LeEMMA 11. If oy(a) contains a finite number of elements of K only,
then ot does not contain <, tof A is B-semi-simple.

Proof. Let «ay, «,, -+, a, be the elements of K in 7j(a). Then
fila—ae)a—a.e): -+ (a—a,e))=0 or o only. By Lemma 10 this implies
that (¢—ae)(@—a.e)---(a¢—a,e)=0, and this is clearly inconsistent with
fr(@)=o for any J.

COROLLARY. If there are only a finite number of maximal ordinary
B-ideals, then f;(a) is never o for any ac A, that is, A=B,.

It is clear that if we know that for each aec A4, fi;(a)=cw for a
finite set of maximal ordinary B-ideals only, simplifications will result.

DEFINITION 7. The algebra A4 is of finite type (with respect to B)
if for each ae A the function f;(a) is infinite on (at most) a finite set
of maximal ordinary B-ideals .J.

The algebra of rational functions of an indeterminate is evidently
of finite type with respect to the sub-algebra of constants.

ProrosiTioN 8. If A is B-semi-simple and of finite type, it is com-
pletely B-semi-simple.

Proof. Suppose that f;(a)=f7(a’) for all J. Then f,;(a—a’) takes
a finite set of nonzero values at most. Hence, by Lemma 11, f;(a—a’)
is never «. If a=%4da’, then a(w—a’) would be such that (i) f;(a(a—a’))
=oo for some J; and (ii) f;(a(a—a’)) takes a finite set of values in K
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only—two contradictory properties. Hence a=a'.

There are two problems which are closely related to each other
and to B-semi-simplicity. These are, broadly speaking, (i) on how large
a set of maximal ordinary B-ideals can the function f,(a) be «? and
(ii) on how small a set can f,(a) be nonzero, with a = 0? In the absence
of B-semi-simplicity, of course, f,(a) may be oo for all maximal ordinary
J, and f,(¢/) may be zero for all such J, with &' %= 0 (consider the
example of formal power-series discussed after Definition 4).

In the next two propositions we assume that A is B-semi-simple.

PROPOSITION 9. Let .# be a finite set of maximal ordinary B-
ideals, and ae A an element such that f,(a)=c for Je . _# and f,(a)
# oo for J& # Then, iof f;(a)=0 for all J& _+«, it follows that
a’'=0.

Proof. The function f;(aa’) takes a finite set of values only, hence
it is never «, by Lemma 11. This clearly implies that f,(a’)=0 for all
J, and so a’=0, by the assumed B-semi-simplicity.

A somewhat similar result is the following.

PROPOSITION 10. Let .7 be a set of mawximal ordinary B-ideals
such that there is an element a€ A with f,(a)=c for Je ., and f;(a)
% o for J& _#Z Then there is no element o € A with f;(a')5%0 for
Je A4 and f;(a')=0 for J& _#

Proof. If there were such an element o' then we would have
fy(aa’)=0 or co only, whence aa’=0, by Lemma 10. This contradicts
frlaa)=o for Je #.

If A is B-semi-simple, then Theorem 2 states that 4 is isomorphic’
in a certain sense to an algebra of functions on the set of maximal
ordinary B-ideals. In certain cases it is possible to assert that there
is a genuine isomorphism between A and an algebra of equivalence-
classes of functions. We introduce this as follows.

Let X be any set. We shall call a family & of subsets of X a
Q-family if (i) the union of two (and hence any finite number of) sub-
sets of & is in &°; (ii) X is not in &, For example, if X is the real
interval (0, 1), the subsets of measure zero form a Q-family. Take now
the set S of functions defined on X, with values in K’, which are fini-
te outside a set of & Let T be the set of functions which are zero



FUNCTIONAL REPRESENTATION OF CERTAIN ALGEBRAIC SYSTEMS 1267

outside a set of &% Let (S; T) be the set of equivalence-classes of
functions of S, modulo functions of 7'. Then, in the familiar way, (S; T
can be made into an algebra by defining the sum of two classes to be
the class determined by the sum of two functions, one from each class,
etc.; it is easy to verify that the algebraic operations are well-defined.
The object of condition (ii) is to ensure that the resulting algebra is
nontrivial.

