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1. Introduction. The object of this paper is to prove the ideal-
theoretic version of Wiener’s tauberian theorem for algebras which we
will call group algebras of vector-valued functions. These algebras are
defined as follows. Let G={a,b, ---} denote a locally compact abelian
group and let X={x,y, ---} represent a complex commutative Banach
algebra. Our group algebra B=B(G, X) consists of the set of all measur-
able absolutely integrable functions defined over G with values in X.
Of course we must identify functions which differ on sets of Haar
measure 0. As norm for an element fe B we take

7=, 17 @ls da.

(Hereafter, we will omit an indication of the domain of integration if
the integral is taken over the entire group G.) The space B(G, X) is
known to be complete in the given norm [4]. Further, we introduce
into B the following operations

(f+R@)=rf@+g@ , Af)a)=1f(a)

where 2 is a complex number, and

(f *0)@) = | £ Oota—t) db

where the integral is taken in the sense of Bochner [1, 4] with respect
to Haar measure db. The algebra B(G, X) thus becomes, as is easily
shown, a complex commutative Banach algebra which specializes into
the classical group algebra L(G) if X is chosen as the complex numbers.
It is these algebras B(G, X) which will be the object of our study.
The tauberian theorem for B(G, X) will be proved by appealing to
a theorem in the general theory of Banach algebras (see [5], p. 85
corollary, or [6], Theorem 38.) This latter result might be designated
as the “general tauberian theorem.” It says that if a complex com-
mutative B-algebra Y is semi-simple, regular, and is such that the set
of yeY with ¢,(y) having compact support in M(Y) is dense in Y, then
every proper closed ideal in Y is contained in a regular maximal ideal.
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Here M(Y) denotes the space (in the usual weak topology) of regular
maximal ideals in Y and ¢, represents the canonical homomorphism from
Y onto the complex numbers associated with an Me M(Y). It will be
taken as known that the classical group algebra L(G) satisfies the hy-
potheses of this general tauberian theorem. This amounts, then, to
assuming the tauberian theorem in the case of L(G). It will also be
assumed, but only in the final theorem of the paper, that the range
space X meets the conditions of the general tauberian theorem. It is
clear, therefore, that the proof of the tauberian theorem for B(G, X)
found here, does not yield a new proof in the case of L(G). However,
this paper does provide, it is hoped, an interesting application of the
general tauberian theorem in the case of our generalized algebras.

2. Proof of the theorem. It is important to know the form of
the most general multiplicative linear functional in B(G, X). This is
determined in Lemma 1 which requires the following preliminary obser-
vations.

The convolution f*g of a function f € L(G) with a function g € B(G, X)
results, as in easily seen, in a function contained in B(G, X). Suppose
{jw} is an approximate identity for L(G); that is, for each neighborhood
W of the identity 0 in G, j, is some (numerical) non-negative function

vanishing off W such that S jw(@)da=1. Then for every f e L(G) we

have j,xf — f as W—0. (Of course, convergence is here understood in
the sense of directed systems.) But {j,} acts, also, as an approximate
identity in B(G, X), that is, j*g — ¢ in B-norm for every ge B. This
can be shown, just as in the case of L(G), by noting that functions in
B are continuous in B-norm [4], i.e., for any ¢>0 there is a neighbor-
hood W, of 0 in G such that |f(a—b)— f(a)z<e if be W,.

The approximate identity will be of service to us in proving Lemma
1 which we now state.

LEMMA 1. Let é:{&, 5, <} denote the dual group of G in the
usual Pontrjagin topology. Define the “ Fourier tramsform” of fe€ B as

£, &)= j¢Mf<a) (a, &) da .

