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Introduction. N. Dunford, in a series of papers [3, 4, 5], has
initiated the study of operators on Banach spaces that allow a represen-
tation analogous to the Jordan canonical form for operators on a finite
dimensional vector space. Such operators he has called spectral opera-
tors. They include, of course, self-adjoint operators which have found
such wide application to problems of analysis. J. Schwartz [9] has ex-
hibited an interesting class of spectral operators which contains many
classical ordinary differential operators. His chief tool was a pertur-
bation theorem that guarantees that if 7' is a regular spectral operator
with a discrete spectrum that converges to infinity sufficiently rapidly
and B is a bounded operator, then T+ B is again a regular spectral
operator. This result provides a tool for showing that second order dif-
ferential operators with suitable boundary conditions are regular spectral
but does not suffice for proving this property for differential operators
of higher order. This paper refines the method of J. Schwartz to allow
application also to differential operators of higher order by showing
that under certain conditions a regular spectral operator T may be per-
turbed by an unbounded operator S with the result that 7'+ S is still
regular spectral.

The paper is divided into three parts. The first part presents
preliminary notions and lemmas to be used in part II where the princi-
pal theoretical tool is fashioned in Theorem 1. Its object is to set
forth conditions under which an operators is spectral (see Definition 1).
This problem is attacked in the following form. Suppose that 7T is known
to be a spectral operator. Under what hypotheses on 7 and a per-
turbing operator S may it be said that the operator T'+S is spectral ?
An answer to this question is given in Theorem 1. This theorem is
then applied in the third part to differential operators of even order
with ‘‘ separated ”’ boundary conditions on a finite interval. First, the
simple operator defined by means of the formal differential operator

d
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Then, with the aid of Theorem 1, the perturbed operator

and ‘‘ separated ’’ boundary conditions is shown to be spectral.
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where @, may be any bounded operator on %(0, 1) is seen to be
spectral as well.

1. DPreliminaries. N. Dunford [3, p. 560] has laid down the
following.

DEFINITION 1. Let X be Banach space and 7 a transformation on
X to X. If E(e) is an operator valued function of Borel sets in the
complex plane and

(a) E(e)E(g)=E(e N g), L(e)=I—E(e), TE(e)=E(e)T,

(b) E(e)x is completely additive in e for each xe X,

(c) the spectrum of 7, with domain and range restricted to E(e)X,
is contained in the closure of ¢, and

(d) there exists a constant M such that for every Borel set e ||E(e)||
< M, then E(e) is called a resolution of the identity for T and T is
called a spectral operator.

The preceding definition covers a wide class of operators. In what
is to follow, attention is focussed on a very restricted subset consisting
of the regular spectral operators. The meaning of the adjective regular
is clarified as follows.

DEFINITION 2. An operator T is regular if the resolvent set p(T')
= ¢ and if for some 1e o(T), (T'—1)"' is completely continuous. (To be
abbreviated c.c.)

Note that the spectrum of the c.c. operator R, (T)==(T—2)"' consists
of a sequence of isolated points converging to 0.

It follows by the spectral mapping theorem [12, p. 324 et seq.]
that the spectrum of T congists of a sequence of points 4, converging
to oo,

In the sequel, the condition

[=X E()

shall sometimes be made in regard to the spectral measure of a regular
spectral operator 7. The above condition asserts that the spectral
measure corresponding to the point at infinity is the null operator or
11=0 is not an eigenvalue of 7-'. The existence of 7' as a c.c. opera-
tor may be assumed without loss of generality in view of the following.

LemMA 1. If 2, (T) and R, (T) s c.c., then R(T) is c.c. for all
reo(T).

Proof. The first resolvent identity [6, p. 99] states that for A,€ o(7T)
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and 1€ p(T)
(1) BAT)=R,(T)+ (21— 2,)B(T)R,(T) .

The product of a bounded operator and a c.c. operator is c.c. and
the sum of two c.c. operators is again c.c. Thus it is apparent from
(1) that RE,(T) is c.c. for all 1e (7).

LemMma 2'. If S is a closed operator and B 4s a bounded operator
and < (8S) D #(B), then SB is bounded.

Proof. SB is closed. For suppose that z, — x and SBx, — y. Since
B is continuous, Bz, — Bxz. But since S is closed S(Bx,)— S(Bxz)=(SB)x
—=y. Thus SB is a closed operator defined on all of X and therefore
by virtue of the closed graph theorem [1, p. 41] it is bounded.

LEMMA 3. Let J be a finite set of integers and suppose that B, is
a set of bounded operators and E, a set of mutually orthogonal projec-
tions®, both sets being indexed by J. Then

| 3 EnBull' = 3 {1Ball .

Proof. Let fe H and ||f||=1. It is an easy consequence of the
Hermitian nature of E, and Schwarz’ Lemma that

neEJ k

< SBS, BB S DB BB
< S |BE

In the sequel, reference shall be made several times to the following.

ConDITION A. All but a finite number of the idempotents* E(1,)
associated with the points of the spectrum of 7T project onto a one-
dimensional range and

I=§ E) .

For a regular spectral operator, the last statement is equivalent to the
assertion that the range of

1 If T is an operator then 7 (T) denotes its domain and (T its range.
2 An idempotent is an operator F such that F=FE? Idempotents F; and F, will be
called orthogonal if FhF.,=0. U IW=J* then F is a projection.
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E.=I->E,)

~Ms

consists only of the null vector.

CoNDITION B. Let d, denote the distance between 2, and the rest
of the spectrum of 7. Then there exists a number r > 0 such that

Sdim< .
k=1

For use in the theorem to follow, it is necessary to define explicit-
ly the concept of a fractional power for the special class of operators
with which the theorem is concerned.