DErFINITION 8. If X is the set of maximal ordinary B-ideals of A,
and there is a @Q-family of subsets of X such that A is isomorphic to
(S; T), as defined above, then A has a Q-representation.

THEOREM 6. If A is B-semi-simple, and of finite type, it has ¢ Q-
representation.

Proof. 1If there are finitely many maximal ordinary B-ideals, then
f,(a) is always finite, by Lemma 11, Corollary. Then result follows at
once in this ecase, taking the @Q-family consisting of the empty set
only.

If there are infinitely many maximal ordinary B-ideals, then it is
easy to verify that the family of sets on which f;(a) is infinite for
some o€ A forms a Q-family. The required result then follows from
Proposition 9.

It would be of considerable interest to extend the above results,
in particular, to remove the qualification ¢finite’ from the set .2 in
Proposition 9. In §7 we shall do this under additional hypotheses
(Proposition 17). It is not evident that these restrictions are necessary
for the validity of the result, and more information on the point would
be welecome. There is one partial result in this direction, as follows:

PROPOSITION 11. If A is completely B-semi-simple, then f(a)=co
for Je 4, f:(a')=0 for J& #, & € B together imply a'=0.

Proof. Immediate.

6. Algebras over topological fields. We now consider the case of
a field K with a topology. We are primarily interested in the complex
case, but it is as easy to write out the results for much more general
fields. We require very little of the topology; the essential feature is
that it should provide a reasonable definition of ‘ bounded’ subsets of
K. We shall assume (until after Proposition 15) that K is a topological
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field in the sense of Bourbaki, that is, that the topology is Hausdorff
and the algebraic operations are continuous.

We adopt the definition of boundedness given by Shafarevich; the
subset H of K is bounded if, given any neighborhood N of 0, there is
a neighborhood N’ of 0 such that HN' & N. It is trivial that the union,
sum and product of two bounded subsets of K are again bounded sub-
sets. We shall further assume (again until after Proposition 15) that
K is of type V, in the sense of Kaplansky; that is, if the set S is dis-
joint from some neighborhood of 0, then the set of inverses S is
bounded. We assume that K is not discrete; if K is discrete then every
subset of K is closed and bounded, and the results reduce to those of
§ 4.

DEFINITION 9. Denote by B, the set of elements of A which have
a bounded B-spectroid, and by B; the set of elements with a bounded
B-spectrum. If B, 2 B then B is weakly bounded; if B; 2 B then B is
strongly bounded. 1f B, = B, then B is strongly boundedly saturated;
if B < B then B is weakly boundedly saturated.

It is evident that B, 2 B;; B, is clearly a sub-algebra of A, by
Lemma 3, but B; is not a sub-algebra of 4 in general.

For the remainder of this section we shall assume that B is weak-
ly bounded, unless the contrary is explicitly stated.

PROPOSITION 12. (i) The maximal ordinary Bi-ideals of A are the
same as the maximal ordinary B-ideals.

(i) If M is any maximal ideal of B,, then B,/M =~ K.

(iii) (B),=B,, for any B.

Proof. This is analogous to that of Proposition 1.

It is always possible, for any given A, to chose a strongly bounded
sub-algebra B; take B=Ke. Also, it is always possible to choose a
strongly boundedly saturated B; take B=(Ke),.

If B is not weakly bounded, there may be B;-ideals of A which are
not B-ideals. For example, let I be any infinite index-set, and A the
algebra of complex-valued functions defined on I, {a;};e;, With point-
wise addition and multiplication. Take B=A; then B, is the set of all
bounded functions on I. Any function ae A with a;,7% 0 for all ¢el,

but inf |a,|=0, will be in an ordinary B,-ideal but in no proper B-ideal
ier

of A.

LEMMA 12. If 0 adheres to ox(a) then 0€ ox(a); if 0 adheres to
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(@) then 0 € ox(a).

