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1. Introduction and preliminaries. A set of problems, which has
attracted much attention in recent years, treats the question of what
functions can be approximated in some given topology by a given
function algebra on a given set of points. The classical Weierstrass
approximation theorem, and its generalization, the Stone-Weierstrass
approximation theorem, are well-known results of this type which have
proved very useful in analysis. Very important work has more recently
been done by Lavrentiev, Keldys, and Mergelyan, and their results
generalize the classical theorem of Runge (see Saks and Zygmund [4]
for Runge's theorem).

The theorem of Mergelyan states that every continuous function on
a compact set C of the complex plane, which is analytic at interior
points, can be uniformly approximated on C by polynomials, if C does
not separate the plane, i.e., if the complement of C is connected. We
prove a theorem which generalizes this result in two respects: the
plane is replaced by an arbitrary separable Riemann surface (without
boundary, but not necessarily connected), and the algebra of all
polynomials is replaced by what we call a total subalgebra of the
algebra R of all functions which are everywhere analytic on the Riemann
surface. The subalgebra R is called total if it contains the constant
functions and if the set {p\pεC and there exists qφp in C, with f(p)
—/(#) for all / in R} (j {p\p e C and no function in R is one-to-one in
any neighborhood of p}, called the singular set of C relative to R', is
finite for all compact sets C. (It can be shown that when R is not
total, but contains the constant functions, one can identify points on
the surface to obtain a new surface on which R is total.)

Our methods are highly measure-theoretic, and we make constant
use of the fact that any bounded linear functional A on the space Ω(C)
of all continuous complex-valued functions on a compact set C of our
surface can be represented as a Borel measure // on C. This means

that [fdμ=Δ(f) for all / in Ω(C). We shall somewhat loosely identify

A and μ, so that by the value of μ on / we shall mean \fdμ, and by

saying that μ is orthogonal to / we shall mean \fdμ=0. For a compact
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set C, Φ(C) will denote the set of all continuous functions on C which
are analytic at interior points. We are actually interested in bounded
linear functionals A on Φ(C), but by means of the Hahn-Banach theorem
every such A can be extended to Ω(C), and therefore can be represented
by a measure μ on C. If R is a subalgebra of R, then R\C) will
denote the set of all continuous functions on C which are uniform limits
on C of functions in R'. Obviously B'(C)c0(C), and the problem,
roughly speaking, is to determine by how much R\C) differs from Φ(C).
We do this via an investigation of those measures μ on C which are
orthogonal to R'(C), that is, we see how much these measures miss
being orthogonal to Φ(C).

We proceed to some definitions, which are necessary to the statement
of the theorem to be proved. If C is a compact set, and if Rr is a
subalgebra of R, then £^(C, R') will denote the set {p\ for each / in
R', there exists q in C with \f(q)\^\f(p)\}. The condition ^ ( C , R') = C
is the natural extension of Mergelyan's condition-that C not separate
the plane-to the more general situation considered here. The bounded
linear functional A on Φ(C) will be called an β'-local differential
operator on Φ(C), of order not exceeding N, if (1) A is orthogonal to
R\C), and (2) there exists a finite subset S of the singular set of C
with respect to R\ such that f(p)=f(q) for all / in Rf and all p and q
in S, and such that A(g) — 0 whenever g is a function in Φ(C) which
vanishes at all points of S and vanishes to order at least N at all points
of S which are interior to C The bounded linear functional A on Φ{C)
will be called a iϋ'-homogeneous differential operator on Φ(C), of order
not exceeding N, if it is a finite sum of iϋ'-local differential operators
on Φ(C), of orders not exceeding N. The result to be proved reads :
If R' is a total subalgebra of R, if C is a compact set with £^(C, Rf)
=C, and if A is a bounded linear functional on Φ(C) which is orthogonal
to R'(C), then A is a ^-homogeneous differential operator on Φ(C), of
order not exceeding N, where N depends only on Rr and C. Since it
will be easy to show that the only β-homogeneous differential operator
on Φ(C) is 0, this will have the corollary that R{C) — Φ{C) whenever
£S(C, R) = C. In general, we shall only be able to conclude that the
vector space R\C) (over the complex field) is of finite codimension in
the vector space Φ(C). It will be possible to describe R\C) exactly in
case C has no interior points.

Of the six preparatory lemmas to be proved, Lemmas 4 and 6 are
of some interest in themselves. Lemma 6, in particular, seems to be a
very useful tool in the theory of approximation by polynomials, and the
author will give other applications of this lemma elsewhere.

We develop more notation for later use. If C is compact, and if
the function f in R generates the subalgebra R\ then £f(C, f) will
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mean £/*(C, R)y so that p will be in the complement S^'(C, f) of
<$^{C, f) if and only if f(p) is in the unbounded component of the
complement of f(C). If CΊ has compact closure and if C2 is compact,
we say that / in R is schlicht on CΊ relative to C2 if there exists a
neighborhood U of the closure of CΊ such that no point in U is identified
with any other point of U{jC2 by /. If C2 is void, we simply say that
/ i s schlicht on Cl9 and if also CΊ is a point {q}, we say that / is
schlicht at q (or that / is one-to-one in some neighborhood of q). Since
a separable Riemann surface is metrizable, we assume the existence of
a metric p on the surface. If S1 and S2 are compact and ISΊZDS ,̂ we
define

P(S19 S2) = sup{inί{P(p, q^qeSJlpeSJ .

An arc is a homeomorphic image of [0, 1], and an open arc is an arc
minus its endpoints. A closed disc is a homeomorphic image of {z\ \z\ ^1},
and a disc is a closed disc minus its boundary.

2. Preparatory lemmas.
LEMMA 1. Let F be a compact set of the complex plane with

connected complementj and let 0 be in the boundary of F. Let N be a
positive integer'. Then the function z can be uniformly approximated on
F by polynomials which vanish at 0 to order at least N.

