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DRURY W. WALL

l Introduction. Lagrange's theorem for finite groups (that the
order of a sub-group divides the order of the group) does not hold for
finite quasigroups in general. However, certain relationships can be
obtained between the order of the quasigroup and the orders of its sub-
quasigroups. This note will give some of these relationships.

DEFINITION. A set of elements Q and a binary operation " o " form
a quasigroup (Q, o) if and only if the following are satisfied:

I. If α, δ e Q then there exists a unique ceQ such that aob — c.
II. If α, be Q then there exist x,yeQ such that aox—b and yoa = b.

III. If a,x,yeQ then either aox=aoy or xoa—yoa implies x=y.
If (Q, o) is a quasigroup and S is a subset of Q then (S, o) is a sub-
quasigroup of (Q, o) if (S, o) is a quasigroup.

Throughout this note the quasigroup operation will be written
multiplicatively, that is, " α δ " will be written for " α o δ " . Also, " Q "
will be written to denote the quasigroup "(Q, o)" . By quasigroup will
be meant finite quasigroup, since only finite quasigroups will be con-
sidered. The order of a finite set X is the number of elements in X.
For subsets X and Y of Q the symbols I n Γ , XU Y and X\Y will be
used to denote the point set intersection, union and relative complement
of X with y, respectively.

The following elementary properties of a finite quasigroup Q will
be of use.

PI . // XdQ and aeQ then X, aX and Xa have the same order.
P2. If SdQ and S satisfies I then S is a sub-quasigroup of Q.

Proof. To prove II, let a,beS. Since £ satisfies /, aSdS and by
PI, aS=S. Thus, since beS there exists an xeS such that ax—b. Il l
is inherited from Q.

P3. If S is a sub-quasigroup of Q then ae S and b$ Simply ab$ S.

2. Relationship of the order of any sub-quasigroup to the order of
the quasigroup The order of a sub-quasigroup need not divide the
order of the quasigroup in fact, these orders may be relatively prime.
An example is given by Garrison [1, page 476] of a quasigroup of order
5 with a sub-quasigroup of order 2.
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THEOREM 1. If Q is a quasigroup of order n and S is a sub-quasi-
group of order S then 2s^n.

Proof. Let xeQ\S. lΐyeS then xyeQ\S. Thus xSdQ\S.
But, by PI, xS has order s and since Q\S has order n—s this implies
that s^n—s or

This shows that the order of a sub-quasigroup is equal to or less
than one half the order of the quasigroup. The quasigroup with two
elements gives the simplest example in which the equality holds.

3. Relationship between the order of a quasigroup and the orders
of two of its sub«quasigrouρs. Let Q be a quasigroup of order n and
R and S be two proper sub-quasigroups of orders r and s, respectively.
Assume that R and S intersect. Then P=^RΓiS is a sub-quasigroup of
Q. Denote the order of P by p. Note that the subsets R\P, S\P,
and RuS are of orders r—p, s—p, and r+s—p, respectively.

THEOREM 2. n^r+s+max(r, s) — 2p.

Proof. 1. Suppose SaR. Then Rf]S=S and hence p=s, s^r and
max(r,s)=r, Thus,

r+s + max (r, s) — 2p—2r —s^

But by Theorem 1, 2r^n and so r + s + max (r, s) — 2p<^

2. Assume R\P and S \ P are non-null. If xeR\P and yeS\P
then xy$R\jS. Thus, for xeR\P, x(S\P)aQ\(R{jS). But x(S\P)
is of order s — p and Q\(#US) is of order n—(r+s—p). Therefore,
s-p<n~(r+s-p). Similary, if yeS\P then y(R\P)dQ\(R\jS) and
thus, r—ptίn—(r+s—p). Therefore,

n—(r+s—p)^max (r—p, s — p) = max (r, s) —p

and so, w^r+s+max(r, s) — 2p.

COROLLARY. If r=s then n^3r—2p.

THEOREM 3. // w=r+s+max(r, s) — 2p then r=s if and only if
T=PU[Q\(#US)] ώ α sub-quasigronp of Q.

