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1. Introduction. The classical theory of vibrating plates leads to
the following non-dimensional fourth order partial differential equation
in two space variables W(x, y, t) for the transverse vibrations :

(1) A4AW+W,,=0,
where 44 is the biharmonic operator

=2 19 & L&
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Solutions of this equation for two dimensional regions of arbitrary
shape are of course not known, but even for those plate problems for
which analytic solutions in series form for this equation are available,
the series do not lend themselves easily to numerical calculations. Direct
numerical solutions of this equation are therefore of considerable im-
potance. It is the purpose of this paper to present a new finite dif-
ference approximation to this equation which is stable for all values of
the mesh ratios 4t/4a? and 4t/4y* and which involves an amount of work
which is entirely feasible on large-scale digital computers. The method
is a generalization of a method prepared by Douglas and Rachford [1]
for solving the two dimensional diffusion equation.

2. The differential and difference equations. We consider first the
specific problem of determining the transverse vibrations of a square
homogeneous thin plate hinged at its boundaries and subjected to an
arbitrary initial condition. The boundary value problem may be written

oW | oW | oW | oW

2 =0 , R, 0ZtT,
D o s oy T @ y)e
b) W(Z, Y, O):f(il?, y) ) (:E, @/) eR,
(2) c) Wz, y, 0)=0, (@, y)eR,
d) W(x, vy, t)=%2vzv(ac, ¥, )=0, atz=0, 1 for O<y<1, ¢>0,
4

e) Wi(x, vy, t):%VZ—V(x, Y, t)=0, at y=0, 1 for 0<z<1, ¢t>0,
Y
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where R is the open region [0<x<1, 0<y<1]. Letting do=dy=1/M
we now lay a mesh over the region R and we introduce the following
typical notation for difference operators

w(idz, jdy, ndty=w,, ,
(3) Agwijn:(wi,J,n+1_2w'ijn+wi,1,n+1)/d——tz )
Ag;w'ijn:(wi+2,j,n—4wi+1,1,n+6wijn~4wi—1»fan+wi'2:j'")/dx4 :

We now approximate (2) by the following finite difference system :

1,
a) Edi[wi,j,nﬂ‘!‘wi,j,nﬂ]+242mdzwijn+4§wun

sk
4 W1 = 2Wipn+Wisms

IE ’
b) lA; [Wi,5,n417Wig 1= A3 50 — Zgi”j*"ﬂ:—_ﬂzj'ﬂﬂl )
2 At?
(4) (2dx, jay)e R, 0=Zndt<T,
e) Wiz 0=Wip=r, 4,7=1,2,---,M-1),
d) wi0=Wi,,, (,5=1,2,---,M-1),

e) {wo,j,n:wM,J,n:O .
Wisr,jn= —Wi_1,5,, (1=0, M)
) {wi.n,n:'wi,y,n:O
Wi, 5¢1,n= — Wi, 5-1,4 (=0, M)

} (j:l,---,M~1,' 0§ndt§T)a
} (i=1,+++,M—1; 0=<ndt<T),

where R’ is the set of lattice points (¢4, j4y) in R and in condition e)
and f) wf,=w;jm.

Equation 4a) is implicit in « alone while equation 4b) is implicit in
y alone. The numerical procedure consists of first solving equations 4a)
to obtain wj,.;. A system of (M—1) equations in (M—1) unknowns is
obtained for the unknowns along a single line in the ax-direction. The
matrix of this system of equations has at most 5 non-zero elements in
any one row (either on the main diagonal or on two adjacent diagonals).
We shall call such matrices quidiagonal. These quidiagonal systems can
be solved efficiently by an extension of an algorithm for solving tridia-
gonal matrices due to L. H. Thomas and involve about twice the amount
of work as for tridiagonal matrices.