In this definition an application shall be made of a theorem of
Lorch [8] and Mackey which asserts that if E(e) is a uniformly bound-
ed spectral measure, then there exists a nonsingular transformation of
Hilbert space into itself such that WE(e)W-' is a Hermitian spectral
measure.

Let T be a regular spectral operator on Hilbert space H which
satisfies Condition A. Let .77 be the finite set of characteristic values
2 for which the idempotents E(2) project onto ranges of multiple dimen-
sion. Let W be the automorphism of H into itself which carries the
spectral measure E(e) of T into the Hermitian spectral measure E’(e)
=WE(@W-" of T'"=WTW-".

Since E'(<°) | I—-FE'(7"), the two projections effect a unique decom-
position of H inte a direct sum

H=H ®H,
where
H=E(Z)H
and
H—={I-FE(7)}H.
Now
=T +T,
where
T=T'FE(7)
and

T, =T {I—E"(7)} .
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Upon restricting the domain of T to H, and that of T, to H, one is
confronted by a finite dimensional operator T{ and a normal operator

A

T,.

If —1<» <1, the function f(2)=2" of the complex variable 2 is
regular on the spectrum of 77 provided 0¢ o(T) (which is no essential
limitation of generality) and f(1) is restricted to its principal value.

Then, following Dunford [4], one defines

iiﬂ&jﬂ{

i=1m=0 m!

Ty = w(r=1)s - (v—m+1)2"E(2,)

where y, is the order of the pole A, or the resolvent and E"(Xi) is the
restriction of E’'(2,) to E'(.7°)H. Since T, is normal one has the spec-
tral decomposition

ﬂ=§aﬁm)

and by the operational calculus for normal operators (cf. [10, pp. 48-
51] for example)

oo N

(Toy =33 B ()

I

Now define (74)” and (7%)" by the rules
fie = (TYfi=@Yf (Tyfi=0
f.e H,= (T}f,=0 (T2 =TS, -
Then
(T'y = (T) +(Toy
and finally,
T = W-(T'yW.

The proof of the perturbation theorem below strongly depends on
the operational calculus for spectral operators developed by N. Dunford
and explicitly adapted to the case at hand by J. Schwartz [9]. For
the sake of ready reference the pertinent results are presented here.

If T is a regular operator with a finite set of characteristic
numbers

{217 2zy ccy Zn}

which are multiple poles of the resolvent and
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M

E()=I

k

]

1

and f(2) is a complex-valued function which is uniformly bounded on
the spectrum of 7' and possesses the required derivatives, then

v; =1

A =3, S A @—aypay s 5 ).

i=1 j=0

For such an f(7) Dunford [5] has shown that the series defining it

converges in the strong operator topology and that there exists a con-
stant K(T') such that

AT < K-max |A(].

On the basis of this result J. Schwartz [9] enunciates the
following.

LEMMA. If S is o regular spectral operator all but o finite set of
whose eigenvalues A, are simple poles of the resolvent, and +f S also
satisfies

2 E('zL)ZI )
i=1
then there exists an absolute constant K such that

1(A—8)"1 < K/dist (2, #(S))

for all 2 not within o fixed radius e of any multivle pole of the resolvent.
In the theorem below let it be understood that

P (T+8)=F(T) "\ Z(S).

2. The perturbation theorem. The principal result of the present
paper is the following.

THEOREM 1. Let T be a regular spectral operator on Hilbert space
H and suppose that +t satisfies conditions A and B. Let S be such o
closed operator that for some v, 0<v <1, Z(S)D FZ(T") and Z(S*)D
D(T™). Moreover, suppose that for all but a finite set P of positive
integers, for all

—

ie(fn?{/?\lﬁ—lnl= dnt’—ﬁ max 1~ M

e g

[V

Under the above hypotheses, T+ S is again a regular spectral operator.
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Proof. Since, for 1e o(T),
P ER(T)=2 (1) C D(ITNE 2(8),

SE(T) is well defined and is, in fact, by Lemma 2, a bounded operator.
By the same token ST-* is bounded. In order to show that 7'4+S is
regular, it need merely be ascertained that R, (T+S) is c.c. at one point
A€ p(T) and for this purpose we examine the formula

(1) BT +8)=R\(T){{-SR(T)}~

which is valid for 1€ p(T) provided only that {I—-SR,(7)}"' exists. If,
{{—SE,(T)} ' not only exists but is also bounded, then R,(7'+S) as the
product of a c.c. and a bounded operator is itself c.c.

But the hypotheses of the theorem allow one to state that
{I—-SR\(T)}'< 2 for 2e C, and all »n sufficiently large. This is proved
as follows

SEAT) =ST-1"{ 21 =T}~ =ST~{(A=T)I""} " .

By Dunford’s operational calculus and the hypotheses of the theorem it
15 true that

L=y < M, max 1< L

O
Let ||ST||=M,. Then
I3 {1 ()1 ,,/Mljwj Vl
(2) ISEI 0 =

and since in view of Condition B, limd;"*-=0, one has for all » suf-
ficiently large ||SE,(T)|| < 1/2 while 1e C,. From this estimate follows
the possibility of expanding

(I=SR(T)} = 1+ SR(T) + (SET)+ - -
in an absolutely convergent series so that

‘ (T SR.(1 1]« 1 I
(3) W =SETR T 5 =2

|

[t 1s immediate from the above that if 1 lies outside the assemblage
of circles C,, then for each g, € 4(71) we have

V2
A=l 1=l

where 1 is the intersection of the line connecting 2 with g, and the
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circle C,. From this, the above estimates follow a fortiori. Consequent-
ly, except for a finite set, all points of #(7'+.S) lie inside the circles C,.

In order to show that the spectral measure {E'(2;)} of T+S is
uniformly bounded it is convenient to assume that the spectral measure
{E(2)} of T consists of Hermitian idempotents, that is, that F(1,)=E(2,)*.
That this assumption may be made without sacrificing generality is due
to the theorem of Lorch-Mackey. It must be verified that if T and S
satisfy the conditions of the theorem so do T"=WTW-! and S'=WSW-'.

