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1. Introduction. According to the Reiner-Rivlin theory of non-
Newtonian fluids," the stress tensor # is given in terms of the rate of
strain tensor d! by relations of the form

(1) ty=—pdi+ A di+ .7, did} ,
where p is an arbitrary hydrostatic pressure, the .#’s are essentially
arbitrary differentiable functions of

(2) 11:_%(1;01{, 11l =det d!,

and d satisfies the incompressibility condition
(3) di=0.

The tensors d} and ¢! are both symmetric.
It is known [2] that the characteristic directions of the corresponding
equations of motion are the unit vectors »; satisfying

(4) F(v)=2U04+-20U+- (U} - U.U=0 ,
where
Uz%‘l’%/ﬁui ’
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Sinece F(y;) is a continuous function of y; on the compact set v;p'=1,
a necessary and sufficient condition that no real characteristic directions
exist is that F(v;,) be of one sign for all unit vectors. Using this fact,
we obtain simpler necessary conditions which are shown to be sufficient
when & =0.

2. Necessary conditions. Let d;, d, and d, denote the eigenvalues
of di. From (3),

Received April 12, 1957.
1 This theory was proposed independently by Reiner [4] for compressible fluids, by
Rivlin [5] for incompressible materials. We treat the latter case.
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(5) di+d,+d;=0

We restrict our attention to unit vectors v, which are perpendicular to
an eigenvector of d! and note that F'(»;), being a continuous function of
y;, must be of one sign for all unit vectors in order that no real
characteristic directions exist. Given any unit vector v; perpendicular
to an eigenvector ¢; corresponding to d,, we may introduce a rectangular
Cartesian coordinate system such that, at a point, v, is parallel to the
positive a'-axis and e, is parallel to the z’-axis. Then

Vt=8i17 dm:dzz:dudg =d21d§ =0,
2dlz:(d1_dz) sin 2(15 ’ d33:d3 y

where ¢ is the angle between », and an eigenvector corresponding to
d,. Making these substitutions in F(v;), given by (4), we obtain, by a
routine calculation,

(6)  Fe)=2LA — A d)| A —Fd— L @& dysin2g 270

d s
1l + oI alll

_ g0 | g0 _dﬂag]}

which must be of one sign for all real angles ¢. This is clearly true
if and only if it is of the same sign for ¢=0 and ¢=xr/4. That is,
either

(7) [ — AL — ] >0
and
(8) (A~ d) | A~ d— L d—ay| 2

0.7 | 0T af]
- d L— 32, 2 0’
ot T % om }>

or (7) and (8) hold simultaneously with the inequalities reversed. By
similarly analyzing the cases where y;, is perpendicular to eigenvectors
of d} corresponding to d, and d,, we conclude that either

(9) [A —FdllF —Fd]>0 (@ #7),

and

10 A —FAF —Fd— @)%

0.7 07} .
— d dk—‘flf : - 0 s Js k ’
ot T %amr %o }> (4,3, k)
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or
(11) [A —F dill A — % d;1<0 (i#39),

and (10) holds with the inequality reversed. Now (11) cannot hold for
all ¢ and 7, so this possibility is ruled out. We thus have

THEOREM 1. A necessary and sufficient condition that no real charac-
teristic directions ewist is that F(v;)>0; in order that there exist no
real characteristic directions perpendicular to an eigenvector of d, it is
necessary and sufficient that the inequalities (9) and (10) hold.

For (9) and (10) to hold, it is necessary and sufficient that either

(12) G —F d;>0
and

1 0.% _ 105 | J0A 50
18) A —Fdy—Ld—d [ L d g ]
(13) LA 2( ) B ’“an tad oIl alIL >0

@, 4, k#),
or
(14) T — F <0
and
1 657'
15) o —Fde— L [ a2 f_]
(15) ! g 2“ ) i an+ "am ’Cam <0
G, 7, k).

3. Equivalent conditions. Let ¢, denote the eigenvalues of the
stress tensor corresponding to the eigenvalue d; of d,, so that from (1),

Li=—p+FA d+Fd}.