Proof. We shall prove the second statement only; the proof of the
first is similar and slightly simpler. The set aB+a&*B+a*B+ -+ is
clearly an ordinary B-ideal of A. If e were in this B-ideal, then

e=ba+b.a*+ « -+ +b,a"

for some b, b,, +--, b,e B. It is elementary to verify that if 0 adheres
to rh(a) then it adheres to tx(ba+ --- +b,a") also. Thus it would adhere
to r(e)={1}. This is impossible, since the topology of K is Hausdorff.
So the B-ideal specified above is admissible, and there is a maximal
ordinary B-ideal, J say, containing it. Thus a=ae€J, and f;(a)=0, so
that 0e 73(a), as asserted.

THEOREM 7. For each a€ A, ox(a) and ty(a) are closed subsets of
K.

Proof. If ae K adheres to oz(aj then clearly 0 adheres to as(a
—ae); hence, by Lemma 12, 0 is in oya—ae) and so a is in ox(a).
Similarly for z,(a).

We may topologise K’ by taking the basic neighborhoods of oo to
be the complements in K’ of the bounded subsets of K. In this topo-
logy, tx(a) and o3(a) are not in general closed in K'. Example (iii) of
§ 1 shows that we may have o adherent to j(a), but no maximal
ordinary J such that f;(a)=co.

THEOREM 8. If a is in no maximal ordinary B-ideal of A then a
has an inverse in B,.

Proof. (1) As in Theorem 3 (ii), @ has an inverse a~'in A. Since
Ss(a) is never zero, there is a neighborhood N of 0 such that N N cx(a)
is empty, by Theorem 7. Since we assume that K is of type V, this
implies that the set of inverses of elements of t3(a) is bounded; but
this set of inverses is evidently the B-spectroid of a-'; hence a~'e B,.

COROLLARY. If B is strongly boundedly saturated, then ac A has
an wnverse a~'€ B if and only if a is in no maximal ordinary B-ideal
of A.

PropPoOSITION 13. If aeB,, a¢ B, and B is strongly boundedly sa-
turated, then th(a)=K.
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Proof. This follows from Theorem 8, Corollary, just as Proposition
3 follows from Theorem 3 (i).

We note that if B is strongly boundedly saturated, the hypothesis
of Proposition 6 is satisfied, and hence the conclusion of the proposi-
tion is valid.

ProprosITION 14. If p(a) € B, for some polynomial v of degree =1,
then a€ B, .

Proof. Since 7x(p(a)) is bounded, we can choose ae€ K so that
0¢ r5(¢(a)), where ¢(a)=p(a)—ae. Thus ¢(a)e B, and (g(a))™* exists.
Write (¢(a))™* as a sum of terms of the type B,(a—a,e)*, it is a matter
of routine to verify that if 7j(a) is unbounded, then 0 adheres to
5((g(@))~*). This contradicts the fact that g¢(a)e B, and zx((g(a))™)

= {r3(q(a))} .

The corresponding result, with B, in place of B,, is true and
trivial.

The following result is analogous to Theorem 4, Corollary, and is
proved in exactly the same way:

PROPOSITION 15. A mnecessary and sufficient condition that the ra-
tional function r(a) exists as an element of B, is that r(rx(a)) is a bounded
subset of K.

For the remainder of this section we assume only that the field K
has a Hausdorff topology, and that addition is continuous. We may
topologise K’ by taking the neighborhoods of « to be the complements
in K’ of the bounded subsets of K. It is possible to introduce a topolo-
gy on the maximal ordinary B-ideals of A in at least three obvious
ways:

(i) Take as basic neighborhoods of the maximal ordinary B-ideal
J, the sets {J: f;(a,)e N, r=1, 2, ---, n}, where N is any neighborhood
of 0and @, a,, -+, @, are any elements of J,. This clearly defines a
Hausdorff topology in which each function f,(a) is continuous (as a
function of J) wherever it is finite. In particular all functions repre-
senting elements of B, are continuous everywhere.

(ii) Take as basic neighborhoods of J, the sets

{']: fJ(a‘r)eNr(fJo(a’r))’ 7'-:1, 2’ ) 'I’b} y

where a,, a,, ---, a, are any elements of 4 and N, N,, ---, N, are any
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neighborhoods of f; (@), f5,(@), -, f5(a,) respectively. This is the
weakest topology in which all the functions f,(a) are continuous. It is
evidently finer than (i).

(iii) Take as basic neighborhoods of J, the sets {J: f;(b,)€ N,
r=1, 2, -+, n}, where N is any neighborhood of 0 and b, b, ---, b,
are any elements of J, N B.