The Fourier transform evaluated at o fixzed (M, a)e M(X )xé is a4 non-
zero, continuous multiplicative linear functional in B and, further, all
such functionals are of this type, that is, if p is a nmon-zero, continuous
multiplicative linear functional in B, then there is some (M, a) such that

w(f)=F(M, &) for every f € B.
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Proof. That the Fourier transform, at a fixed (M, @), is a multi-
plicative functional is easily shown. We, consequently, turn to the
second half of the lemma. Choose a function f e B such that u(f)+0
and let {j»} be an approximate identity. For every ze X, lv}rn% H(5wx)
exists. (Here, jyp« denotes the function (jpz)(a)=jw(a)-xz. Of course,
jwxe B.) For

p(gwa* )= p(Gwe)(f)=pl(Gw* Fx] = p(fx) as W—-0

because (jw*f)xr — fx. Hence p(jyx) necessarily converges to a limit
independent of the approximate identity {j,}, namely pu(fz)/#(f). This
limit is likewise independent of the f e B with u(f)+0, for if ge B is
such that u(g)+0, then

w(fx) (9)=pL(f *9)x]=p(gx* f)=p(gx) p(f)

so that p(f)/u(f)=p(9x)/(g). We will denote the limit of p(jpx) by
() for ze X.
Suppose, temporarily, that X possesses an identity e. Then ¢, is

certainly not zero. For ¢ e)=pu(fe)/u(f)=p(f)/(f)=1. Further, ¢, is
easily seen to be additive and homogeneous, that is,

¢p.( A+ Ay) = Z1¢’;u.(51/') + de’u.(y)

for all o, ye X and complex numbers 1,, 4,.

S fray) (o) (fy) _
bu(xy) AP ) wp) o) Pul@)puy)

so that ¢, is multiplicative. Therefore, as is well known, there is some
Me M(X) (depending on g) such that ¢.(x)=py(x).

Still assuming that X has an ¢ (which we may take of norm 1), let
g€ L(G), xe X. Then

H(gw * 9) = p(Jwa *ge) = t(Jwa) (ge) = u(x)(ge) .
But

(v * g) = pL(Jw * 9)x] — p(92)

so that p(gx)=¢y(x)u(ge) for any geL(G) and any xz€X. Since
Le={gee B|ge L(G)} is isometrically isomorphic with I(G) and since g
is a continuous multiplicative linear functional on Lec B (not identically
zero on Le, because linear combinations of functions gx with ge L(G),

ze X are dense in B [1,4]) there is an de G (depending on g) such
that p(ge)zgg(a)(a, &) da for all ge L(G).

Suppose, now, that f is any function in B. Then, because the
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simple functions are dense in B(G, X) as we observed above, there
exists a sequence g, € B such that g, — f and (g,)=§.M, &) — F(M, &)
and so p(f)=F(M, ).

We now remove the restriction that X possess an identity. If X
lacks an ¢, then we imbed X, isometrically and isomorphically, in a
Banach algebra X’ with unit ¢ in such a way that maximal ideals in
X’ are the regular maximal ideals in X and X itself. This is done in
the usual well-known manner. The homomorphisms of X’ onto the
complex numbers are ¢, (MeM(X)) and the additional functional ¢4,
where ¢x(x+2e)=1 for x€ X, 2 a complex number. By what we have
already proved, the non-zero multiplicative functionals in B(G, X’) are

of the form f (M, @) and the additional functionals f(X, @). These latter
functionals, namely, Sgbx f(a)(a, @) da are, however, all identically zero

in B(G, X) and thus the lemma is established.

The following lemma gives a topological characterization of the space
of regular maximal ideals M(B) in B(G, X). For a similar result and
proof see [2].

LEMMA 2. The space M(B) of regular mawximal ideals in B, topolo-
gized in the weak topology, is homeomorphic with (X )xé, that is the
topological product of M(X) and G.

Proof. There is a 1—1 correspondence between the points of M(B)
and those of M(X)xG. To see this, suppose (M, &)=(N,b). If G+b
and M=N, take x¢ M and find an f € L(G) such that

F@)= Sf(a)(a, &) da+£0) .
Then

Fa(M, &)= F(@)pulw)# f(N, B) .
If 4+b and M+N or if 46=>b and M+ N, then we may proceed in the
same way to construct a function fx with f e L(G), x e X such that the
Fourier transform of fa separates the points (M, &), (N, 3). No two
points in M(X )xé give rise to the same regular maximal ideal in
M(B).

