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1. The coefficient regions of schlicht functions have been studied
at some length by Schaeffer, Schiffer, and Spencer [2, 3]. Properties
of these coefficient regions are obtained only with difficulty, and in
particular the actual coefficient regions can be computed only with a
great deal of labor [2]. In fact, the computations necessary to deter-
mine the coefficient region of (a,, a;, a,) probably would be prohibitive.

The class of starlike functions is of course much simpler in be-
havior. Since f(z)=z+a2*+ a2’ + --- is starlike if and only if zf'(2)/f(2)
has a positive real part in |z|] <1, one might say that everything is
known about such functions. However, in practice, our rather complete
knowledge about functions with positive real part proves difficult to
apply back to the class of starlike functions. This is easily seen to be
true by noting the number of papers on starlike functions which appear
every year.

In an earlier paper, the writer presented a new variational method
in the class of starlike functions. It is the purpose of this paper to
apply this variational method to find the coefficient regions for starlike
functions.

Let S* be the class of all normalized funections f(2)=2z+ a2+ a2’ + - - -,
schlicht and starlike in the unit circle. Let V; be the (2n—2) dimen-
sional region composed of all points (a,, @, ---, a@,) belonging to the
functions of S*. Since the class of functions p(z) with p(0)=1, regular
and having a positive real part in |2| <1, is a compact family, so is S*.
Thus V, is a closed domain (i.e., the closure of a domain).

We will study V¥ by determining its cross sections with a,, a,, -« -+, t,-,
held fixed. In §2, a simple proof of the fact that each such cross
section is convex is given. It is then shown that any point on the
boundary of this cross section must lie on a particular circle, and thus
that the cross section itself is a circle. The actual equations for the
region V' can be determined for each n by means of a simple recur-
sion, but the calculation becomes tedious after the first few .

2. For fixed a,, a3 «-+, a,-;, let Ci=C¥a,, ---, a,-,) be the two
dimensional cross section of V¥ in which a, varies.

LEMMA 1. C} s a closed, convex set.

‘Receri;e(-i June 24, 1957. The work reported on here was done while the writer held
a National Science Foundation post doctoral Fellowship. The writer wishes to thank Pro-
fessor M. Schiffer for many helpful conversations during the course of this work.
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Proof. C} is certainly closed, since it is a cross section of the closed
set V. To show that it is convex, we introduce a new variation.

If f(z) and g(z) belong to S*, define for any ¢, 0 <e <1,
(1) he(2)=1(2)""*9(2)" .

Here, appropriate branches of the powers are chosen so that 2.(z) is
regular at the origin and has a series expansion z+ ... there. Taking
the logrithmatic derivative of (1), we have,

2ha(2) _ (1 _ (@) 20'(2)
o T e T e

Therefore, if £ and g are in S*, so is A.(z), for all ¢ between 0 and 1.

If f(z) and g(z) are any two functions of S* belonging to C;, say,
SR =rfiR)+a2z"+ -+, g(@)=Sf)+b2"+ -+, where f(z)=z+a2’+ -+
@,-2""", then by direct computation from (1),

R RO )

=fy,+[a,—e(a,—b,)]g"+ -+,

and so, as ¢ goes from 0 to 1, the n-th coefficient of %.(2) moves along
the line between a, and b,. Therefore this entire line segment is con-
tained in C}, and the lemma is proved.

3. In an earlier paper [1], the writer showed by use of a vari-
ational method in the class of starlike functions, that any function f(z)

in S* which maximizes ‘ﬁ{izyav} must be of the form

(2) @)= z___ /1\,__,_>__0,il,jv=2, m<n—1

m

£I1 (L—ry2)"™

and that f(z) must satisfy the differential equation

2f"(2) pry
where
( Re=3 0 5 * - Saze |,
(4) L

n V=1 v-1
Q(Z):E[)\V S = Da, + 2 Zpa:a“"“‘l .
y=2 p=1 gvH p=1
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(Here, and throughout the paper, an asterisk attached to a value in-
dicates the complex conjugate of that value.) The function E(z) has m
zeros on |2|=1 corresponding to the m poles of f'(z)/f(z). The function
Q(z) has m zeros on |z|=1 corresponding to the tips of the m slits (where
f'()=0). The functions R(2) and Q(z) have 2n—m—2 additional zeros
in common.