Proof. If there is a sequence {hn} of polynomials whose derivatives
vanish at 0 and which converge uniformly to z on F, then the sequence
{hn—hJO)} of polynomials vanishes at 0 to order at least 2 and converges
uniformly to z on F. Now assume that z cannot be uniformly
approximated on F by polynomials which vanish at 0 to order at least
2. Then z cannot be uniformly approximated on F by polynomials
whose derivatives vanish at 0. If we let Ω(F) be the Banach space of
all continuous complex-valued functions on F, this means that z is not
in the subspace of Ω{F) generated by the polynomials whose derivatives
vanish at 0. Thus there will exist a bounded linear functional A on
Ω(F) which will vanish on all polynomials whose derivatives vanish at
0, but with Λ(z)=aΦθ. It follows that Λ(h) = ah'(0) for all polynomials
h. We may assume that the bound of A is 1 and that α > 0 . Let U
be a simply connected open set containing F, the distance η of whose
boundary to 0 is less than α/16. Let φ be the conformal map of | z l<l
onto U, with 0(0) = 0 and φ r(0)>0. Since the boundary of U contains
points at a distance v from 0, it is known (see [1], page 75) that
φ'(0)^4ί?. If we let Ψ be the map of U onto | z | < l which is inverse
to φ, then ?Γ/(0) = [φ/(0)]-1^(4^)-1. If we define / o n U to be the
analytic function f—(2 — Ψ)~ι

f we have |/(z)|<^l for z in F, so that
\A(f)\^l. Also
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ΨΛ9)...... _ = λ \W'(0)\> —•

Since / is analytic on U, there will exist a sequence {#w} of polynomials
converging uniformly to / on some neighborhood of F. Therefore g'n(0)
will converge to /'(()). Thus,

This contradiction shows that z is the subspace Γ2 of Ω(F) generated
by polynomials h which vanish at 0 to order at least 2. Thus z^—Z'Z
is in the subspace Td of Ω(F) generated by polynomials z h which
vanish at 0 to order at least 3. Thus all polynomials which vanish to
order at least 2 at 0 are in Γ3, so that T 2 =Γ 3 . Thus ze Γ3. By a
continuation of this process, it can be shown that z is in the subspace
TN consisting of the closure in Ω(F) of all polynomials which vanish at
0 to order at least N. This completes the proof.

LEMMA 2. Let R be a total subalgebra of R, let C be a compact
set with S^{C, R') = C, and let S be the singular set of C relative to R!
(so that S is finite). Then there exists a closed C-neighborhood C of S
and a positive integer N, such that any function in Φ(Cf) which vanishes
at all points of S which are interior to C, to order at least N, and which
vanishes at all points of S, is in R(C'), and such that C is the union
of disjoint closed sets {Cp}, each containing exactly one point p of S.

Proof. Let p and q be any two distinct points of S. Let / be any
non-zero function in R which vanishes on S but which does not vanish
identically in a neighborhood of any point of S. Such a function can
be found because Rr is total. Let n be the exact order to which /
vanishes at p. Then it is easy to find a closed disc U containing p in
its interior, and an analytic function φ which is defined and one-to-one
on some neighborhood of U, which maps U onto {z||2|<:c} for some
c>0, which vanishes at p, and for which [φ{r)]n—f(r) for all r in U.
Since / vanishes on S, we can also find a closed neighborhood H of S
containing U such that f(H)—f(U). Since R! is total, we can in addition
take U and H to be so small that S will be the singular set of H
relative to R. Let q0 be any point in the component of the interior
of H which contains q, except q itself, with f(qQ)φ0, and let pQ be any
point of U with f(Po)=f(qo). Let ζ be a primitive nth root of unity, and
let π be the map of U onto itself defined by φ(πr) = ζφ(r). Obviously
f(r) =f(πr) for all r in U. Since S alone is the singular set of H relative
to R', there exists g in R taking distinct values at the points q0, p0,
and the first n-1 images, Pi = ττ(p0), 2>a=τr(Pi), , Pn-i = ̂ {Pn-%) of p0 under
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π. Note that f(pj)=f(p0) for 1 < ? ^ - 1 .
Now g*, for O^k^n, can be expanded on U as a uniformly

convergent power series in powers of φ, which implies that gk can be
w - 1

written on U in the form gk~ΣfuΦ\ where fu is the sum on U of a

power series in powers of f=φn which converges uniformly on U. The
series defining fkt will actually converge uniformly on H, because f(H)
—f(U). Thus we may extend the definition of fki to H, where it will
be a function in R'{H) which identifies all pairs of points in H that are
identified by/. Therefore fkι(pj)=fkι(p0) for O^j^n—1, O^k^Ln, and
0<^i<Ln — 1, and consequently

This implies that the product of the matrices

and ([φ(pj)]*), O^i^w —1, 0^'^w—1, is the non-singular Vandermonde
matrix ([g(pj)Y), 0^k<^n—l, O^j^n—1. Therefore, the function M in
R{H) defined by Λf=det(ffti), O^fc^w-1, O^i^w-1, does not vanish
at pQ. NOW for each r m U the linear system

has the non-trivial solution xQ~ 1, α?i = l, x>ι~Φ{r),
Thus the function Λ in i2r(iϊ) defined by

1 JOO JO n - l

J l ra-l

g JnQ ' Jn n-

vanishes identically on U. On the other hand, we have just seen that
the coefficient ( — l)n+1 M of gn in this determinant does not vanish at

n

2v We may therefore write h in the form Σ h^, where hk is a function
in R\H) which identifies any pair of points which is identified by /,
and where hn(po)Φθ. By substitution of pQ, , pn^λ into this expression
for h, we obtain
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s i n c e / ident i f ies p5 a n d p 0 . T h u s g(pQ), ••• , g(pn-i) a r e ^ d i s t i n c t r o o t s
n

of the wth degree equation ΣMP0)# fc = 0» so that g(q0), which is distinct
& = 0

from these roots, does not satisfy the equation. Therefore

Thus h does not vanish identically in any neighborhood of q, or it
would vanish in the component of the interior of H containing q, and
therefore it would vanish at qQ.