The topology of M(B) is precisely that induced by the family
3={f(M, @) f € B} of functions defined on MX)xG. We must show
that this topology is identical with the product topology of (X )><G‘.
This will be done by showing that the (-topology of WX )><G‘ is iden-
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tical with that induced by another family of functions FCJ defined on
IM(X)xG. Then the proof will be completed by showing that this -

topology is identical with the product topology of SJZ(X)XG.
First we must define . For each positive integer » and each
choice fi, fi, ++, [u€ L(G); x,2,, -+, x,€ X, there is a function ~ de-

A . n /N

fined on M(X)xG by A(M, )= iZfiwi(M, @), Let § be the family of
=1

all functions A so defined. Clearly FCS. But § is also dense in J in

the uniform norm. For, suppose feB. Then we can find f;eL(G),

x; € X, such that “f— Enfiwil <e. Hence
i=1

B

|Far, -3, faor, )| = ||| #uf @3 £@u(e) | (@, 8) da| <.

Therefore, sup’ f(M, &)~§n] f/z;ci(M, a)|<e¢ where the sup is taken over
i=1

ED?(X)X@. This shows § is dense in & in the sup-norm and it is easy
to see, from this, that the §- and S-topologies on M(X) x G are identical.

It remains to show that the {¥-topology on M(X )xG is the same
as the product topology. To do this we first develop a few properties
of .

(i) The functions in ¥ separate the points of ED?(X)XG as we saw
in the beginning of this proof.

(ii) Functions in F are continuous over WYX )XG in the product
topology. TFor, if feL(G), e X, (M,, &) is a fixed point of M(X)xG,
and >0, then

|\ Fa(M, &)— Fa(M,, &)

<1 F(0)b (@) — F(@)par (@) + | F (@) by (@) — F ()b, ()]
=1 F(8)] | u(®@) — by (@) + sy | F (@) — £ (@)

<1 f e (@) — B (@)] el - | f (@) — f (o)

< | F e (]2 F10) + lael - (e[ 2lal) =&

if (M, &)e UM,)x U(é,) where UM,), U(é,) are neighborhoods of M,,
@, in M(X) and G, respectively, such that |pa(@) — Pu, (@) <e/2| f|; for
Me U(M,) and |£(@)— f(é0))<e/2w| for e f](&o). Since %F consists of
finite linear combinations of f/a\c(f e L(G), ze X), each function in & is
continuous in the product topology of Em(X)xG.

(i) Let (M, &)e M(X)xG. Choose feI(G) such that f(&,)+0
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and let x € X be such that ¢ M,. Then f/zz(Mo,do);bO, so that not all
Sfunctions in F vanish at a fixed point in DX )XG.
(iv) Each function in § vanishes at infinity in EIR(X)XQ. For,

n /\
suppose ¢>0 is given. If 3 fix(M, &) e, then
i=1

<e

ifl(&)d)lﬂ(wi)

i=1

S Fao M, )=

i
(M, &) ¢ (;U (&:,) X (iu C‘i)sr

where |fi(@)\<8, lpu(@)l<d if a¢C,cG and MgE,CcMX). Here,
é6<min (ve/n, ¢/nK,, e/nK,) with K,= sup |z;| and K,= sup sup lﬂ(&)] ;
1 eé

=i=n 1=i=n ()

C, and G, are compact sets which exist because each fi and each z;
vanish at « in G and M(X), respectively. I is compact in SD?(X)XG
so that each function in ¥ vanishes at .

We now appeal to a result in general point-set topology (see [5] p.
12) which states: If & is a family of complex-valued continuous func-
tions vanishing at infinity on a locally compact space S, separating the
points of S and not all vanishing at any point of S, then the weak
topology induced on S by @& is identical with the given topology of S.
We take S=T(X)x G and G=%. This finishes the proof.

The next lemma deals with the radical and regularity in B(G, X).
Following this we conclude with the tauberian theorem.

LEMMA 3. (i) The radical of B consists of those functions feB
with values in the radical of X a.e.
(ii) If X s regular, then B(G, X) is regular.

