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SOME REMARKS ON A PAPER OF ARONSZAJN
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MELVIN HENRIKSEN

In the paper of the title [1], a number of problems are posed. Ne-
gative solutions of two of them (Problems 2 and 3) are derived in a
straightforward way from a paper of L. Gillman and the present author
[2].

Motivation will not be supplied since it is given amply in [1], but
enough definitions are given to keep the presentation reasonably self-
contained.

1. A Hausdorff space X is said to satisfy (Qm), where m is an in
finite cardinal, if, whenever U and V are disjoint open subsets of X
such that each is a union of the closures of less than m open subsets
of X, then U and V have disjoint closures. In particular, a normal
(Hausdorff) space X satisfies (Q^ ) if and only if disjoint open Fσ-subsets
of X have disjoint closures. (For, an open set that is the union of less
than ^ closed sets is a fortiori an Fσ. Conversely if U is the union
of countably many closed subsets Fn, then since X is normal, for each
n there is an open set Un containing Fn whose closure is contained in
U. Thus U is the union of the closures of the open sets Un.) In Prob-
lem 3 of [1], it is asked if every compact (Hausdorff) space satisfying
(Qm) for some τ n > ^ 0 is necessarily totally disconnected, and it is re-
marked that this is the case if the first axiom of countability is also as-
sumed.

If X is a completely regular space, let C(X) denote the ring of all
continuous real-valued functions on X, and let Z(f)={xe X: f(x) — 0}y

let P(f)={xeX:f(x)>0}, and let N(f) = P(-f). As usual, let βX
denote the Stone-Cech compactification of X. If every finitely generated
ideal of C(X) is a principal ideal, then X is called an F-space. The fol-
lowing are equivalent.

( i ) X is an F-space.
(ii) If feC(X), then P(f) and N(f) are completely separated [2,

Theorem 2.3].
(iii) If feC(X), then every bounded geC(X-Z(f)) has an ex-

tension ~geC(X) [2, Theorem 2.6].
A good supply of compact F-spaces is provided by the fact that if

X is locally compact and σ-compact, then βX—X is an F-space [2, Theo-
rem 2.7].
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We remark first that a normal (Hausdorff) space X satisfies ^
if and only if it is an F-space.

For, suppose first that X is an F-space, and let U, V be disjoint
open Fσ-subsets of X. Since X—(U{J V) is a closed G8 in a normal space,
there is a bounded / e C(X) such that Z(f) = X-(U\J V). Hence by (iii),
there is a geC(X) such that g[U] = 0 and g[V~\ = l. In particular, U
and V have disjoint closures, so X satisfies (Q^). Conversely let X
satisfy (Q^), and let /eC(X). Then P(/) and iV(/) are disjoint open
F^-subsets of X, which by (Q^) have disjoint closures. So, by Ury-
sohn's lemma, P(f) and N(f) are completely separated. Thus X is an
F-space by (ii).

Compact connected F-spaces exist. In particular it is known that
if R+ denotes the space of nonnegative real numbers, then βR+—R+ is
such a space [2, Example 2.8]. Hence Problem 3 of [1] has a negative
solution.

We remark finally that if the first axiom of countability holds at a
point of an F-space, then the point is isolated [2, Corollary 2.4]. In
particular, every compact F-space satisfying the first axiom of countabi-
lity is finite.

2* In Problem 2 of [1], it is asked (in different but equivalent lan-
guage) if for every totally disconnected compact space X satisfying (Qm)
for some m>^-0, the Boolean algebra B{X) of open and closed subsets
of X has the property that every subset of less than m elements has a
least upper bound. A lattice is said to be (conditionally) σ-complete if
every bounded countable subset has a least upper bound and a greatest
lower bound. In view of the above (and since every subset of B(X) is
bounded), in case m ^ ^ , the problem asks if for every compact totally
disconnected F-space X, the Boolean algebra B(X) is σ-complete.

In [3, Theorem 18], it is shown that if X is compact and totally
disconnected, then B(X) is σ-complete if and only if C(X) is σ-complete
(as a lattice). It is noted in [2, Theorem 8.3, f .f.] that for a completely
regular space Y, the lattice C(Y) is σ-complete if and only if / e C(Y)
implies P(f) and N(f) are disjoint open and closed subsets of Y (P(f)
denotes the closure of P(f)). It is easily seen that Y has this latter
property if and only if βY has [2, Lemma 1.6].

In [2, Example 8.10], an example is given of a completely regular
space X such that βX is a totally disconnected F-space, and such that
C(X) is not σ-complete. By the above, it follows that B(βX) yields a
negative solution to Problem 2.

We remark also (as was pointed out by J. R. Isbell) that if N de-
notes the countable discrete space, then βN—N is also a totally dis-
connected compact F-space such that B(βN—N) is not σ-complete. The
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former assertion follows easily from the remarks in § 1, and the latter
follows from the fact that B(βN—N) is isomorphic to the Boolean al-
gebra of all subsets of N modulo the ideal of finite subsets of N (under
the correspondence induced by sending a subset of N to the intersection
of its closure in βN with βN—N). It is easily verified that this latter
Boolean algebra is not σ-complete.
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