(a) o(T")=0o(T). For suppose iep(T). Then R(T) is a bounded
operator. But

WI~T) " W-'=(L— WT W)~ == —T")

is also bounded. Hence o(T)=p(17") and the result follows on taking
complements with respect to the extended complex plane.

(b) dim WE(2,) W-'=dim WE(4,) < dim E(,) .

However, since W is continuous, with a continuous inverse, it maps no
nonzero vector into zero and thus, since dim E(1,)=1 for almost all %,
the same is true with regard to WE(,)W-'. Also

0=W<I— é‘,lE(xk))W—I:I—— ilWEW

() fe Z(WD'W-)=> W-'fe U (T)= W-fe I (S)=>fe ()

and similarly for the adjoints.

In the remainder of the proof it shall, therefore, be supposed that
the spectral family E(2,) consists of Hermitian idempotents. For con-
venience, the primes introduced above shall be suppressed.

The proof of uniform boundedness rests on the formula

(4)  RB(T+8)—R(T)
=RAT)SE(T)+ B(T)SE(T)SEN(T){I—SR\(T)}

which is easily obtained from (1) and the operator analogue of 1/(1—x)
=1+xz+2*/(1—=z), and on the basic relation

(5) EQ,)— me. 3{5 R(T)2.

Let J be a finite set of positive integers all of which are sufficient-
ly large that is, NeJ — N> N,. The nature of N,(T, S) will be
specified somewhat more precisely in the sequel. Then, on integrating
both members of (4) one finds that



PERTURBATION OF DIFFERENTIAL OPERATORS 1413

(6) 113 E,—EQ

v 1 j> RT)SE(T) 2 “

-+

Y j> B(DSEDSRAD TSR}~ |

nEJ 27‘[

where E, represents the spectral measure corresponding to that portion
of the spectrum of 7'+ 8 which lies inside the circle C,. In order to
place bounds on the right member of (6) one employs a well established
inequality for operator valued functions A(2) analytic on a contour C

of length L [12, p. 324].

|

Applying this result to the second term of the right member of (6) one
finds

5 gb RA(T)SRA(T)SRA(T){I SR,(T')} ~'d2 "

neJ 272‘

§§:1

B ISE(DIFHI ~-SRAT)} - lII
Now using inequalities (2) and (3) to estimate ||{I—SR,(T)}"'|| and
NSE\N(T)|| and Lemma 3 of J. Schwartz reproduced above, one obtains
for this term the bound
1 « M M &
>,

Qmicy d; '” 27r n}Jldz <

The term

5 HC R(DSE(Di ”

n6127‘[

requires closer investigation. By employing the representation

E(4,)

R,\(T)= 0 +R'(4,)+ AfA—1,)

(s

where A,(A1—2,) is a power series in 1— 4, without constant term and,
applying the residue theorem, one finds that

= . RADSE(T)AI=R)SEQ,) + EG)SR ()
s g,

1t remains to find bounds for
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| >€4J E(2,)SE(4,)||

and
I 20 RU()SEQ) -
neJS

On observing that

[l X R (L)SE@I= | 3 E()S B (4"

and identifying SR(4,) is one case and S*R'*(2,) in the other with B,
of Lemma 3, one sees that the terms in question are bounded by

ISR

It is not difficult to estimate ||SR°(4,)]|]. Again turning to the
device

ISE QN = IST=(| [[T"B (Al

and noting that

10(2,) = lim (1) — E04)
" .’/\'/Z x - 2'/1,
one has
Ri1)= 3, B
k£n An— ch

(In this formula, in order to avoid notational complications, the effect
of the finite set of multiple poles of the resolvent has been neglected.)
One sees that R'(1,)=F(T), where F(2) is defined in the neighborhoods
of the spectral points 2, as follows:

1
F()= {zn —

0 2 near 7, .

A near i, k% n

Consequently, 1"P'(4,)=G(1") with
2\/

0 A near 2,

A near 2, k% n

Now applying the bound arising from the operational calculus one
obtains
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ISE QNS USTHIG)) = MM, max |G -
o(1)

Let pecC,.

N T
D= 2 == Rl —#1-1‘
[A—pl
< le . < - 3 Hvl
- gl 9”d —1\ 2 li=pl

Using the hypothesis made with regard to this function one finally has

At

ISR < Y S M, dnu e

Now one is prepared to state that

> j) RDSRT) n 20 S ;7 <o

nEJZm,

Thus
IIZ_J (B —E@DI < K.

If it were known that ¥, is the spectral measure corresponding to one
point of the spectrum of 7'+ S, the proof of uniform boundedness would
be complete. The next few lines shall be devoted to showing that,
indeed, except for a finite number of indices, in every circle of radius
id, about A,e€ s(T) there lies exactly one point 4,eo(T+S) and the
spectral measure E'(1,) corresponding to this point has a one dimensional
range.

In (6) let the index set J have n for its only member. Then one
sees on examining the estimates of the bound of the right member of

©),
K/ .

(7) B2 B <

For # sufficiently large

K _1

> ~ 2’

which by Lemma 4 of [9] (also c¢f. |10, p. 320]) implies that E; and
E(1,) have the same, dimension, which by hypothesis is 1. Therefore,



1416 HENRY P. KRAMER

(T'+ S)E;, considered as an operator on the range of E, is a scalar 1, and
precisely one point 1, € s(7'+S) lies in the circle C,.

Thus T+ 8 is a regular operator with uniformly bounded spectral
measure and is therefore a spectral operator. (cf. [9, Lemma 2].

From the foregoing proof flow two consequences deserving of ex-
plicit mention.

COROLLARY 1. The operator T+ S satisfies Condition B and for all
n sufficiently large |2,—a,|< id, .