Using (5),
(16) ti—t;=[A +% (di+dy))d;—d,)
=[S —F d]](d;—4d)) (@, g, k+).
From (2) and (5),
(17) 11 :——(d2+d2+d )-_——zll—(di—dj)z——i’-d,i,
L =d,dds = doldi —(d: =] G, 4, k).

Using (16) and (17) to express ¢;—t, as a function of d,—d; and d.(4, j, k#),
we calculate
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as) i)
a(dz - dj) : @, =const.

1 0% L 0.F | 0.7 0.
= — Z d.— = (d,— 2[ 1 2 d - :l.
= A 2( —dy) o1l — Il + FoIIl d: o111

From (12), (138), (14), (15), (16), (18) and Theorem 1, we have

THEOREM 2. When the eigenvalues of d; are all unequal, a necessary
and sufficient condition that there exist mo real characteristic direction
perpendicular to an eigenvector of di is that either

(t;i—t)/(d;—d)>0 and 0(t;—t,)/(di—d ) a=cons. >0,
or
(ti~tj)/(di~d.1)<0 and a(ti__tj)/a(di_dj)idk=const.<O (7'7 7 k;&)’

When (12) holds, the stress power @, given by
30= 3t;dj‘= (tl - tz)(dl - dz) + (tz - ts)(dz_ ds) + (t3“ tl)(dS - dl)

is negative, a possibility which many writers exclude on thermodynamic
grounds.

4. The case % =0. When & =0, # #0, the characteristic
equation (4) has been shown [2] to reduce to

(19) Gv)=FA +A4'B;=0,
where
A=2(p'— V)

0.7 0.7

= ymd, .
Bi=pmes T Mo

In fact, F(v,)=2% G(v;). When & =0, %4 =0, every direction is
characteristic, a case which we exclude. Using the Hamilton-Cayley
theorem,

dididy,=111¢8%, —11d,, ,

we can reduce (19) to the form

b

(20) G(a, By=% +2(111-1la

III 6II

where

(21) a=ppt=d, ph , B=pgip,=did 5™
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Now (21) is a mapping of the unit sphere vpi=1 onto a region R
in the a—p plane. The conditions

%G — 214907 44027 2,

o111 oI1
0G _ _ 9o A DA _q
op oIII ~ oIl

+ dG= i4[6‘%daz—%dadﬁ]§0 for all da, dg
o1l oIIl

must be satisfied at any interior point of R at which G is a maximum
or minimum. These conditions cannot be satisfied unless 0.% [011=
0.7 [6111=0, in which case G(v;,) is independent of »;, and &% #0 is
then necessary and sufficient that there exist no real characteristics.
From the implicit function theorem, values of v; corresponding to boundary
points of R are such that the equations

da=2d, y'dy’ , dp=2d%d;,*dv™ , 0=y,dv*

do not admit a unique solution for dv*in terms of da and df5. We thus
have

THEOREM 3. Mawimum and minimum values of G(v;), hence of F(v;),
hence of F(v;), occur only at values of v; such that the wvectors v;, d;’
and did...™ are linearly dependent or, equivalently, at values such that
the determinant D of these three vectors vanishes.

Whatever be the unit vector »;, we can always choose rectangular
Cartesian coordinates such that, at a point, v;=0y, dy=0. The condition
D=0 then reduces to

1 0 0
0= dy d, dy,
dh+dh+dl,  da(dy+dy)  da(dy+ds)
=y dy(dys— ) -

If d,=0(dy,=0), 0(ds) is an eigenvector of d;. If dudy+#0, dy=d.,,
the vector with components (0, dy;, —d,) is an eigenvector of d;;, whence
follows

THEOREM 4. The vectors v;, d;p’°, did,v™ can be linearly dependent
only when v, is perpendicular to an eigenvector of d.

Theorems 3 and 4 imply that, when % =0, we will have F(v;)>0
for all unit vectors v, if and only if F(»,)>0 for each unit vector v;
which is perpendicular to an eigenvector of di. From Theorem 1, we
then deduce
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THEOREM 5. When & =0, a necessary and sufficient condition that

there exist no real characteristic directions s that the inequalities (9) and
(10) hold.
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