In order to study the coefficient regions, we will determine the
nature of C} (a,, ---, @,-,). Since Cj is convex, as shown above, the
boundary points of C} can be determined by finding a function which
maximizes N{1,a,} for fixed a,, as, +--, a,-, and for each 1,=¢®. If f(z)

maximizes R{1,a,}, then it also maximizes Eﬂ{i zyay} where 4,, 4, +++, 4,_,
v=2

are a set of Lagrange multipliers which are determined by the fact
that a,, ---, a,_, must take on the prescribed values.

The desired results are obtained by use of 2n—m—2 zeros which
R(z) and Q(2) in (4) have in common. To this end, we obtain the GCD
of R(z) and Q(z). The Euclidean algorithm is used in a simple form.
That is, having two polynomials of the same degree.

P(R)=0a,Fazg+ -+,
p-(z)=ﬂ0+ /?]z+ e 4 /?nz” ,

two new polynomials of lesser degree are obtained by the process

( 7,(z)= }'[ﬂopl(z)_aopz(z)] ’
(5) %

) (]z(z)zﬂnpl(z) —anpz(z) .
This scheme is started by taking Q(z)—R(z) and multiplying through
by an appropriate power of z (the functions Q(z) and R(z) have no zeros
at z=0 or z=w). From (4) this gives a polynomial

Rl(z)=a0y1+a1,1z+ e +an—2,lzn—z+,8::(_zylzn_l+ eee +/33<le‘zn—3

where

( ) av,lz(y'l— l)ana\wz +1"2n—1av+1+ te '*‘Rn—va’z ’
6
Byr= (v 4+ 2) s+ (v + 1)y + =+ - + 24,

In a similar fashion, taking Q(z)+ R(z) we obtain

Qx(z)=ﬂo,1+ﬂ1,1z+ tee +ﬂn-z,1z"‘""+a§f_z,1z”“+ ceedag @
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The coefficients of Q,(z) are exactly the conjugates of the coefficients of
R(z) in reverse order. This is easily seen from (4), except that it must

be noted that for the extremal f(z), the center term i(u——l)kvav is a
V=2

purely real number, (see [3])

The polynomials R,(z) and @,(z) have in common the same 2n—m—2
zeros that R(z) and Q(z) have in common, and each has in addition m—1
other zeros. The latter zeros are distinct in R,(z) and Q,(2) since any
common zero of R,(z) and Q,(2) must be a common zero of R(z) and
Q(z).

This process may then be continued, combining R(z) and Q,(z) as
in the scheme (5) to produce two new polynomials R.(z) and @Q.(z), each
one lower in degree. It is easily seen from (5) that the relationship
between the coefficients of R,(z) and Q,(z) will be preserved in the
reduced polynomial. Thus, as this scheme is continued, pairs of poly-
nomials R,(z) and Q.(z) of degree 2n—k—2 will be produced. The coef-
ficients of Q,(z) will be the conjugates of the coefficients of R,(z), in
reverse order. R.(z2) and Q(z) will have in common the 2n—m—2 zeros
that R(z) and @Q(z) have in common, and m —% others, not in common.
The process will terminate with R,(z) and @, (z), for these two will then
be identical up to a constant factor.

Because of the relationship between the coefficients, we need to
determine only R,(z) for each k. The corresponding @.(z) can be com-
puted as needed.

LEMMA 2. For 1<Fk < m, the polynomial Rz) is of the form
Ri(z)=ay a2+ o Qoo @ e B 2
L SR A
with
Q=N At 1A A+ oo+ A,
Bue=2Busi i+ dumiBug+ oo + 2, B

Here, each A, and each B, is a polynomial in the a, and their
conjugates (independent of the 7,), and the A,, and B;, satisfy the
recursiton relations

Ai,v+1 :Bl,vA,zH,v_ Am«B.iH.u ’
% *
Bl,v-ﬂ:Bl.vBl,v—Al,vAj,v .

(7)

Proof. We first remark that the coefficients of R.(z2) belonging to
powers of z between z*~*-! and z*~' are of no interest to us here. From
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(6) we see that the form of the coefficients is as asserted in the lemma
for k=1. Suppose now that the form is correct for k=v. Then using
the scheme (5) (removing a common factor of 2,) we can compute

3

p
&y ye1= /au,vau,ﬂ,v —  Xoyusy
2, 2

:Bl,v[’znA/J&:,v paliie zn—qu,v + 277.—;1.——1‘41,‘/]
_AJ,vUnBuH,v"l“ ¢ +2n-gBu,v+ln—M—1B1,v] .