Proof. In virtue of the remark following inequality (3) of the
proof, all but a finite number of the points of o(7'+S) lie inside the
circles C, with center at 1,¢ o(T) and radius id,. Moreover, the dis-
cussion following (3) shows that except for a finite number of indices
exactly one point 1, of o(T+S) lies in the circle C, about 2,. Now
suppose A, € o(T+S) and its nearest neighbor is 1€ o(T+S). Then

dllc= Hllc“ A;—l‘él%_ )‘lcl + ch_ x16-1! + V‘Ic-—l_ Zl,rx‘ll
<1/3d,+d,+1/3d,-, <5/3d,,

and

It is of importance to know whether the perturbed operator 7'+S
still enjoys the ‘‘ completeness’ property

S E (=1

with which the unperturbed operator 7' is endowed by hypothesis.
The answer is given in the following.

THEOREM 2. If T and S satisfy the conditions of Theorem 1, then
;E’(A;):I .

Proof. The proof rests on Lemma 16 of [9] which states:

The space S.(T)== {f\| for each positive integer k, F(2,)f=0} is the
set of all fe H for which f()=R,(T)f is an entire function of 2.

Suppose C is a contour in the complex plane whose minimum dis-
tance from the spectrum o(7) is d(C). Consider the function
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0, =1
A—p
for e C and peo(T). Now let 2 e C be such that dist (¥, o(T"))=d(C),
and let p, be the point in «(7") such that dist (2, g,)=d(C). Then

s ml< e cagage
By choosing C properly one can achieve that [[SR\(T)|| < 1/2 for ieC,
and, therefore, a fortiori, for 1e C. Hence, by (8) [[{I—-SR(T)}!||< 2
and by the above cited lemma, for fe S.(T), one then has for 1e C

IEBNT + S | =\BAT) {1 — SEA(T)} 1]

k/
g’d(c) [rale

Now, given ¢ >0, choose C in such a way that £/d(C)<e. Then

HENT +S)f I el

The arbitrary nature of ¢, the fact that f()=RJ(T+S)f is an entire
function of 1, and the permissible application of the maximum modulus
principle allow one to assert that for all 2 in the interior of C,

R(T+S8)f=0.

In particular at points 1€ o(T), R\(T +S) has an inverse. There are such
points in the interior of C. Thus f=0 and the theorem is proved.

3. Application to differential operators of even order. N=2p.
In appliying Theorems 1 and 2 to differential operators, the unperturbed
operator 7' is identified with the operator r=d"/dz” with domain
restricted by the two considerations:

(@) feZ(T) only if feC¥ 0, 1) and %;;é is absolutely continu-
ous, and

(b) fe =2(T)only if f satisfies N=2u linearly independent boundary
conditions of which g bear on the point =0 and ¢ on the point z=1.
These boundary conditions can always, by linear combinations, be brought
to the form

k.-1
AL =FE(0)+ 3, a1 (0) i=1,2, -, p
> k> e > h,



1418 HENRY P. KRAMER

li—l

(8) B{N=f W)+ 38,00 i=1,2, e, p
Ll >,

To show that 7' is a regular operator it is most convenient to refer
to Lemma 10 of |9, p. 434] which states:

Let T be a differential operator and suppose that for some complex
2 both T—2 and T*—2 have an tnverse. Then T and T* are regular
operators, T and T* have spectra related by o(T)y=o(T*), and determine
spectral measures E, and E, related by E(1)=E} Q).

Consider the differential equation (r—2)f=0. By manipulating a
tentative power series solution it can be shown in an elementary fashion
that there exists a set of linearly independent solutions which are entire
in the parameter 2. Let this set be {u,, w%,, ---, uy}. The general solu-

tion of the above equation can then be expressed in the form:
N
f(x)=Z‘lCiui(x, ).

On imposing the N linearly independent boundary conditions, one obtains
a system of N homogeneous equations in the N unknowns C,. This
system has a nonvanishing solution vector if and only if the determinant
of the matrix of the coefficients vanishes. This determinant, however,
being a linear combination of entire functions in 1 is itself entire.
Hence its zeroes are isolated. Thus, for all but a countable set of
points 2,, one finds that f(x)=0, and thus (T'—1)-' exists. But, since
the adjoint operator also has exactly N linearly independent boundary
conditions associated with it, it follows by the same argument that there
exists only a countable number of points p, where (7*—p,)" fails to
exist. Consequently, one can find a point 1 such that both (7'—2)-!
and (T*—2)"' exist and, therefore, by the cited lemma, 7' is regular.

It shall now be verified that T satisfies the spectral Condition B.
This will be accomplished by showing that the above boundary conditions
are what Birkhoff [2] has called regular. To clarify the meaning of
this term the technique for obtaining an asymptotic development for
the characteristic numbers and functions established in the general case
by G.D. Birkhoff [2] and amplified and developed rigorously by J. Ta-
markin shall here be briefly recapitulated.

Since there are N linearly independent solutions of the equation

i,

da™

a solution of the boundary value problem must have the form
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)= ﬁ Cau(a) .

The requirement that A,(f)=B,(f)=0 leads to a set of NV linear equa-
tions in N unknowns {C,}. A necessary and sufficient condition that
a nontrivial solution {C,} of this system exist is the vanishing of the
determinant, of the coeflicients:

Al(ul) et Al(u’l\’)

A;(ul) oee A#('u,v)
B;(U/l) s Bl(uN)

4(2) =

B, - B,(uy)

It should be noted that the solution is unique provided not all of
the first minors of 4(2) vanish, that is, in this case, the characteristic
value is simple.

A fundamental set of solutions of the differential equation

af
S =7
o=

consists of
w,(x; X)= err”
where

/{I/}\' :{): Ml]/l\’ei(llN) arg A

and o, are the N distinct Nth roots of unity. The transformation
p¥=2 transports the entire A-plane into a sector of angular width 2z/N
of the p-plane. There is, then, a biunique correspondence between the
zeroes of 4(2) in the 2-plane and the zeroes of 0(¢) = 4(p”) in a sector
of angular width 27/N in the p-plane.