Proof. A. Assume r=s. Then i? and S are sub-quasigroups of
order r and ϊ7 is a subset of order r. By P2, to show that T is a sub-
quasigroup it suffices to show that if %e T and yeT then xy6 ϊ\
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(1) Let xe P. Then if y e P then xyeP since P is a sub-quasi-
group. If y e T\P then y e Q\(R U S) and hence ?/ fέ R and ?/ 0 & Hence
xyφR, xyφS and so xyeQ\(R[jS) = T\P. Thus if #eP and ye T
then â / e T.

(2) Let xeT\P and aeR\P. First note that #α0B. For
beS\P, batβRuS and so (S\P)αcQ\(ΛuS) = Γ \ P . But (S\P)α
and Γ \ P are both of order r—p. Thus, (S\P)a=T\P and since
x$S\P this implies xa$T\P by III. Thus #α is in neither R nor
Γ \ P and so

xa e Q\[R U (Γ\P)] = S \ P .

Thus, for x ε T\P it follows that x(R\P)czS\P. But x(R\P) and S \ P
are both of order r-~p and so x(R\P)~S\P. Similarly, it can be
shown that x(S\P)=R\P. Thus, for

x e Γ \ P , x[(R\P) U (S\P)] = [(R\P) U (S\P)] .

By noting that Γ=Q\[(i2\P)U(S\P)] and by use of III, it follows
that if xeT\P and 2;eΓ then xze T. Combining parts (1.) and (2.), it
follows that if x e T and yeT then xyeT and thus, T is a sub-quasi-
group of Q.

B. Assume that T is a sub-quasigroup. T is of order max (r, s).
Either r>s, r<s , or r = s . Assume r>s . Then max (r, s) = r and Γ and
R are two sub-quasigroups of order r. Thus, by the Corollary to
Theorem 2, ?ι^3r — 2p. But, by hypothesis,

(r, s) — 2p=

Thus, 2r+s — 2p^Sr — 2p and so s^r, which is contrary to the assump-
tion that s<r. Thus r ^ s . Similarly, s>r and so r=s.

For the case in which R and S do not intersect the following results
can be obtained.

THEOREM 2'. n^r+s+ max (r, s).

COROLLARY. // r=s then n^Sg.

THEOREM 3'. If n = r + s + max(r,s) then r = s if and only if
Q\(R{jS) is a sub-quasigroup of Q.

An example of a group satisfying the hypothesis of Theorem 3 is
the four group which has 3 subgroups of order 2 which intersect pairwise
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in the identity element. The following are examples of quasigroups
satisfying the hypothesis of Theorem 3.

a

b

c

d

e

f
g

h

a

a

b

c

d

f
e

h

g

b

b

a

d

c

e

f
g

h

c

c

d

a

b

h

g

e

f

d

d

c

b

a

g

h

f
e

e

f
e

g

h

b

a

c

d

f

e

f
h

g

a

b

d

c

g

g

h

f
e

d

c

a

b

h

h

g

e

f
c

d

b

a

a

b

c

d

e

f

a

a

b

c

d

e

f

b

b

a

e

f
d

c

c

c

e

d

a

f
b

d

d

f
a

c

b

e

e

f
c

b

e

a

d

f

e

d

f
b

c

a

Example 2.

Example 1.

In Example 1, let P= {a, b}, i?= {a, b> c, d}, S= {α, b, e, f) and
T— {α, 6, g, h}. The hypothesis of Theorem 3 is satisfied and r=s and
T is a sub-quasigroup.

In Example 2, let P = {a}, R= {α, b], S— {a, c, d} and Γ= {α, e, /} .
In this case rΦs and T is not a sub-quasigroup.

Counterexamples to many of the possible generalizations to more
than two sub-quasigroups can be constructed. For example, it has been
proved that (1) if Q is of order n with a subquasigroup of order s then
n^2s and (2) if Q is of order with two non-intersecting sub-quasigroups
of order s then n^3s. Thus, it might be conjectured that for any
positive integer m, if Q contains m mutually disjoint sub-quasigroups
of order s then n^(m+l)s. However, this fails for m=3 since it is
possible to construct a quasigroup of order 3s with three disjoint sub-
quasigroups of order s. In another direction, it is possible to construct
a quasigroup of order 4s containing three disjoint sub-quasigroups of
order s, in which the remaining s elements do not form a sub-quasi-
group.
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