Thus, «,,., has the form asserted in the lemma, with the 4, .., deter-
mined by the recursion formula (7). The other recursion formula and
the remainder of the lemma is proved in an exactly similar fashion.

LEMMA 3. For each 7, k, 0 <5 <n—k—1, 1<k<m, the 4, , and
B, . of Lemma 2 satisfy the following:
(1) A, is a polynomial in @, s, +- -, Wy AR A5, @, <oy A,
(i) B,y is @ polynomial in @, ts, «++, Gy and @), &, =, o,
(ili) B, s real for any choice of a,, as, ==+, Q.
(iv) A, =G+k—1)B B . B 10— A4,B B, 5+« By y-iBji-1,
~A,,Bi 3B+ BBy, — o0 — A i Br B
—~A B
(v) For any v,1 <, <"k
B, =B} ,B ,.Bi .. B, — A P =By e Ay -l
— By oo By Ay =
—B, By B ylALE .
Proof. From (6) we see that
A =705,
(8)
B =@+ 1a,;, (B,=2),

hence properties (i), (ii), and (iii) of the lemma hold true for k=1. Us-
ing the recursion formulas (7), properties (i) and (ii) can be verified
inductively for all & < m. Property (iii) is obvious from (7) since B,
:lBl,k—1|2_‘Al,k—lli-

Property (iv) is clearly true for k=1 from (8). It also can be
verified simply by induction on k.

Finally, property (v) is clearly true by (7) and (iii) for v=Fk—1 and
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any k, 1 <k <m. It can then be proved in general by backward in-
duction on ». Thus, from (7)

Bl,v:Blz,v—l - !Amz—ll:

and substituting this for one of the B,, factors in the first term of (v),
the corresponding formula for v—1 is obtained.

4. The reduction process given above must lead to R,,.,(z) == 0 since
R,(2) and @,(z) have all of their roots in common. Therefore the ex-

tremal function f(z), maximizing ‘Jt{ S Xva,}, must have |4, ,,|=|B, .| be-
y=2
cause of (7). We may now prove.

THEOREM 1. Let (a,, a3 ++-, @, )€ Vi, If (@, a3 -+, @,-y) S AR
wntertor point of V.., then C¥(a,, -+, a,-,) s a circular disc determined
by !A[,n—l|=Bl,ﬂ—l; Surthermore |A,,| < B, for k<n—1. If (ay *-+, @Gy-1)
is @ boundary point of V%_, them C*%(a,, - -+, Qn-,) consists of a single
point.

Proof. Note that the statement of this theorem makes the tacit
assumption that B, , (which is real by Lemma 3) is always non-negative.
This of course will be true by (7) if we merely prove |4, .| < |B,,| for
all k.

Given (ay, +--, @,-,) in V;_,, Lemma 1 shows that the cross section
C} is convex. Hence, given any point a, on the boundary of C, there
is a line of support for C} passing through this point, and therefore a
2, such that the function (or functions) belonging to this point satisfy
(2) and (3). The reduction process described above then leads to |4,
=|B, | for some m, 1 <m <n—1.

We now procede to prove the first half of the theorem by induction.
If n=2, then m must be n—1=1, and hence the function correspond-
ing to each boundary point of CF must satisfy |A4,,|=B,,, or, using the
values from (8), there is some 6 such that a,=2¢®. Therefore each
boundary point of CJF is a point of this circle and hence C3¥ consists of
the dise |a, < 2. However, a, is an interior point of Cj if and only if
lAml < Bl,l'

Now suppose (a,, ++-, a,-,) is an interior point of V;_,. Then a, is
an interior point of Ci(a,, ---, dy-,) for =2, --., n—1, and hence by
the inductive hypothesis |4, .| <B,, for v=1,2, ..., n—2. Therefore
m=n—1 and each boundary point of C} must, from (iv) of Lemma 3,
satisfy

1 Professor G. Pélya has shown the writer that the fact that the cross sections are
circular discs can easily be proved with the help of the Carathéodory theory for functions
with positive real part. The exact expressions for these cross sections found from (9),
(8), and (7) do not seem to be obtainable from the Carathéodory theory in any simple way
however.
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A,,B,- A LB,_,. A . B, _
(9) . = 1=ty 1,20 p -2 doeee PTTRIY & F,
(n—1)B,, (n—1)B,,B,. (7 — 1)B, B, s+ ++ By e

L _gl,njl‘_» S
(n_l)Bl.le,z"’BLn—z

=C,+¢°R, ,

for some ¢, 0 <0 <2r. Then expressions C, and R, are rational
functions of the a, and their conjugates and are defined by (9). In
particular R, is real and positive since B, ,.,=|B, ,-."— |4, .-, > 0.