Other variations are possible; for instance, B may be replaced by
B, or B, in (iii). We shall refer to these variations as (iii’), (iii"),
respectively.

In general, topology (iii) will not be Hausdorff; a necessary and
sufficient condition that it should be so is that each maximal ideal of
B should be contained in precisely one maximal ordinary B-ideal of A.
If the topology is Hausdorff, then the set A of maximal ordinary B-
ideals of A is compact; Gelfand’s proof of the corresponding result for
Banach algebras [4, Satz 9] applies to the present case. Similar re-
marks apply to (iii’) and (iii”).

In the case where A is a Banach algebra, and B=A, all the above
topologies reduce to the customary Gelfand topology on the maximal
ideals. In the context of § 8, topology (ii) seems the most appropriate.

Similar topologies could of course be imposed on the space of all
maximal B-ideals of A.

7. Self-adjoint algebras. As in §5, we use the maximal ordinary
B-ideals; similar results could be obtained, starting from the maximal
B-ideals. In this section the scalar field is taken to be the complex
field C. The results could be formulated in a more general situation
(in a field with a suitable ‘conjugation’), but there seems to be no
point in doing this. Asterisks applied to scalars denote complex con-
jugates, and co*=oo0,

DEFINITION 10. The algebra A is self-adjoint (with respect to B)
if, given a € A, there exists a*e A (not necessarily unique) such that
Sfr(a*)=f;(a)* for each maximal ordinary ..

From now on it is assumed that A is self-adjoint and B-semi-
simple.

PrOPOSITION 16. The algebra A is completely B-semi-simple.

Proof. Suppose that f;(a)=/f;(a’) for all J. Then evidently (¢+aa™*)!
and (e+a'a’*)~* both exist (in B;) and f;((e+aa*))=f;((e+a’a’*)™*) for
all J. Hence the two inverses are equal, by the assumed B-semi-
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simplicity, and this implies aa*=a’a’*. Next, it is easy to verify that
a(e+aa*)™ and o'(e+a’a’*)"" are both in B, and f(a(e+aa*)")=rf(a'(e
+a’a*)"") for all J. Hence the two elements are equal, and the con-
clusion a=a’ is immediate.

COROLLARY. The element a* is unique.
It is clear that a*=0 implies =0, and aa*=0 impliés a=0.

The next result is, as promised in § 5, an improvement of Proposi-
tion 9 in the present special case:

PRroOPOSITION 17. If - # s a set of maximal ordinary B-ideals and
a€ A is such that fy(a)=cw for Je #Z, fi(a)# o for J& _#, then f;(a’)
=0 for J¢ _#Z implies a'=0.

Proof. Since f,(w'a’*+e) is either real and >1, or is infinite, it
is clear that fi(ad’a’*+a)=f,(a) for Je . #; and since f;(a')=0 for
J¢& . 7, the same equation holds for J¢ .# also. Hence aa’a’*=0, by
Proposition 16. But this implies a'=0; if not, there would be a B-ideal
Je # with f;(a’)5% 0, which would imply f,(aa’'a’*)=co, which con-
tradicts aa’a’*=0.

THEOREM 9. If A is B-semi-simple and self-adjoint, it has a Q-
representation.

Proof. 1If fi(a)=co for Je .  and fy(a¢')=cw for Je._~zZ’', it fol-
lows that if a’=(e+aa*)(e+a'a’*) then f;(a’)=c for Je Z\J.Z".
Also, f;(a@) cannot be infinite for all maximal ordinary B-ideals J, by
Lemma 10. Hence the family of sets on which f;(a) is infinite for
some a€ A is a Q-family. The required result now follows from Pro-
position 17.

So far the topology of C has not been involved; it is essential for
the results which follow. From now on we suppose B=B,, that is, B
is weakly bounded and strongly boundedly saturated (Definition 9). In
the absence of this assumption the following results remain true, when
suitably modified. But the statements then become more complicated,
and the gain in generality is not significant.