Proof. Necessity (i). Suppose f takes values in the radical

R= N M of X a.e. Then ¢,/=0 a.e. for each M e M(X) and thus
MeM(X)

f‘ (M, &)=0 for each (M, &)e M(X)xG. This means f is in the radical
of B.

Sufficiency (i). Suppose that f is in the radical of B. We must
show that f takes values in the radical R of X, a.e. We have

F, a)=0 for all (M, &)eﬂ)t(X)xé, that isSc[)Mf(a)(a, a)da=0 for all

(M, @). Since ¢, f is in L(G) and since L(G) is semi-simple, we have
¢S =0 a.e. for each Me M(X).
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Let {j»} be an approximate identity for L(G) consisting of bounded
functions vanishing outside neighborhoods W of the identity in G. Since
f is continuous in B-norm, it follows that the functions j, xf from G
to X are continuous. Consequently, the functions jy* f take values in
R everywhere over G since N is closed in X. Choose a sequence {jy }
from {j,} such that Jw,* f — f in B-norm. Then, as is known, there
is a subsequence of the Jw,*f converging to f pointwise a.e. in X-
norm. Since R is closed, f takes values in R a.e.

Proof of (ii). Suppose X is a regular algebra. We wish to show
that, given any point (M,, &,) € WYX )xG and any open set Q containing
(M,, &), there is a function ge B(G,X) such that g(M,, a,)=1 and
g(M, a)=0 if (M, a)¢ Q. By Lemma 2, the open sets of D(B) are of the

form U (OAixﬁRi) where the Oi are open in G and the %, are open in
i€eQ
M(X). Suppose our L equals \ej ((A)ix%,); then (M,, &o)eOAliSR% for

some 17,€Q, that is, aonAio and M,eN;. We can find a function
feI(G) such that f(&)=1 and f(&)zO if &¢Ozo. This follows from
the regularity of the group algebra L(G). Since X is regular, by hy-
pothesis, there is an e X such that ¢y (2)=1 and ¢u(x)=0 if MgN;.
We will show that the g, above, can be taken to be fz. Firstly,
f/;o(Mo, a)=1. Now, suppose (M, a)¢@ Then (M, a)¢0i0x§7€i0 so that
a¢01 or Mg, . In either case, f:v(M @)=0. Hence fw(M @)=0 for
all (M, &)¢ Q.

We might add that if B(G, X) is regular, then X is likewise regular.
However, this fact will not be used in the following theorem and so we
do not enter into its proof.

COROLLARY. B(G, X) is semi-simple if and only if X is semi-simple.

THEOREM. Let X be semi-simple and regular. Suppose that the
elements x€ X with ¢u(x) having compact support in M(X) are dense in
X. Then every proper closed ideal in B(G, X) is contained in a regular
maximal ideal.

Proof. By the hypothesis and Lemma 3, it follows that B(G, X) is
regular and semi-simple. Using the general tauberian theorem (see the
introduction), we can prove that any proper closed ideal in B is contained
in a regular maximal ideal by showing that if f is any function in B
and >0, there exists an ke B such that | f—Ai[,<ec and A(M, &) has

compact support in WYX )XG. Suppose, therefore, that fe B and ¢>0
are given. We can find f;e L(G), z;¢ X (:=1,2, --+, n), such that
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We have functions f;e L(G) such that |f;—fi;<e/3Kn (1=1,2, +--, n),
where K= sup |z;| and the f: have compact support C,CG. This follows

1=si=n
from the fact that L(G) satisfies the hypotheses of the general tauberian
theorem. By the hypotheses on X, we may find «; in X such that
|o;—xi|<e/8Rn (1=1,2, ---,n), where R= sup |f;|; and the ¢,(x,) have
1=is=n

compact support €,cM(X). Now

|- S i

== S et 5 et 3 i

B

<e[3+4 Kn(¢[3Kn)+ Rn(e/3Rn)=c¢ .
Take (see above) A= i fix;. We see that fz(M , @) has support

< \nj @i) ><< \nj C’i> which is compact in WYX )xé. The theorem is now
i=1 t=1

proved.
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