From (9), each a, on the boundary of C;} must lie on the circle
with center C, and radius R,. This means that C} is itself this circle.
Thus if a, is interior point of C}, we must have |4, ,..|< B, ,-.. By
induection, the first half of the theorem is proved.

Now suppose that (a,, +-+, @,-,) is a boundary point of V;_,. Then
CHay, +++,a,-,) for p=2 -.-- v—1 and a, is a boundary point of
Cia,, ---,a,.;). But then |4,,,|=B,,-, >0, |4,,<B,, for p<v-—1
(and in particular B, , >0 for #=1,2, .-+, v—1), and B,,=0. Choose
a sequence of interior points {(a$”, ---,a$?,)} of V,_, which approach
(a,, +++,a,-,). For each such point, a$’ is contained in a circle (9) of
center C$ and radius RY’>. Now C, is a rational function of the coef-
ficients and their conjugates. Hence as j— o, C{” must approach
some limit, finite or infinite. However this limit cannot be infinite since
C, is always bounded (indeed |C,| < n because |a,| << n for starlike func-
tions). Thus the limiting value C, must exist and be finite. On the
other hand, the radius RY’ — 0, since by (v) of Lemma 3

Ro— _ Bh. - BEBR. B

(n=1)B -+ Bhos ™ (n=1BR -+ B

— B, N
=
(7’1/—- l)Bg',? e Bg,v—-l

Therefore, the cross section C¥(a,, -+, a,-,) consists of the single point
C,=lim C{. This completes the proof of the theorem.

Joo

5. With the help of the above theorem, we may now describe
something of the nature of the coefficient region V*. The region V} is
(2n—2)-dimensional and its boundary is a (2n—3)-dimensional manifold.
This manifold, however may be decomposed into n—1 parts. That is,
the boundary of V¥ is composed of [P, I, ---, [[&P, where [[

is a (2v—1)-dimensional manifold lying on the surface of V) and such
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that (a,, a,, ---, a,) is in |[[” if and only if (a, -, a,) is an interior
point of ¥V} and (a,, -+, ¢y,,) is a boundary point of V..
For example, from (9) we can explicitly calculate the first few cross

sections CJ, C¥, C¥. The boundaries of these cross sections are given
by

(10) 1,— 26" ,
(11) = 322 + ¢ 4“4‘“‘-’“ ,

da.0;, , (4a;—3a3)(6a,—2aia,)
12 _da.a;  (4a;—3a;)(6a,— 203
4 “T6 T e—ab

i (4— |,y — l4a, — a3l
+ ¢ ( .

6(4—la,)
Taking for example V7, the 5-dimensional manifold [ is defined by
(10), (11), and (12) as a, varies in the interior of the disc (10), a, varies
in the interior of the disc (11), and ¢ varies from 0 to 27. The 3-
dimensional manifold [[{* is determined by (10), (11), and

&
. 60, — 2axa,

=" 4 eLOG_aU 205 a,
6 6

as @, varies in the interior of the disc (10) and ¢ varies from 0 to 2x.
Finally, the 1-dimensional manifold [|{” is determined by a,=2¢%,
a;=3e¢"®, a,=4¢"? and 0 varies from 0 to 2.

As a final remark, we may note that the coefficient regions V) be-
come quite ‘‘ thin’’ as n becomes large. In fact, using (v) of Lemma 3

Bl,n-—l ) < B%,lBl,z e Bmz—z _ 2

Rn= - = y

(n— 1)31,1 s B (n— I)Bm oo B, n—1

and hence the radius of any cross section C; is less than or equal to
2/(n—1). This estimate in sharp since it is attained for a,=a,=---
=a,.,=0, the functions being

f(z)zz(l _ ewzn—])—‘z/(n_U )

Since a function f(z) is convex if and only if the function 2zf'(z) is
starlike, the structure of the coefficient regions for convex functions
can be determined directly from the structure of the coefficient regions
of starlike functions.
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