Use of equation 4a) above, however, is not sufficient to yield good
values of w over a wide range in ¢ because as will be shown the finite
difference approximation is unstable. Equation 4b) then provides a cor-
rective process which combined with 4a) does provide a stable, convergent
process. Equation 4b) is implicit along lines parallel to the y-axis and
again for rectangular regions yields M—1 systems of equations each
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involving M—1 unknowns. The matrices of these equations are again
quidiagonal in form. '

By eliminating w}; ., from equations 4a) and 4b) we obtain the fol-
lowing implicit finite difference equation

(5 ) %A;[wij,n+1 W5, 1]+ 2A2md2yw“n +—%‘A;[wu,n+1 +wi1,n—1]

+ Pusne 2%;n st +%2;24M§[wu,n+1 — 2,50+ Wi5,n-11=0,

which lends itself more readily to a stability and convergence analysis.

3. Stability considerations. Let »(x, v, t) be the error due to round-
off. Then since equation (5) is linear, it follows that v,,, will satisfy
the system

a) %A;[vij,n+1+vij,n—1]+2A§A;vijn+’%‘dz[’vu,n+l+?)ij,n—1]

+ Yesmr1— 23)14”—1—'0“_ n-1 +7}A-_t2dfcd;['vw,n+1 — 2050+ Vign-11=0,

At?
(6) b) wv;,0 and v, ,, arbitrary @, =1, -, M-1),
vo,},nz'UM,jm,ZO } .
c) . (7=1, -, M—1; 0Zn4t<T),
{'Uzn,j,n: —Vi-1,5,n (2=0, M)

d) {'Ut,o,nZ'Uz,M,n:O

. (=1, +--, M—1; 0<nat<T) .
Vi, g+1,n= _’Uz,j—l,nzo (=0, M) }

The eigenfunctions of (6) are of the form
Vyyn =0y Sin 7px; Sin 7qy, , p,q=1, ¢, M—1,

where x;,=1dx, y,=jdy. It is easily shown that, for example,
ot A _ T dzx
A2 430, 541=16 sin PG Vs s
1—19_0221—/"4145112 =16 sin’ pn—zﬁ sin? q;r—Azﬁvi n e

Applying this to equation (6a) and rearranging we obtain the fol-
lowing recurrence relation in a, :

(7) Gy y1 — 2000, + 0y =0 ’
where
(8) a= L1FPs8—=2085; _  (1—psisy)®

- Lkpsisitp(sts)  (L—pspsi) el s’
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. pm At” At . s
and s,=sin 2=, s,=sin 2=, p= g—:_8——_8 The difference equation
P=SoW o =8 Y 4

(6) will be stable provided that the roots of the characteristic equation
&—2a6+1=0

corresponding to (7) are at most equal to one in absolute value. These
roots are equal to one in absolute value if |a|<1, a condition which
follows at once from the definitions of s,, s, and p. Thus the finite
difference system (4) is stable for all values of the mesh ratio p and
for all values of p and gq.

It should be pointed out that if (2) is replaced by an explicit finite
difference approximation, a stability analysis leads to the requirement
that

~ i A*

This restriction on the time step ordinarily leads to an amount of com-
puting time which is not feasible even with the most modern computers.
On the other hand a straightforward implicit finite difference approxi-
mation to (2), while simpler than (4) and also stable for all values of
the mesh ratio, leads to a system of (M—1)* equations in (M—1)* un-
knowns which must be solved at each time step. Even a 20 x 20 interior
grid leads to a system of 400 equations in 400 unknowns again involv-
ing an unreasonable amount of computing time.

Finally if one attempts to use 4a) without the corrective equation
4b) the same stability analysis given above leads to the characteristic
equation

—2B6+1=0
where

f= 1—p(s3+2s;87)
1+ ps;

It is easily verified that for some values of » and ¢, |f|>1 and hence
equation 4a) is not stable for all values of p.

4. Treatment of other boundary conditions. The stability analysis
of §3 depends upon the existence of a set of eigenfunctions of the dif-
ference operator given in (6a) which satisfy the boundary conditions (6c)
and (6d). If the boundary conditions (2d) and (2e) corresponding to the
difference conditions (6¢) and (6d) change, the eigenfunctions of the sys-
tem (6) will also change. Let us consider then the error equation (6a)
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with the boundary conditions (6¢), (6d) replaced by the general homo-
geneous conditions :

(9) L,(v:5,)=0, @, 9DesS. (m=1,2,3,4),

where S' is the set of boundary points affected by the conditions L,,.
Assume a set of eigenfunctions of (6a) of the form

Visn(Ps O =0ubss(D, D) » p,q=1,+-+, M—1.
Substituting into (6a) and rearranging, we obtain

sy — 20O+ =0
where

— 1
— A2 L2, 42 = At AL AL
yPest+Piyt+ 4 v Pis  Hd]

%‘Zﬁz(diﬁbu + di;)+1 +%ZZ4A;A;¢“ Klgul

Cpg=

Now let H and K have a common set of eigenfunctions subject to the
condition (9), i. e.