Thus we see that for distinct points p and q in S there exists a
closed neighborhood H of S and a function h in ϋ!'(i?) such that h
vanishes identically in a neighborhood of p but does not vanish identically
in any neighborhood of q. By multiplying together such functions, we
see that for all points p in S there exists a closed neighborhood K of
S, and a function / in R\K) which does not vanish in any neighborhood
of p, but vanishes in some neighborhood of every other point of S.
With this new function /, whose multiplicity at p we call n, choose
U, φ, π, and H in the same way as they were chosen for the old
function /. In addition, we may assume that H is so small that /
vanishes on H—U. We now extend the definition of φ to all of H by
defining φ to vanish on H—U. Let p0 be any point in U distinct from
p, and define p19 piy , pn^ as above. Choose any function g in R
which takes distinct values at pQ, plf , pn-i Let the functions fιjc be

71-1

defined as before, so that gk = ΣificiΦi o n U, for 0^k<Ln — 1. (We shall
i = 0

not need the equation for gn.) We have seen that the determinant M
defined above is in R(H) and does not vanish identically on U. Apply-
ing Cramer's rule to the set of equations for the gk, we can solve them
for φ, obtaining M in the denominator and some function of R'(U) in
the numerator. It follows that the restriction of the function φ M
to U is in R(U). Now M, being a polynomial in the fH, is equal on
U to the sum of a power series in powers of / which converges
uniformly on U. Let the first non-zero term of this power series be
aj\ Then ft\M will be a uniformly convergent power series on some
neighborhood Όr — {q\q e U,\φ(q)\<zc'<c} of p in powers of /. Since /
vanishes on H—U, the series will converge uniformly on Hr—U{j{H—U)
to a function f0 in R{Hf) which equals p\M on Ur and vanishes on
H' — U'. Since φ-M is in R(U'), it follows that the function (φ ikΓ) /0

= φ./ ί = φ»«+i is in R(W). Since f=φn is also in R(H'), and since the°
exponents n and nt + 1 are relatively prime, the function φi will be in
R(Ή!) if i is sufficiently large, say if ί^N. Therefore, any function
in Φ(H') which vanishes on H — U and which vanishes to order at least
N at p will be in R(H').
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Now let p be a boundary point of C, and we shall show that the
last statement continues to hold with N= 1 if Ή! is replaced by Ή! Π C.
From S^(C, R) = C, it follows that none of the components of V — C
lies interior to U\ since S^(Cf R) would contain such a component.
Therefore every component of U' — C contains boundary points of V.
Since φ is a homeomorphism on U, it follows that the complement of
Φ(U' ΠC)=φ(H' ΓiC) = F is connected. Since φ(p) = 0, the number 0 is in
the boundary of F, By Lemma 1, there exists a sequence {hn} of
polynomials which vanish at 0 to order at least N and which converge
uniformly to z on F. The function hn o φ, for each n, is therefore in
R(Hf), by the last statement of the preceding paragraph, and hn © φ->φ
uniformly on H! Π C as W->OD . Therefore φ e 2ϋ'(iϊ' Π C). By Mergelyan's
theorem, any function which is continuous on φ(H' Π C) and analytic at
interior points can be uniformly approximated by polynomials h.
Therefore, any function in Φ(H'Γ\C) which vanishes at p and vanishes
on (ff'ΓϊC) — U can be uniformly approximated by functions of the form
hoφ, and so belongs to R'(H'Γ\C).

It follows from what we have just proved that there exist disjoint
closed C-neighborhoods {Cv}, one for each point p in S, whose union
we denote by O, and a positive integer Nf such that any function / in
Φ(C') which vanishes on S, which vanishes on C — Cv for some p, and
which vanishes to order at least N at p if p is interior to C, will be
in R\G). Since any function in Φ(C) which satisfies the conditions of
the lemma can be written as a sum of such functions /, the conclusion
of the lemma follows.

LEMMA 3. Let C be compact, and let R' be a total subalgebra of R
with S^(C, Rf)—C. Let A be a bounded linear functional on Φ(C), which
is orthogonal to Rr(C) and which can be represented as a measure on an
arbitrary C-neighborhood of the singular set S of C relative to R\ Then
A is a R-homogeneous differential operator on Φ(C), whose order does
not exceed an integer N depending on R and C but not on A.

Proof Partition S into equivalence classes Si, &,•••, Sn, by
defining p=q to mean g(p) — g(q) for all g in R'. Then there exist
functions flf f2, •• , fn in R such that f(p) = 0 for p in S—Si and
fi(p) = l for p in S. Thus, by Runge's theorem, there exist disjoint
closed C-neighborhoods Ulf U2, , Un, of S19 S2, , Sn respectively,
such that, for l<^i<^n, there exists a sequence of functions in R which
converges uniformly on U— U1 U Z72 U U Un to a function g4 which has
the value 1 on U.t and the value 0 on U—Ui. Since A can be realized
as a measure on U, it can be extended to be a bounded linear functional
A' on Φ(U). Obviously A! will vanish on R'(U). Therefore, if we define
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the functional Al9 , An by Ai(f)=A'(fgι), for all / in <P(C), we obtain
bounded linear functional on Φ(C) which vanish on R\C) and have sum
A. For each i, l<*ii£n, let VΊ be any closed C-neighborhood of St

which is a subset of [7$. By hypothesis, there will exist a measure μ
on V—VΊlJ ••• U Vw which represents A. For each ΐ, l^i^n, let
{̂ ί»}Γ=i be a sequence of functions in R converging uniformly on U to
gt. Then for each / in Φ(C) we have

nm A\fgik) = \im A(fgίk)
fc->oo fc->oo

dμ=ygt ^ =

Therefore Λt is represented by the restriction of // to Vi9 from which
it follows that Ah can be represented as a measure on an arbitrary
C-neighborhood of S^ To finish the proof, it is only necessary to show
that Aι is a B'-local differential operator on Φ(C) of order not exceeding
some positive integer N depending only on R and C. Let the closed
C-neighborhood C of S and the positive integer N have the properties
stated in Lemma 2. If we write C*= U {Cp\peSi}, then Ct is a closed
C-neighborhood of S.t such that any function in Φ(Ci) which vanishes on
Sit and which vanishes at all points of Si which are interior to C, to
order at least N, is in R\C%). Since At can be represented as a measure
on Ci9 and since At is orthogonal to R'(C), we see that At will be
orthogonal to any function in Φ(C) which agrees on C4 with a function
in R'(Ci). Thus ^(/) = 0 whenever / is a function in Φ(C) which vanishes
on S.ι and which vanishes to order at least N at all points of SL which
are interior to C. Since g(p) = g(q) for all p and q in St and all g in /?',
it follows from the definition that A% is a ϋΓ-local differential operator
on Φ(C) of order not exceeding N, as was to be proved.

LEMMA 4. Let C be a compact set whose intersection with a disc U
is an open analytic arc A which divides U—C into components U1 and
Z72. Let Rr be a total subalgebra of R, and let μ be a Borel measure on
C which is orthogonal to R'. Let there exist functions f and g in R'
which are schlicht relative to C on U. Let f(A) be in the outside boundary

of f(C\jU2), where U% is the closure of U2, and let g(A) be in the outside

boundary of g(C\jU^). Then μ vanishes on all subsets of A.