The elements of the determinant &(p) can, by (8) be written as
follows:

kz_l 1
Ay =pt ot S SO = pr g+ 4,

‘“Ic,,——L

1.—-1
X PROX

Bw)=pe ot S L homitop+ B)
$=0 ‘()'i

where lim A;,;= lim B,;,=0. After removing the factors p";, p% from -

Ipl—>or tpl >ee
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the rows with index ¢ and ¢+ p one has

wn+ Ay, oAy ceeom + Ay
) oo ofe+ A, i+ A, cecwfr + Ay
J— +1L,
) =11 :
=1 e (wh + B)er (ol + By) - -+ ¢°v(wh+ By)

(i + B )i + Bya) -« - v (wyn+ B,y)

The sector S shall now be chosen in a convenient fashion. To this
end, it is proper to distinguish between two cases:
(1) p is even

Q:{ — T <ar gl‘i}
’l 2 2
(2) pis odd

Sz{pIOSargpé»q .
/l

Let w=¢"'*. Then in the first case, for arg p=0
R(paot?)=N(po=+*)=0 .
In the second case
R(pw ™) =R(pw~*+12)=0

for arg p=n/2¢. Suppose the indexing is arranged so that in the first
case

ey~ 2 g2+, 21 o u2 21 321
W= y Wy=0Q , , W, =@ y Wy 4=, Wy 4y =@ y T, Wy, =@

and in the second,

s =212 S yelf2ET(2 22 ’ 2= o 3umf2=3]2
w=w , W= , y W, =W y Wpp1 = , y Woy = .

Upon bringing ¢+ out of the determinant wherever N(pw,) > 0, one
has

" HH1
ap)=1I1 p"*" 1 e™id'(p)
i=1 i=2

where &'(p) has the appearance
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k
ot + A, [ ol + Ay

. .
k I
Wik + A;u w4+ Ap.,ux

e 1(wh + By) epw*‘“(ww ut Bl;f.+ 1)

(@l + B,y)

o'(p)=

tol
epm"“(wyﬂn + BW.+1)

Here, 21" and B are matrices consisting of #—1 columns and g rows
all of whose terms have for a factor an exponential term with negative
real part. Asymptotically, these matrices are therefore negligible.

x k
1 1
U)wz‘l"AmH' sy, + AIZM
.
.

W =

. . k

(Up,g:z‘l‘A,u.;L+z. . -wmf-l-A,m,.
6"“’2((1)51 + Bm) cee epw"(w;il + BW)

*B’:{ : }

e‘““’Z(méﬂ» +- B,U-Z) s eﬁm"(“’i’“‘ + Bw)

Thus
. !
(1)#1“ Cl)i1 a)fl w;L1+1
o'(p)=er| AT - B perousr | o | B + O(1/p) .
or . . °
w5 wlp. wle Wi

Only the ecase in which ,: is even shall be considered explicitly since
the treatment for ;2 odd is completely analagous. First note that

—wi[2

w =e =—1
and
Wy =6""=1q ,
Thus @,=—w,+;. Now let z;=0o" and y, =o% The conditions that

o>k, >+ >k, and [, >1,>:--1, and the fact that w=e"" is a
primitive root of unity imply that z; %z, ¥, %y, for i=%=j. Recall that
by the arrangement of the indices, w,=w(-*D+5-1=¢=#2y*-1  Therefore,

(I_)I;'i :(u(—uﬂ)k[w(s—-])kl. :xi—uﬂxgs—])
and

(Ug‘ﬁ —_ (1)(—“/2)15(8_1)11=y;“/2ygs—1) .

Using now the explicit representation of 27/ and B’ given previously,
but taking only zero order terms into account, one has
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= iLf2 ]2 +1 — ]2 a2~ 1 —f2 ]2 -2, =1
artat,  artPalrt, et Pe T Lyt yrt iy, e iRy

— ]2t — 2t 1 — )2 21 —pf2 =2, ]2, =1
o'(p)=e" wy "y, gty e, el Y Yy, eyt Yl

o e [2 ol — {2 2 et ] 220 1 =2 —f2 - -
|'/I’p.w ',I/ﬁ, m‘w‘k ’ Q’MM ‘%t+ s ° %y Q’MM/ 37““ !/;L'L/ s ?/u”/ Yy * 0y ?/,L’L/Zyﬁ !

—1]2 e 21 — 2020~ 1 -2, — 2 1 ]2,
R I N Y Y, ey Ty

2 a4 — 2201 —uf? — ez =1 =
7oy | By R o T Y Yty ooy Yy, Yl “"yé‘

'AMZ —:L/Z WOES - ‘v‘,z 2L —1 - ,.2 - " 2, -1 z 2,
Ty Ty E e, Ty H x yuw Yuy*ty yuw ?/ﬁ » Yu wl ?/it

+O(1)p) .

By bringing common factors outside the determinant, one can simplify
the expression for &'(p).