H[‘f’u] = Apgbis » Lm(¢’u) =0,

K[Sbu] = ﬁmﬁbu ’ Lm(‘l’u) =0.
We then have

and the condition for stability is simply that for all » and ¢
|, =1

Thus the stability analysis of §8 can be applied for any boundary con-
ditions for which the operators H and K have common eigenfunctions.

5. A mean square convergence theorem for the square region. For
the problem considered in § 2 assume that the function f(z,y), is suf-
ficiently regular in the closed region R to guarantee the existence and
boundedness of

°w 0w 'w 'w  'w
ox* ' oy oyor: oxtorr’ ot

in R. Then it can be shown following the usual series expansions that
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(10) 544[wt1 w1+ Wig n-1]+ 2454500, 5, + = A [ Wisme1+ Wi p-1]
_}_wu n+1_2wi1n+wi1 n-1 —0(A$2+At2) ,
At
and moreover that
(11) AP LW, 5 1 — 215+ W i1 = O(4E)

Hence the difference operator (5) approximates the differential equation

(2) to terms which are 0(Ja*+4¢%). In the notation of [2] the elementary
truncation error 4,;, is

(12) hugn=0(da + dat 4t")
and by Theorem 1 of [2] we have

o
(13) | Wen—w0l=0(42 475

uniformly in n, where

1/2
(14) | Wisn—wisnl= (M— 1){ Z [ Wisn— Wisn lz}

It thus follows that if the boundary value problem (2) is sufficiently
well defined in the sense that the derivatives mentioned above exist

boundedly in the closed region R, then the solution of (4) converges in
the mean to the solution of (2) with errors given by (13) as 4x and 4t
tend to zero.

The convergence proof given above holds for a rectangular region
only. In practice one is usually interested in point-wise convergence
rather than convergence in the mean square sense. Section 6 establishes
point-wise convergence of the solution of the difference system to the
solution of the differental system.

6. Point-wise convergence. A solution of the boundary value prob-
lem (2) can be given in series form

(15) W, y,t)= 2 2 A,, sin prx sin gy cos (p*+ ¢’ .

p=1q=1

The initial condition (2b) will be satisfied provided that A4,, are taken to
be the Fourier coefficients of f(x, y), i.e.

(16) A,,=4 Sl SI Sz, y) sin pra sin gry dedy .
0Jo
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The conditions on f(x, y) are assumed to be such that the series
(15) converges and is the unique solution of the boundary value problem
(2). A solution w(x,y,t) of the finite difference system consisting of
(4a, b, e, f) can be obtained by separation of variables as follows :

an  w,y, t)= i i B, sin prx sin qry cos Mt arc cos (P, ) ,
p=14-1 r 2(p, q)

where
A, @)=Q1—psis)* ,
(0, @)= —psisg)*+p(s;+5)°
de=dy=1/M ,
and B,, are arbitrary constants. The series (17) satisfies the finite dif-
ference system (4) except for the initial condition 4c).
We will now show that it is possible to choose the coefficients B,,
so that the solution w(z, y,t) of the difference system will converge to

the solution W(z, v, ) of the differential system as M—c. We first
define an integer k(M) such that A(M)<M' and limk(M)=o. We
M>o00

then choose the B,, so that B,,=0 for p>k(M), ¢>k(M) and the re-
maining B,, so that for any e>0 there exists an M(e) such that for
M>M17

(18) | Byy— A, | <eM~** uniformly for p, g=1, -+, k(M) .