Proof. Consider any open sub-arc B of A, which has endpoints a
and b in A with μ({a}) — μ({b}) = 0. Let Bx be any closed sub-arc of A
which contains the closure of B in its interior. Since the analytic arc

f(A) forms part of the outside boundary of f(C{jU2), we can find a
function φ on f(C\jU2) which is a uniform limit of polynomials, which
maps f(C\jU2—B^ into {z\$(z)>0}, which maps /(Zy in one-to-one
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fashion onto a subset of the real axis, and which maps the endpoints
of f(B) onto 0 and 1. To find φ, let J be a simple closed curve about
the set f(C U U2) which has f{Bτ) as part of its boundary and which has
no other points of f(C\jU2) in its boundary. Let φ1 be the Riemann
map of the interior of J into the unit disc. Then by Bieberbach [1],
it follows that φx can be extended to be continuous on J and to map J
homeomorphically onto {3||s| = l}. By Mergelyan [3], φ1 is the uniform
limit of polynomials. Then we can find a function φ.λ which is analytic
on the unit disc and continuous on the closed unit disc, which maps the
closed unit disc in a one-to-one fashion into {z\$(z)^0}, which maps the
arc φfflBί)) in one-to-one fashion onto a subset of the real axis, and
which maps Φi(/(α)) and φι(f(b)) (but not necessarily in that order) onto
0 and 1. The composite function φ = φ2oφL will have the desired
properties. Thus the function /' = φ o / i s the uniform limit on C[jU2

of functions in R\ maps (C\jUi)—B1 into {z\$(z)>0}, maps BΎ in onet
to-one fashion onto a subset of the real line, and maps B onto the uni-
interval (0, 1). The function /' can be extended to be analytic and
schlicht in some neighborhood of the closure of B because it maps U2

into {z\ί$(z)>0} and maps B± in one-to-one fashion into the real line.
In the same way we can find a function ^ on Cu UΊ which is the

uniform limit of functions in R\ which maps C\jU1—B1 into {z\$(z)<0},
which maps Bλ in one-to-one fashion into the real axis, and which maps
B onto (0, 1). As above, g' can be extended to be schlicht on some
neighborhood of the closure of B, and the values of the extended
function at points of Z72 sufficiently near to B will lie in the set
{z\£$(z)>0}. Thus b o t h / and g' have positive imaginary part at points
of U2 near B. Therefore f and g' increase in the same direction along
B. We may therefore label the endpoints a and b of B in such a way
that f'(a) = g'(a) = 0 and fφ) = g'(b) = l. It is clear that the algebra T
generated on C— {a, b} by f and g' is orthogonal to the measure μ,
because μ({a})=μ({b}) = 0. The function

A,= £ ϊ-λ.,
g' / ' - l

defined on C— {a, b), can be extended to a continuous function hλ on
C, because both numerator and denominator vanish only at a and 6,
about which points they can be extended to be analytic with simple
zeros. For α:>0 consider the function

f 9'-l
g' — oά f — l + ai

defined on C. Its absolute value will be less than the absolute value
of hλ. Therefore, as α->0, it converges boundedly to hx on C— {a, b}.
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Now ll(g' — cά) and l/(/ — 1 + ai) are uniform limits on C of polynomial
functions of gr and f respectively, so that hλ is a bounded limit on
C~ {a, b} of functions in the algebra T. Therefore all powers of hx are
orthogonal to the measure μ. Now f has positive imaginary part on
C~BU so that f\(/' — I) has negative imaginary part on C - β j . Similarly,
{g' — Y)\gr has negative imginary part on C—B^ Thus it is possible to
define the arguments of f!(f — l) and (g' — l)/g' to be continuous on the
set C—B1 and to have values in the interval (—π, 0). Since these
functions are real on Bx — {a, b], we may therefore define the arguments
on C— {a, b} to be continuous and to have values in the interval (—7r,0].
Thus the argument of hu since hL is the product of the functions just
considered, can be defined continuously on C to have values in the
interval ( — 2ττ, 0]. Since C is compact, the values will actually lie in
the interval ( e — 2ττ, 0] for some e > 0 . We may therefore obtain the
function log hL on C as a uniform limit of polynomial functions of hlf

so that the real part of log hγ will be log f(g'-i) and the imaginary

part will have values in ( — 2τr, 0] and will vanish on Bv It follows

that \ log hL dμ=0.

For each α > 0 , by an argument similar to the one just given, the
function

h =
f' — l + ai gf~cά

will be a uniform limit on C of polynomial functions of f and g\ and
will have an argument function with values in the interval ( — 2π, 0).
Thus log hΛ can be defined to be a function on C which is a uniform
limit of polynomial functions of f and g', and whose imaginary part

has values in the interval ( — 2π, 0). Therefore, \ log hΛ dμ = 0. The

real part of log hΛ converges uniformly on C—B1 to log j/^l, as a-+09

because g' and f — 1 are bounded away from 0 on C—Bv. Also the
real part of log ha converges boundedly on By—{a, b] to the same
function, since the reality of f and g' on Bλ implies that the absolute

values of the functions ^-~t_— and g -—-——- are nearer to 1 on Bx

gf — ai f — l+ai

than are and
/-I

respectively. It follows that the real part

of log ha converges boundedly on C— {α, 6} to log (/̂ j = 5R(log hi). The
imaginary part of log ha, on the other hand, must converge boundedly
on C—B1 to ^(log hi), because hω converges to hx on C—B1 and both

hj and £s(log ha) have values in the interval ( —2ττ, 0) on C—Bλ.
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On the sub-arc B of Bu f and g' are positive whereas / ' — I and g' — l
are negative, so that the argument of hx will be a small positive number,
on B, modulo 2π, if a is small, which means the argument of hΛ will
be near — 2π on B. Thus, as α->0, we see that 3(log ha) converges to
— 2π on B. Similarly, we see that $(log hΛ) converges to 0 on B1—B
~ {a, b}. Thus log hΛ converges boundedly as α-^0 to a function h2 on
C— {a, &}, for which log hλ—h2 has the value 2πi on B and the value 0

on C—B— {a, b}. Since 1 log ka dμ — Oy we must have 1 hz dμ = 0.