ProrosITION 18. B=2B,.
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Proof. For any a, fi;(e+aa*) is never zero, and so (e+aa™)™’ ex-
ists. If ae B, then f;((e+aa*)"?) is never zero. By Lemma 12, it is
therefore bounded away from zero, and so f;(a) is bounded away from
infinity. Thus a e B,=B. Since B, 2 B, the theorem follows.

COROLLARY. ty(a) s closed in C' for any a.

LEMMA 18. Each maximal ideal of B is contained in exactly one
maximal ordinary B-ideal of A.

Proof. Suppose that the maximal ideal M of B is contained in the
distinet maximal ordinary B-ideals, J and J’, of A. Let aelJ, a¢J'.
Then

Sul(e+aa®) =1+ f(@))" 7 L+ |fila)) ' =ful(e+aa™)™),

a contradiction.
LEMMA 14. All the topologies described in § 6 are equivalent.

Proof. 1t is clearly sufficient to prove that (iii) is finer than (ii).
Let N be the neighborhood

: N= {J: fJ(a/r)eNr(fJo(ar))r 7'=1, 2’ AP ?’L} .
Write
b,=(e+a,a’)™";

it is easy to find neighborhoods N;, N, such that

f5(b,) € N(F5(06,)), Fi(a,b,) e N/ (f;(ab,))

together imply

fi(@,) € N(fs(a,))

(if fia,)=co, then N, is superfluous). By translating the neighborhoods
N,, N, to the origin if necessary, and taking their intersection, it is
easily seen that there is a neighborhood in topology (iii) which is con-
tained in N.

Combining the above results, we obtain at once:

THEOREM 10. Let A be a self-adjoint, B-semi-simple algebra, with
B=B,. Then the maximal ordinary B-ideals of A can be topologised so
as to become a compact Hausdorff space, and the mapping a — fi(a)
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sends elements of A into continuous C'-valued functions on this space.
The sets on which fy(a) is infinite for some a€ A form a Q-family of
closed sets.

It is apparent that the structure space depends (set-wise and topo-
logically) only on the ‘bounded’ sub-algebra B of A, provided that this
satisfies reasonable conditions, which ensure that it is large enough. If
we assume a little more, namely that all bounded continuous functions
correspond to elements of B (for instance, if B is a Banach algebra
under a suitable norm), then we can clearly assert that the set on which
fi(a) is infinite is nowhere dense (since the set is closed, this is equi-
valent to its interior being empty). The conclusion of Theorem 10 is
thus strengthened.

To conclude this section we turn to Example (vi) of § 1, and see to
what extent the results of this section can be applied to it. First, it
seems desirable to state precisely what we mean by an algebra of nor-
mal operators on a Hilbert space; we mean a collection A of normal
operators such that any scalar multiple of an operator in A is in A4,
and the sum and product of any two operators in A have unique ex-
tensions in A. As always, we assume that A contains a unit (the
identity operator, here) and is commutative (in the sense that the product
of two operators, in a certain order, has the same extension in A as the
product in the reverse order). We take B to consist of the bounded
operators in A: we assume that if ae 4, and a ' exists as a bounded
operator, then a~'e B, and we also assume that B is uniformly closed.
This implies that the maximal ideal condition B/M = C is satisfled. If we
denote by a* the usual Hilbert space adjoint of a (we proceed immedi-
ately to show that this is in agreement with the previous use of a%),
and restrict attention to algebras A which are self-adjoint in the sense
that a e A implies a* e 4, then we have the following.

LEMMA 15. The algebra A is self-adjoint in the sense of Definition
10.

Proof. If a is bounded then it is clear that f;(a+a*) is real, since
(a+a*—2¢) has an inverse in B for nonreal 2. Similarly, f,(a—a*) is
imaginary, and so f;(¢*)=f,(a)* for bounded a. Next, for any ac A,
write b=(e+aa™)""; it is well known that be B and abe B; also b is
self-adjoint (b*=b), and (ab)*=a*d. If f,(a) and f,(a*) are both finite,
then from f;(a*b)=f,(ab)* it follows that f,(a*)=f,(a)*, since f,(b) is
real and nonzero. It remains to show that if one of f;(a), f,(a*) is
finite, then so is the other. Suppose the contrary; there is no loss of
generality in supposing f,(a)=1, f;(@*)=o. Then
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1 =fJ(e _b) =f.7(a/a*b) =fJ(a‘)fJ(a’*b) =fJ(a)fJ(a'b)*=0 ’

which is impossible.