One way of satisfying (18) for instance is to choose B,,=A4,, for p, ¢=
1, .-+, k(M). An exact solution of the difference equation then is

k(M) k(M) . . Mzt 2
19) wy(x, ¥, t)= >, >, B, sin prx sin gry cos arc cos L .
p=1 ¢q=1 2
This solution satisfies the initial condition
k k
(20) wu(@, Y, 0)=23. > B, sin pra sin gry

p=1q=1

and of course does not satisfy the exact initial condition w(zx, v, 0)=
Sz, y). However, it will satisfy this initial condition in the limit as

M-,
LEMMA 1. For any p>0, ogzlg_gM-“ﬁ, ngzg_’zf_M-m, there
exists an M,(p) such that for M>M, and for any €>0

(21) 4r (2425 —are cos% < % ,
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where
=1 —psin*z sin’z,)*,
4,=(1—p sin’ z, sin® z,)*+ p(sin’ 2, 4-sin’2,)* .
Proof. We first choose M,(p) such that M>M, and for all admis-
sible z, 2,
(22) 1—psin®*z sin®2,>0 .
Let

F(z, z,)=4r(z+2;)—arc cos%i .

2

It is obvious that F(0,0)=0 and it can be shown by direct calculation
that the partial derivatives of F'(z,2,) up to and including those of order
3 all vanish at =0, 2,=0. Thus in the Taylor series expansion of
F(z, z,) the remainder term is

R(z, 2,) = 02+ 0212, + Oy + Qg2 25+ s

where the coefficients a,(z;,%,), t=(1, ---, 5), are related to the fourth

derivatives of Fl(z,%, and 0<§1<%M‘4’5, 0§E,<%M‘4/5. Using the

inequality (22) it is possible to show that the a,, are bounded functions
of p. Thus using the extreme limits of 2, 2z, we have

|Fz, ) | <| Rz, ) | A(p) . —2”—M' ,

and hence it follows that there exists an M,(p) such that for M>M,,

| F(z,, z2)l<—;% ,

as the lemma asserts.

Now multiplying (21) by %:«t— and putting zlz—szﬂl, zzzqu”l we have
Mt zl(py qQ) 2( 2 9 et
arc cos L2 L —2(p*4¢Y) 1< =,
‘ r 2(p: Q) M

and therefore

et

2.
M*% are cos LI(?LQ)_QOS A+ )t £

r A, q

23) |cos
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THEOREM 1 (THE CONVERGENCE THEOREM). Under the assumptions
a) t>0, 0<x<l, O<y<l; p>0; p,t, oy fixed;
b) [4,I=P, P constant, for all p,¢=1,2, +--, o
c) kM)<M', }{iﬂk(M)zoo ;
d) [|Bp—Ag|<eM°, 1=<p, ¢<k(M),
we have

lim wy(x, ¥, t)= W(z, y, t)
M 300

or
k(M) k(M) 2
lim > E B, (M) sin prx sin qzy cos £ are cos (0, )
M—>c0 p=1 Xz(pr Q)
=3, >\ A,, sin prx sin gry cos (0*+ A=’ .
p—-1¢g=1
Proof.

k k
wy(@, ¥, 8)— Wz, y, 8) =3 >, (Bya— Ay,) sin pra sin gry cos (p*+ )7t
1

p=1q=1

k k 2
+ 3 3 (Bye—A4,,) sin prx sin q:ry[cos Mt ore cos %—cos (p2—|-q2)7r2t]
r

p=1¢=1 s

k . . M 2
> A, sin pre sin gry| cos arc cos }l——cos (pz—[-qz)nzt]
1 r 2

%_

~Me

+ i i A, sin pra sin gy cos (p*+¢H)n%t ,
kE+1k+1
=I1+Iz+Is+I4 .
By conditions ¢) and d) above and Lemma 1,

|LI<I(M)-eM-He<e

|L|<I(M) - M 2/5;;§ <et

M
By condition b) and ¢) and Lemma 1,

|I,| < P-I(M)- f<Pet

and because the series for w(x,v, t) converges there exists an M, such
that for M>M,

L|<e.
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Thus for M >max (M,, M,, M,),
|wy(x, ¥, t)— W(x, y, t) | =e(2+et+Pt) .

This establishes the convergence theorem.
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