1 & --e 2! 1 gy eyt
o {0)=e"" ]ul iy el 1 @y --c b O
i=1 PO . .. .
IR P PR I R
1 ot eee ot 1 oy -eeyf oyt
pom [Laeryre| Lot L g g o).
i ‘,r,.;i+l .. LY:'i’L“‘ j ?/;L Ve y;_z’ y,i—]

The first determinantal factor of the second term above can be treated
by noting that 1=x* and switching columns gz—1 times and then bring-
ing the factor a* outside. These manipulations yield

1 @ eeat! 1 gy vee oyt |
M=o [T attgre] Loas et L g e gt
: : . :
1 Tu o a;ﬁ“‘ 1 ?/iu ces ?J.ﬁ_‘
1w eee ™ 1y oot
— ﬁ il 1 a, «-- b’ 1oy ooyt |4 o) .
- : : :
| 1 a;#»'ax}f:—‘ 1 %ﬁ—t

Now note that the determinants involved in the above expression are
Vandermonde determinants. But such determinants do not vanish
provided only the entries (a, @, ---, ®,) or (v, %, -+, ¥.) are distinct.
That this is the case was demonstrated above. Therefore, the given



PERTURBATION OF DIFFERENTIAL OPERATORS 1423

boundary conditions are regular in the sense of Birkhoff since in the
equation

0'(p)=0,+ 0,61+ O™

not both 6, and 6, vanish. Tamarkin [11] who examined *‘ separated ’’
boundary conditions failed to reach tbis general conclusion. By includ-
ing common factors in the term O(1/p), the equation '(p)=0 can now
be written in the form

I3
e1i—e~*1 ] yi+0(1/p)=0 .
i=1
But
Yi=w'r, =Mt =g =(~1)% .
Hence, on multiplying by e ", one obtains

ezpwlz(_ 1):’1‘;=llk + 0(1/‘0)

or

e®'=(—1)*-1%+0(1/p) .
On taking square roots of both members, one finds that
e’ = £(1+0(1/p))
or
"=+ (14+0(1/p)) .
Taking logarithms of both members and noting that
log (1+0(1/))=0(1/p)
results in the expressions

pre=n]2+ 2k + O(Lp)

(9)

pIIk:”/2 + 27k + 0(1/(0)
or

pre=2rk+O(1/p)
(10)

Prn=m+2rk+0O@1]p) .

By neglecting the terms of order 1/p first estimates may be obtained
which may then be inserted in (9) or (10) with the following results:
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,:“(Zﬂ]b)jl—{— + z(k)}

4k k*
(11)
— 1, Euk)
P11k (2/475){1 4k+ B }
or
_(2ﬂk),{1+E1(k) }
(12)

Priv= (27rlc){1+ o Z(k)}

where the E(k) and E,;(k) represent bounded functions of .

It should be noted that (11) and (12) are valid not only in the
case in which g is even, but also when gz is odd.

Reverting to the i-plane one finds that

(27rk)”‘{1 Iy 20 }

2k p
(13)
Arrp= (27Tk)2“‘11 — zﬂk + EI];(,]C,)},
or
A= (Zﬂk)g“{l + Eflg@, }
(14)

o= (@l { 1L 4 HnlOL

Since the zeroes of 4(1) furnish the poles of the Green’s funection,
one sees that all except a finite set of characteristic values of T are
simple poles of the resolvent. This does not, however, assert anything
about the number of linearly independent characteristic functions as-
sociated with each characteristic value. This matter will be dealt with
below.

From (13) and (14) one obtains expressions for the distance separating
the points of the spectrum (7).
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Ak — Arenl= (277]5)2”1 g + E}gfﬂ)}

=(2ﬂ)wk2u—1{ﬂ _{_Eg‘:)} .

HIk+1_ 11k1=(2ﬂ)”k2""1{2#+g](6k)}

so that in any case, for z > 1/2¢—1
2 a7 < oo
k=1

This verifies that Condition B is satisfied.

In view of a prior remark it is merely necessary to exhibit a non-
vanishing first minor of 4(1) in order to permit the conclusion that all
but a finite number of characteristic values are simple. Moreover, since
A(2)=F(p)d'(p) where F(p)=£0 it is sufficient to find a nonvanishing
first minor of &(p).

Reverting to the expression for ¢’(p) and singling out the minor of
the element in the first column and 2pth row results in the exhibit:

k
1
Wy + Al,p+1
A : : AT
. w by + Ay
M= (=1 Z
epw’”l(wy.l—n + B1,u+1)
. %/I[

EB’I

-
ePrei(wfy; + B, uh0)

Here B and B’ are obtained from B’ and B by deleting the last
row in each of these matrices. On expanding M,,, in terms of the
% ¢ minors occupying the first # rows and their complements and not-
ing that all the terms of 2’ and B’ are negligible in view of the fact
that each has an exponential factor with negative real part, one has

14

1 1 i
., cee Wi

.

ky ky k)
Wyh1 Wyag ® 00 Wy
. . .

Myg=een L0 G +0Wp).
. 3
—1 -
W Ol rer 0l | @F T e @ BT

In the previously employed notation, z;=w":, y;=a", one can write M,, ,
in the form:

1 @ eee o™ 1y oo™

J -1 | Bl -1

M,, ,=en+1 j!]l a1 R A N | BRI SRR
= i=1

: -

Yu-1°"° Y1

—e

. . .—1
1 xM ...xt
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Again, the Vandermonde determinants appearing above do not vanish
because the z;, and the y, are distinct. Upon using the previously deriv-

ed expressions for p,, one sees that Ie"k“’wlli»l. Hence, it follows that
M,. .7 0 except, possibly, for a finite number of indices %, and thus
all except possibly a finite number of characteristic values are simple.