Therefore 0=1 (log hί—h2)dμ — 2πiμ(B). Since this is true whenever μ

vanishes at the endpoints of B, it follows that μ vanishes on all subsets
of A, as was to be proved.

LEMMA 5. Let Rr be a total subalgebra of R. Let S be a compact
set and C a compact subset of S. Let qQ be a non-isolated point of S—C.
Let gQ be a function in Rf which assumes its maximum modulus for S
at the point q0, and at no points of C. Let g0 be non-constant on every
component of the Riemann surface which contains points of S. Then
there exists a function g in R which assumes its maximum modulus for
S at a unique point q, lying in S—C, and there exists a neighborhood
W of q on which g is schlicht relative to S.

Proof. Let

ΓΊ={p\peSf gQ is not schlicht at p} .

Since, by the hypothesis, the points of S at which g0 is not schlicht
must be isolated, it follows that Γτ is finite. Therefore the set Γ',
defined to be the union of Γx and the singular set of S relative to R\
is finite. Thus gQ(S) is a compact subset of the complex plane, gQ(C) is
a compact subset of go(S), and go(qQ) is a point of maximum modulus of
gQ(S) which is a non-isolated point of gΰ{S) — g0(C). Thus go(qo) is in the
outside boundary of gQ(S), and since g^qo) is a non-isolated point of
OoiS), there must exist points zQ distinct from go(qo) but arbitrarily near
to go(qo) which lie in the outside boundary of gQ(S). By taking zQ

sufficiently close to go(qo), we may assume that zQ is not in gQ(C), nor in
the finite set gQ(Γ). We may therefore find a point w in the unbounded
component of the complement of gQ{S) whose distance to zQ is less than
its distance to gQ(C)\JgQ(Γ). The minimum distance of w to go(S) is
therefore attained at no point of go(C){jgo(Γ). The function (z—w)~J of
z therefore attains its maximum modulus for go(S) at no point of
9Q(C)\J9Q(Γ)- Since w is in the unbounded component of the complement
of go(S), it follows that (z — w)'J can be uniformly approximated on some
neighborhood N of gQ(S) by polynomials h. If the approximation is
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sufficiently good, h will be schlicht on go(S) because (z—w)~ι is schlicht
on N, and h will attain its maximum modulus for gQ(S) at a point zλ in
gQ(S)—gQ(C)—g0(Γ). Therefore the function gλ~h o g0 is in R and attains
its maximum modulus for S at a point qL (any point of S with go(qi) — z^
of S—C—Γ. Since qλ is not in Γ, g0 is schlicht at qλ. Since & is
schlicht on gQ(S), the function ^ will therefore be schlicht at qx.

Let the finite set Sf consist of all those points p in S, except q19

for which g1(p) = g1(q1). By replacing gλ by g^Qiiqi), if necessary, we
may assume that gτ attains its maximum modulus for S only at q1 and
at points of S'. Since qλ is not in Γ, we can find a function g% in R'
with #2(gi) = 0> gJj>)~—gι{Q^ for all p in S'. Let € be a positive
number, and consider the function g — g^eg^oίR, Since gλ is schlicht
at qu there will exist a neighborhood U of <& such that g will be
schlicht on U for all e sufficiently small. Also there will exist a
neighborhood V of the set S' such that \g2{p)+gι(p)\<\gι(qι)\ for all p in
V, because we have 0 2 ( P ) + 0 I ( P ) = & ( P ) + 0 I ( 0 I ) = O for all p in S'. Thus
for all p in VΓ\S we have

= | ( l - e)gi(p)+ e(g2(p)+g1(p))\<(l- e)\gi(p)\

^ sup

Thus g does not attain its maximum modulus for S on the set V. If
e is sufficiently small, on the other hand, g can attain its maximum

modulus for S only near S' or near q19 since gλ attains its maximum
modulus only at S' and at qλ. Therefore g can attain its maximum
modulus for S only at points of U, if € is sufficiently small. The
point q of U where this happens may not be unique, but if we take
such a point q and replace g by g+g{q), then q will be the unique
point where g attains its maximum modulus for S, because g is schlicht
on U. Since g assumes its maximum modulus at the unique point q in
S and is schlicht on U, there will exist a disc W in U containing q on
which g is schlicht relative to S. This completes the proof of the
lemma.

LEMMA 6. If F is a compact subset of the complex plane, and v is
a measure on F which is orthogonal to all polynomials, then for almost
all real numbers x0 there exists a measure β on the set L={z\?H(z)=x0

and z is not in the unbounded component of the complement of F}, such
that

h dv=-[ h dv=[h dβ

for all polynomials h, where
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F1 = Ff]{z\<3i(z)^xΰ} and F* = F Γi {z\3i(z)^xQ} .

Proof, There will exist a measure μ on F which assumes non-negative
values and which dominates the complex-valued measure v in the sense
that \v(s)\i£μ(s) for all Borel sets S. Let φ be the non-negative,
non-decreasing function of the real variable x0 defined by φ(x0)
= μ({x+iy\x^x0}). Then φ'(x0) will exist for almost all χQ. Assume

x0 is such that φ'(xa) exists. Then the equation 1 h dv— — \ h dv is a

consequence of the equation I h dp — 0 and the fact that v, because

Φ'(x0) exists, vanishes on all subsets of F1ΓiF2. By Runge's

theorem, we will then have I g dv= — \ g dv, whenever g is any
JF1 }F^

function analytic on some neighborhood of the set consisting of the
union of F and the bounded components of the complement of F.
Choose 6 with 0< e < 1 . Write T— {z=xo+iy\ the distance from z to L
does not exceed e } , and V—{y\xo+ίye T}. Let h be any polynomial,
and write ||A|| = sup {\h(z)\\ze T}. For $i(z)>x0, define

where the direction of integration along T is upward. For (3\(z)<xQf let

Then it is well known and easy to see that both hx and h2 have
continuous boundary values at points z0 of T which are interior points
of Γ, relative to the line {z\^R(z) = xo}y and that the difference of those
boundary values, h1(z0)—h2(zQ), is h(zQ). Therefore, if we define hλ{z)
=h(z)+k2(z) for 9ΐ(z)O 0, and h2(z)=h1(z)—h(z) for (3\(z)>x0y then by
extending to the interior of T by continuity, we obtain analytic
functions hx and h2 on some neighborhood of the set consisting of the
union of F and the bounded components of the complement of F9 such
that h—hλ—h2.