The sub-algebra B is semi-simple, by the usual reasoning, and the
B-semi-simplicity of A follows at once from this. The conclusions of
Lemma 13 and 14 are true, independently of any assumption that B
=pB,, since b=(e¢+aa®)"' and ab are certainly in B.

The conclusion of Theorem 10 is thus valid for A. Moreover, the
assumption that B is uniformly closed ensures that the functions f;(a)
become infinite only on nowhere dense sets. The fact that B=B, fol-
lows from the same assumption; for each bounded continuous function
on the maximal B-ideals of A (=maximal ideals of B) corresponds to
an element of B.

In the paper of Fell and Kelley [3], the authors deal with algebras
of operators from a somewhat different point of view. Starting from
a strongly closed algebra of bounded of bounded operators, they select
a class of unbounded functions on the structure space (the same
class as we have obtained above, namely the continuous C’-
valued functions infinite only on a nowhere dense set), and show that
to each such function there corresponds a normal operator. Every nor-
mal operator can be obtained in this way, starting from a suitable
algebra of bounded operators. The problem of the functional represen-
tation of an algebra of operators is not explicitly treated.

As a realization of the sort of algebra we have been considering,
take the following trivial example. Let the Hilbert space be L, (0, 1),
and consider continuous C’-valued functions on (0, 1) which are infinite
only on a set with empty interior. To each such function a normal
operator can be attached in an obvious way; the operator, applied to a
funetion of L,, yields the ordinary product of the two functions. If
we assume that A is an algebra of such operators, containing all opera-
tors corresponding to bounded functions, then the above theory can be
applied, and it is found that the operators are represented by the func-
tions from which they have arisen.

8. Algebraic function fields. Although it is not our main objective,
we give a few indications of the relation between the theory developed
in the preceding sections, and the theory of fields of algebraic functions
of one variable. All the relevant definitions, etc., will be found in
Chevalley’s book [2]. The first result is valid quite generally.

LEMMA 16. If A s a field, and K is a proper sub-field of A, then
for every maximal ordinary K-ideal J of A there is an element a€ A
with fJ(a)=OO .
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Proof. If not, J would be a proper ideal of A4, different from {0},
by Lemma 3; this is impossible.

The definition of a V-ring, as required in the next lemma, will be
found in [2, p. 1].

THEOREM 11. If A is a field of algebraic functions of one wvariable
and K is an algebraically closed proper sub-field of A, lhen the maximal
ordinary K-ideals of A are in one-to-one correspondence with the V-
rings in A (over K).

Proof. Let J be a maximal ordinary K-ideal of A, and write @
=J+ K. Then clearly @ is a ring; further (i) @ contains K; (ii) Q % 4,
since, by Lemma 16 there is an element a € A with f;(a)=o; and f;(q)
e K for all ¢e Q; (iii) if ¢ Q then fi(x)=o; for if f;(x)=a e K then
x—aee@ and so xe Q. If f,(x)=oc then f;(z~)=0, by Lemma 9, and
so x7'e Q. Thus @ is a V-ring.

On the other hand, let @ be any V-ring, and let J be the ideal of
non-units. Then Q/J =~ K ([2], p. 10); every element of @ is of the
form ae+j, where jeJ. Clearly J is an ordinary B-ideal; we now
show that it is maximal. Let & be any element of A4, not in J. Then
if ae@, a—aecJ for some € K and so ¢ is in the K-ideal generated
by J and a. If a is not in @ then a~! must be in J; for if a~! were
in @ but not in J then ¢!, and hence a, would be a unit in Q. So
again e is in the K-ideal generated by J and a. That is, J is maximal.
This establishes the required correspondence.

We may thus identify the maximal ordinary K-ideals in A with the
places of A4, where A is a field of algebraic functions of one variable
over K. The value taken by ae A at the place J [2, p. 6] is the same
as the value of the function f;(a) as defined in § 2.

The places of 4 may be topologised, if K is a topological field; the
topology (ii) previously indicated (§ 6) reduces to that given by Chevalley
for the complex case [2, p. 133].
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