In order to show that 7' is spectral, it is necessary at this point
merely to establish a uniform bound on the spectral resolution E(e¢) of
T. But because T is regular this is tantamount to giving a uniform
bound for sums

SEG)

whenever J is a finite set of indices. In establishing such a bound,
the finite set of {2,} which are multiple poles of the resolvent or multi-
ple characteristic values cause no difficulty. Therefore, it shall be sup-
posed that FE(2,) projects onto a one-dimensional range. One can
construct E(2,) explicitly by drawing on Lemma 12 of J. Schwartz which
states:

“Let E be a projection of B-space X onto a finite dimensional range,
and let £*: X* — X* be its adjoint. Then if ¢, -+, ¢, is a basis of
EX, we can find a unique basis of ¢, --., ¢F of E*X* such that
¢*(¢,)=40,;,, and then

Ef= 3, ¢di(f)

for any fe X.
Now let ¢, (x) be the mth characteristic function of 7, and ¢,.(z) the
corresponding mth characteristic function of 7*. Then

[, eu@. sty
B f=
[, u@pnio)de
Now suppose that
(15) ¢uld)=0,(2) + = K(m, 2)
m
(16) ¢ (2)=0, () + LK (m, z)
m

where K(m, ) and K.(m, x) are uniformly bounded in m. Then

v, 0. (@K (m, y)  K(m, 2)0,(y)  K(m, 2)K(m,y
ool )=0, ()0, @) + O ). Kl ©0,0) | Holom, ) Kolom, )
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and

S 9071 (x)sljm(x)dx (907” ‘/‘)n)““om” + (077 ’ K ) + (Kl’ 077!) + (Kl’ K)

Upon inserting these expansions in the expression for F(1,)f above, we
get

[ @T @ | O @R, )y
EQ)f=2" g llm) Jo o S T
10.1F m 10,

L 5 DDA [ Ko, 9K, ) 0

m 110,11 m* TR

_Emf+ EmAmf—l_vBmEmf"*- ﬂ
m?
where l:)'m is a Hermitian projection since its norm is unity and it is an
integral operator with symmetric kernel and A4,, B,, K, are multipli-
cation operators that are uniformly bounded in m.

Now if J is a finite set of integers,

Il 25 B2l =i EE I+

nes 1

Z*l

nEJN*

-K,

The first term is bounded by 1 because of the Hermitian character of

the idempotents. Applying Lemma 3 to the second and third terms
yields the bounds

sup 1|14, Iingw%z
and
sup |13, | ﬁg .

For the fourth term one has the bound

sup [ K| Z =

n=1

So that, granting the above representation for the characteristic fune-
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tions of the operator T and the adjoint 7%, one may draw the conclusion
that T' is spectral.

In order to exhibit ¢,(x) and ¢,(x) in the forms (15) and (16) it is
necessary once more to resort to an asymptotic development. (cf. p. )

2
Spm(x) =t=21 C{M/i(.’l?) U z(w) =@Pm®i®

2
(17) Ozg; C;A(u,)
O:g—l‘ C.B,(u,;) 7=1,2, -, p.

From the compatibility of equations (17) it follows that C; is proportional
to the minor M,,,,; of the element in the #+1 st column and the ¢th
row of the matrix. This gives then the representation

ofi+ 4, o+ Ay, cer wfitAy
. . :
. . .
(D]fl*+Am wf#—!—Am coe wll\%f--{-ApN
q?m(x) ~ e n1® 2 m?" e e meN®

(@it By) ¢us(@p+By) -+ ¢yl By)

e nywir+ B,,) en®s(wip+By) -+ enNwy+ B,y)

Here and in similar expressions to follow, proportionality factors are
freely discarded. Since the above determinant closely resembles &'(p),
essentially the same techniques that were successful before shall be
applied again. For k=2, 3, ..., # we have N(p,».) > 0. Bring e"n“s
outside the determinant.

wlfl'l‘Au { U)}LJ..X-I-I_,_AL,U.+1
: %I} . {9111}

. ke
L3
a)ll+Ap-1 wy.’il—{—A;L,}L-l-l

gpm(a;) ~ ePm®1® epmmk(x—-l) ePmPu+1" Pk

ur(wfr+ By) (@1 + By )
. {%I} . {%_II }

. L
epmwl(wi” +B,u1) ep’"w“ﬂ(wf[:i + BM IL+1) ’

The entries of the matrices 2’ and B* are all negligible for large k.
Expanding the above expression one obtains
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epmmz(:c—l) e eomm“‘(m—l) P nPu+1®
ot )
@n(@) ~ e wéz ces (ul.fz e"n:“’una)jﬂ
) : : : )
(Uél«’o oo a)'fp, epmw'h+1(1)MlJ‘+1
E epmwlm epmw‘z('f—l) oo epmm”‘(:c—l)
wpn1+1
T | el ol e | o))
ok . .
wuil . : :
Gpmmla)ip. a_)é,u. cee (I.)}fu.

Recall that the two determinants involving 2** are proportional to lowest
order in 1/p and that the factor of proportionality is +1. Hence, on
incorporating this factor in O(1/p; x) and bringing e’»“w+1 and e’n*1 out-
side the determinants one has:

!
Som(x) ~ ¢ Pm®1 (leZ
.
.
whp
epmml (z-1)
12
4 epm,ml w2
Wl

Gpm“’z(z—l) .. epmw}h(x—l) epmw”‘_‘_l(x—l)

1 2
PR wl‘bz wu+1
. .
‘L ‘2,
cee Wk Wys1

En®2Ci=1) L. gPuouE-D

a);‘a .o a)}iz

+ 0,(1/p) .

wé,u, s W

It should be noted that except at z=1, the terms e”n“s(-D7 k£1 are
negligible asymptotically since R(p,wi(x—1)) < 0. Now using the pre-
viously obtained asymptotic expressions for p,, one finds that for x %1

wgz N w’iz
Spml(x) ~ g imi(m+l/Dz . .
2
wlp wee @)

. e27ti(m+1/4):c

+ O(1)m; )

Sp7nll(x)~e—27li(m—ll4)x .