Thus we have

h(z)dv(z) = [ h^d^-l h2(z)dv(z)

= ( hλ(z)dv{z) + \ hz{z)dv{z) .

We consider the first term of this sum, and obtain



42 ERRETT BISHOP

1 2m

<

=

VII

h

h

κ\

=11*
where M is some

ίχj(x

LLr-,[

U)J{Xe

[K\M [(Xo

constant

o—x)2 + (v—y)*]-

1

— x ) 2 + ί 2 ] " 2 dt dci

not depending

2 dv

dμ{z

on

dμ(z)

)

e and where

Since φ'(x0) exists, the difference quotient [φ(x)-~φ(xo)~\(x—%o)~ι will be
bounded, so that there will exist a constant η such that φ(x)—φ(x0)
<7](X—XQ) for all x>xQ. Thus the function ψ defined for all x>xQ by
ψ(x)=η(x—xQ) — [φ(x)—Φ(xo)l is positive. Also

is a positive decreasing function of x for x>x0, and

Ψ(x)f[x)^v(x—Xo)f(x)—^0 as x—>x0 .

It follows by integration by parts that

\Kfix)dψ(x)^09 or

Therefore

Now the last integral is finite, as may be seen by transforming to polar
coordinates. Now since a similar estimate can be obtained for

fφ)dv(z)\ ,

we see that there exists a constant Q, not depending on 6 , such that

h{z)dv{z) , for all polynomials h. Since Q does not depend on

G , we see that
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If h(z)dv{z) ^Q sup {\h(z)\\zeL} ,

for all polynomials h. Since the linear functional h-A h(z)dv(z) can be

extended, by the Hahn-Banach theorem, to a linear functional of bound
Q on Φ(L), we see that the measure β exists, as was required to prove.

LEMMA 7. Let C be compact, and μ a measure on C orthogonal to
the total subalgebra R\ Let £^(C, R') = C. Let f be a function in R'.
Let a and c be real numbers, a<c, and let D be a closed disc containing
the sets CD {q\ίΛ(f(g))^a} and <9"(C, /)Π {g|3ί(/(<7))^α} ΠD in its interior,
such that f is schlicht on D relative to C, and such that DΓ\ {q\^(f[q))=b}
is non-void whenever a<b<c. Then, for every b with a<b<c, there

exists a measure μ' on CΓΊ {q\^(f(q))^b} such that \gdμ=\gdμ' for all g

in Φ(C).

Proof Define a measure v on F=J\C) by v(S) = μ(f-\S)). Then if

h is any polynomial, we have \hdv=\hofdμ=0, since hofeff. Now let

xQ be chosen as in Lemma 6, where we may impose the additional
requirement that a<xo<b. It follows that the sets

E=£*{C, /)n {g\W(q))=χo} n o

and Cι=CΠ {qffiifiq^^Xo} are contained in the interior of D. Write
C.z=CC\{q\W(q))^Xo}> so that/(C 1) = F 1 and f(C2) = F2, in the notation

of Lemma 6. By the definition of v, we see that \ hofdμ— \ hdv for

all polynomials h. Consider the complex number z0 not in f(E) with
^(ZQJ^XQ. There are two cases to consider, depending on whether z0 is
in f(D) or not. In case zdef(D), then zo=f[qQ) for qQ in

(D-E)f] {q\W(q)) = Xo}cz^(C, f) ,

by definition of E. Therefore, z0 is in the unbounded component of the
complement of F~f(C). In case zQ is not in f(D), then z0 can be joined
to a point zι in the boundary of f(D) by a closed interval / whose
interior lies in {z\3\(z) = x0}—f(D), because {z\3i(z)—x0} Π / φ ) is non-void
by the hypotheses of the theorem. Now Ff] {z\$ϊ(z) = x0} is contained in
the interior of f(D), because Cf) {q\^(f(q))—Xo} is contained in the
interior of Zλ It follows that the interval / lies in the complement of
F. Since we have already seen that a point z1 with 3i(z1)=x0 and
zLef(D)—f(E) must lie in the unbounded component of the complement
of F, it follows that zQ lies in the unbounded component of the complement
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of F. Thus, from a consideration of the two possible cases, we see
that the set {%\ϊR(z) = Xo}—f(E) is a subset of the unbounded component
of the complement of F. It follows that Laf(E), where the set L is
defined in Lemma 6. Thus, since / is schlicht on Z), we may define
the measure a on E by a(S) — β(f(S))f where β is the measure on L

defined in Lemma 6, and obtain \hdβ=\hofda for all polynomials h.

Thus

[ hofdμ= \hdv= [fιdβ=

for all polynomials h. Since both E and C1 are subsets of D, and since
any analytic function on D can be uniformly approximated on D by
polynomial functions of / (because / is schlicht on D), we therefore see

that 1 gdμ=\gda for all g in R. Since v vanishes on all subsets of

Ex Π F2, then μ will vanish on all subsets of Cτ Π C2, so that

I gdμ=-\ igdμ

for all g in R'. We therefore see that \ gdμ— — \gda for all g in R'.
Jc 2 J

Thus if H is the carrier of the measure a and if g is in Rf, we see
that \ gd(μ — α) = 0, and \ #d(μ+α:) = 0.

J^uiί Jc2u//

We now show that α, which we know is a measure on E, is actually a
measure on EΓ\C, that is, that the carrier iϊof a is a subset of C. Assume
first that H—C contains an isolated point r. Then r is isolated point
of H\jC19 and since / is schlicht on the subset H[jC1 of D, the point
f(r) is an isolated point of /(HuCJ. Also 9ΐ(/(r))=α;0^3ΐ(z) for all z in
/(iϊUCΊ). It follows that the function θ on J\H\jCτ) which has value
1 at f(r) and vanishes elsewhere is a uniform limit of polynomials.
Thus θof is in R/(H[jC1). By the equation derived at the end of the
last paragraph, it follows that α({r})= — I θofd(μ—a) — 0. This

contradicts the fact that r is an isolated point of the carrier H of a,
and hence H—C has no isolated points. There exists a function g0 in
22' which assumes its maximum modulus for H\jC at no point of C, if
H—C is non-void, because S^(C, R') = C. Since H\J C is compact, there
are only a finite number of components of the Riemann surface which
intersect H[jC.

Since Rr is total, we can find gλ in R! which is non-constant on each
component of the surface which intersects H(jC Therefore, if e is
sufficiently small, the function g2—gQ-\- egλ in R' will be non-constant on
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each component of the surface which intersects H\jC, and will assume
its maximum modulus for H\jC at no point of C. Therefore, by
Lemma 5, there exists g in R assuming its maximum modulus for
H\J C at a unique point q of H—C which has a neighborhood on which
g is schlicht relative to H\JC. Since qeE—C, we can find an arc B
of {r\Si(f{r))—χQ} Γ\D which contains q in its interior, which is disjoint
from C, and which lies in some disc NaD — C on which g is schlicht
relative to H\JC. We may choose N and B so that Nf] {r|5R(/(r))>#0}
and NΓ\ {r\ϊR(f(r))<x0} are connected. Write S=H{jC{jB. Then we
can find a point q0 in N such that

\g(qo)\> max {\g(r)\\r e B}=max {\g(r)\\r e S} .

By moving q0 slightly, we may actually assume that

Let U be a disc contained in N and containing g0 and q such that
Uf)S is an open sub-arc A of B dividing U—A into components

C71-ί/n{r|9ί(/(r))>^} and U, = UΠ {r\m(f(r))<xΰ} ,

with UΓ\S = A, where ί7 is the closure of Z7. Since / is schlicht on D
relative to C, and since UaD and S c D u C , then / is schlicht on U
relative to S.

Let qL be any point of S{jU, at which # assumes its maximum

modulus. Since \g(qι)\^\g(qo)\> max {\g(r)\reS}, we have qj^eU—S.

Thus either qιeUi or qιeU2y but ĝ  is not in E/ifΊ ί/aCAcS. Assume

qιeUi. Then ^(gj is in the boundary of the unbounded component of

the complement of g{S\jU), since it is a point of maximum modulus

of g(S{jU). Since g{qλ) is not in g(S{jU2), it is therefore in the

unbounded component of the complement of g{S\jU2). The set

g{U1—B) is connected and disjoint from g(S{jU2), because U1—B

is disjoint from S\jU2 and g is schlicht on U relative to S. Since

giq^e g(Π1—B)J it follows that g{U1—B) is in the unbounded component

of the complement of g(S[jU2). Since g(A)—g(BΓ[ U) is in the boundary

of g(Uι—B)1 it follows that g(A) is in the outside boundary of g(S\jU2),

in this case. In case q1eU2, it similarly follows that g(A) is in the

outside boundary of giSliUJ.
First consider the case in which g(A) is in the outside boundary of

0(SuC7j). Then g(A) is in the outside boundary of g{H{J C2USU Oj).
Since the real part of / equals #0 on A and is less than or equal to x0

on H{jC2\JU2, the open arc f(A) is in the outside boundary of
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Since i hd{μ + a)~ 0 for all h in R, we can apply Lemma 4, to the

compact set H\jC2\jB, to the measure μ + a, to the disc U, and to the
functions / and g in R, to conclude that the measure μ + oc, and
therefore a itself, vanishes on all subsets of U. Next consider the

case in which g(A) is in the outside boundary of g(Sϋ Z72) Then g(A) is

in the outside boundary of g{H[j CΊU BU U2). Since the real part of /

equals x0 on A and is greater than or equal to xQ on JHΊj CX\JB\J U19 in

this case/(A) is in the outside boundary of f(H\J CΊU-Bl) Uτ). Since

I hd(μ — a) — 0 for all h in R', we see by Lemma 4 again that the
J#UC1U£

measure μ — a, and therefore α, vanishes on all subsets of U. Thus,
in either case, we see that a vanishes on all subsets of U. This
contradicts the fact that the point q in U is in the carrier Hoi a. This
contradiction shows that H—C is void, so that a is a measure on

Enc.
Now SS(Cly R)cz<9*(C, Rf)=C. Moreover, if qe C-Cλ then

qe£"(Cu R) because ^(f(q))<xo^W(qΊ) for all qr in Cλ. Hence
£S(CU JB/) = C1. If D — Cx were not connected, there would exist a
component of D — Cx containing only interior points of D (because Cx is
a subset of the interior of D), so that ^(CΊ, R) would contain all
points of this component, contradicting the fact that 45^(C1,β

/) = C1.
Thus Ό — Cλ is connected. Since / is schlicht on Z>, it follows that
F1=f(C1) has a connected complement. By the theorem of Mergelyan,
every continuous function on Fλ which is analytic at interior points can
therefore be uniformly approximated by polynomials. From this it
follows that every continuous function on Cλ which is analytic at
interior points can be uniformly approximated by polynomial functions
of/, so that (P(C1) = β/(C1). Since HaEf]Cc:Cl9 and since we have
already seen that 1 gdμ— \ gda for all g in R, it follows that

=\ gda

for all g in Φ{C^). If we define the measure μ' on

by μ'(S)=μ(S-C1)+a(S)9 we obtain

\9dμ'=\ gdμ+\ gda=\ gdμ+\ gdμ=\gdμ
J JC-C1 JH JC-Cι JCι J

for all g in Φ(C), as was to be proved.
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3. The main theorem and its consequences.

THEOREM 1. Let R be a total subalgebra of R. Let C be a compact
set with S^(C, R) — C. Let Λ be a bounded linear functional on Φ{C)
which is orthogonal to R(C). Then A is a Rr-homogeneous differential
operator on Φ(C), whose order does not exceed some positive integer N
depending only on Rr and C.

Proof. We know that A can be represented as a measure on C.
Therefore the class Γ, consisting of all compact subsets S of C for
which A can be represented as a measure on S and for which £f{S> Rr)
= S, is non-void, because CeΓ. We construct a sequence {Sn} of sets
from Γ by taking Sι — CJ and choosing Sn+ι such that S ^ c S ^ and

P{Sn, Sn+1)^l sup {p(Sn, S)\SczSn, SeΓ} .
Li

Then p(Sn, Sn+1)-^0 as w-^co, because otherwise the compact set C would
contain an infinite set of points whose mutual distances were larger
than some fixed positive number. Write S— Π Sn, and assume that
there exists a point q0 in S not in the singular set T of C relative to
R''. Then there exists a function gQ in Rr which vanishes on T but
does not vanish on qQ. Since S is compact, there exist only a finite
number of components of the surface which intersect S. Since R is
total, there exists a function gλ in R which is non-constant on every
component of the surface which intersects S. Thus, if e is sufficiently
small, 02 = 0o+e 0i will be non-constant on every component of the
surface which intersects S, and the set K consisting of those points of
S where g2 attains its maximum modulus will not intersect T. If there
exists a point in K which is a non-isolated point of S, then by Lemma
5 there exists a function / in R which attains its maximum modulus
for S at a unique point p, and which is schlicht relative to £ on some
closed disc D containing p in its interior. On the other hand, if all
points of K are isolated, then Kis finite, and since K does not intersect
T, there exists a function g3 in R which has the value g2(p) at some
point p of K, which has the value —g2(r) at all other points r of K,
and which is schlicht at p. For a sufficiently small positive number 6 ,
it follows that the function f=g2+ e g3 will attain its maximum modulus
for S at the unique point p and will be schlicht relative to S on some
closed disc D containing p in its interior. Thus, if we assume that £
is not a subset of the singular set of C relative to R', we may find /,
p, and D which have the properties described. We may assume also
that/(p)>0.