_ ethi(m——l/tl):c

. + O(1/m; x)

Wl ee @
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or else
a)éz (UJM
Spml(x) ~ e—ﬂm""bt :
Wi wle
3
whe o w2
— gimimz . -+ O(l/m; 117)
wéu w,ff*
1
Wy2 w, 2
(Pmn(m),ve—ui(mq-llz)z .
Wl . wlp
wéZ Cl)’i'lz
— grri(meDa| | : + O(l/m; x) .
wé“ . a)}fu

On incorporating common factors that are uniformly bounded with
respect to m into the terms O(1/m; x) one has

¢m1(x)= Sin 277(')’)/1, -+ l,>m + {{M
4 m
(18)
(Pmll(x)ZSin 27T(m—- %,>x+ &%Lxl

or

SDmI(m) - Sin 2rmax + Igli(?;n’rx,)

m

(19)

¢nr{&)=sin 27r(m+ 1 )x-l—gi’ (m, x) .
2 m

Thus the characteristic functions of T have been brought into the
desired form. Note, however, that since r=d”/dz" is formally self-
adjoint, T' and T* differ only in the boundary conditions. But it is a
simple matter to see that the boundary conditions of 7™ will again be
of the ¢ separated ’” type (cf. [7, p. 186]) and that therefore all the
developments leading to an asymptotic expression for ¢,,, and ¢,,,, will
be the same as those that served to find (18) and (19). Now note that
the first terms in (18) and (19) in no way reflect the quantities occur-
ring in the boundary conditions. Therefore it may be concluded that
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¢ (w)=sin 27r(m + 1 )w o+ Ku(m, )
4 m
(20)
S‘bmu(x): sin 27!(’)’)’2, — 1).’17 + 17{21117111(13)_
4 m
or
‘rbml(x) == Sin 2rmax + 'KLI(Z’/L’*QE)
m
(21)
‘Ibmll(x)=sin 27T<m + ,1,>m+ ’l{}ll (m,w) .
2 m

By what has preceded, then, it may be concluded that T is spectral.
To complete the verification of Condition A for 7 is still necessary
to show that

i E(2)=1.
To this end note that

lim

Mm—> oo

=0

(=32 00)-(1-25)

k=m

so that in virtue of the fact that E‘k is Hermitian and the above cited
lemma of J. Schwartz and F. Wolf, the range of

I —}; E(%)
for sufficiently large m is finite dimensional. But in his Lemma 15

J. Schwartz asserts that

S ={fIE4)f=0, 0k <}

is either infinite dimensional or else the null space. But since

S.. < range (I-— i E('ﬁ-)) )
k=m

the above implies that S. is finite dimensional and hence consists of
the null vector alone.

It remains to verify the special hypothesis placed on the spectrum
of T in Theorem 1 and embodied in the requirement that for all suf-
ficiently large N, for all
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_ =1
le CN_MIA Iyl SdN} :
iz/c\ C
R Ti—al ~ ap
where
dN:diSt [y, G(T) ~ {AN}] .
First observe that if N=Fk,

Tzl _[Anl”
[2—2 dy
and if N4k
2" 1 AN wle 1 A |, q)
SR = - + < TN+
HN_ZICI IDNkll Y l B lDNIcP v{ Icl }

1 {VN\ paf by

ai =4,

—
\

Dy, = (z,—Ay)e™.

In any case, therefore, there exists a C such that

max [2]” < C‘Mglz

2 €0 |1 —2,| dy

Now recall that according to the previously obtained asymptotic formulas,
Ay ~ N* and dy ~ N*-'. Hence

BJXIJ ~ N2f/.(v—1)+1 .
dy

Convergence of

301
&g

=9

is assured for = >1/2¢-—1. It is thus required that 2p(—1)+1 <—
This requirement is satisfied by taking v < (pz—38/4)/¢ and, a fortiori, by
the choice v=(2x—2)/2p.

Finally. it is necessary to determine the class of operators S for
which & (S) > &</ (T*). To this end it shall be shown first that if
fx)ye & (T), then fl(z) is »=2u—2 times differentiable. Suppose
feZ(T). Then
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f@) =S EQ)S -
If this series is differentiated termwise 2#—1 times one has formally,
(=11 @aye ok 12y
{S sin 2a(k+1/4) sin 2n(k + 1Ay fy)dy + 5= g’ f )}

But this expansion converges for fe Z(7”) almost everywhere to

fe=2(z). Now let S be any closed operator whose domain consists of

21 —2 times differentiable functions on the closed interval (0, 1) such

that the (2¢—2)nd, derivative is square-integrable. Theorem 1 applies.
Thus in conclusion one has the following.

THEOREM 3. Let 1" be the operator d*[da™ with boundary conditions

LAY

AL)=FE(O)+ 3, FO0) i=1,2, 0,
by >Fy > - >kfl»

B(H)=5 W+ S, s i=1,2, 0, p
L>L>>1,

then, if S is any closed operator whose domain consists of 2p—2 times
differentiable functions [ with [fe2(@)e <50, 1), T+ S is a spectral
operator and, f E(A,) is its spectral measure, then

I=

||M8

E(4) -

In particular, one may make the following choice for S:

L@@ T+ @)

k-

where the coefficients ¢,(x) € .%(0, 1)>. More generally, S may be chosen
in the form:

2, 2 2 3
de’h Qadf +e+Q,,

p dx?-3
e NT)te tjﬂat the theorem actually holds for the wider class of boundary value problems
in which the 2x—1th derivative can be eliminated by a standard change of dependent
variable [7, p. 72],
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where @, is any bounded operator in .%5(0, 1).
Application of Theorem 2 shows that if fe .2 (0,1) and E(4,) are
the idempotents corresponding to 7'+S, then the series expansion

f= S EG)S

converges in .~ (0, 1) norm.
An additional consequence of Theorem 8 and Corollary 2 of [9, p-
448] is the following.

COROLLARY 1. If fe C*', £e-0(g) 4s absolutely continuous, f @ 2(x)
e (0, 1), and f(x) satisfies the boundary conditions above, then [ can
be expanded in the series

F=3EG)f
where convergence s wn the sense that, letting

Su(#)= SLEQ)S

we have

lim {S;[ﬂx)(zm_ SE() dw}llz

nN—>oo

+max max |f®(x)—SP(x)|=0.

0=w=sl 0=isou—1
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