Let α0 be some real number less than f(p) such that the set
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is non-void whenever aQ<a<f(p). For each real number a with aQ<a
<j\v), consider the compact sets Fα = ̂ ( S , f)f] {q\$l(f(q))^a} f]D and
Wa=Sn{q\(SiU\g))^^}' T h e intersection of the Va is VfCp)={p}, and
the intersection of the Wa is W/(p) = {p}. Thus, if a is sufficiently near
to f(p), the sets Va and TFα will be contained in the interior of D.
Having chosen such a value of α, define the compact sets

and Wn = SnΓ\{q\9l(f(q))^a}, for each positive integer n. Since n £?„=£,
we have Π Vn—Va and Π Wn—Wa. Thus, if w is sufficiently large, the
sets yw and Wn will be contained in the interior of Zλ Let δ be any
number with α<δ</(p), and choose a value of n for which Vn and TFW

are contained in the interior of D, for which / is schlicht on D relative
to Sn, and for which 2p(Sn, Sn+ι) is less than the distance d of p to
{q\ΪR(f(q))<Lb}. Then by Lemma 7, we see that there exists a measure
von SnΠ {<7|3l(/(<7))^δ}=Sή which represents A, because there exists
such a measure on Sn. Now £f(S'n, R)a,9^(Sn, R') = Sn. Also, if
qeSn-S'n, then 3ϊ(/fo))>^ sup {^(/(gO)!^ e Sή}, so that qe&"(Sή, R').
Thus ..^(S;, β') = S;, and so S'neΓ. Also />(SW, S;)^d>2 io(Sw, Sn+1).
This contradicts the choice of Sn+ι. Therefore S is a subset of the
singular set of C relative to R!'. Since Γ\Sn=S and since A can be
represented as a measure on Sn, then A can be represented as a measure
on an arbitrary C-neighborhood of S. It follows from Lemma 3 that A
is a i^-homogeneous differential operator on Φ(C), of order not exceed-
ing N, as was to be proved.

COROLLARY 1. If C is compact, and if R! is a total subalgebra of
Ry with S*(C, Rf) — Cy then there exists a positive integer N such that
R\C) contains the ideal I{C, R!, N) of Φ{C) consisting of those functions
in Φ{C) which vanish on the singular set S of C relative to R and which
vanish to order at least N at those points of S which are interior to C.
The ideal I(C, R\ N)9 and therefore R'(C) itself, has finite codimension
when considered as a vector subspace of Φ(C).

Proof. Choose N as in Theorem 1. Then, by Theorem 1, it follows
that every bounded linear functional on Φ(C) which vanishes on R(C)
will vanish on I(C, R', N). It follows from the Hahn-Banach theorom
that I(C, R, N)aR(C). The last statement of the corollary is obvious.

COROLLARY 2. // C is compact, if R is a total subalgebra of R
with S^(C, R) — C, and if the singular set of C relative to R is void,
then R(C) = φ(C).
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Proof. This corollary is in immediate consequence of Corollary 1.
This corollary applies to R itself, if no component of the surface is
compact, since then it is known that R is total, and that the singular
set of R relative to C is void, for all C.

COROLLARY 3. Let C be compact and without interior points. Let
Rr be a total subalgebra of R with S/^(Cf R

f) — C. Let f be a continuous
function on C for which f(p)=f(q) whenever p and q are points in C
for which h(p) = h(q) for all h in Rf. Then feR'(C).

Proof. Let A be a bounded linear functional on Φ(C) which is
orthogonal to R\C). We must show that Λ(f) = 0, and the Hahn-Banach
theorem will do the rest. Since A, by Theorem 1, is a ^-homogeneous
differential operator on Φ{C), and since C has no interior points, we see
that A is a finite sum A=ΣAiy where A.L is orthogonal to R'{C) and has

the form Λ(flr) = Σc&uflr(ίPΐj)> w ^ h pi5 in C and with h(piJ)=h(pil) for

l^j^ni and all h in Rf. Thus f(Vι3)=f{vώ for l^j^nt. Since the

function 1 is in R', this implies Σ α u=0 Thus we have

j=ι 3=ι j=ι

This completes the proof.
The hypothesis that Rf contain the constant functions, which is

made in Theorem 1 (because R' is required to be total), is undesirable,
since, for instance, it rules out the case of an ideal R'. We now show
that this hypothesis is not necessary to the validity of Theorem 1. To
this end, let Rf and C satisfy the hypotheses of Theorem 1, except
that we weaken the word "total" by dropping the requirement that
Rr contain the constant functions. Let A be any bounded linear
functional on Φ(C) which is orthogonal to R\C). Let the original
Riemann surface be enlarged by the addition of the extra disc {s||3|<l}
as a new component, and let the algebra T on the new surface consist
of all functions of the form c+f, where c is a constant, and where /
is any analytic function on the new surface which vanishes at the
center #=0 of the extra disc and which agrees on the original surface
with some function in R'. Let H be the union of C and the subset

. ι^ 1 , of the extra disc. Then A can be considered as a bounded

linear functional on Φ(H), and obviously the functional A' on Φ(H)
defined by A'(g) = A(g-g(0)) will vanish on T\H). By Theorem 1, we
see that A' is a T'-homogeneous differential operator on Φ(H) of order
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not exceeding some constant N depending on T and H (and, therefore,
depending on R' and C). It follows that J is a i^-homogeneous
differential operator on Φ(C) of order not exceeding N, as was to be
proved.
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