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CURVATURE IN HILBERT GEOMETRIES

PAUL KELLY AND ERNST STRAUS

For every pair of points, p and q, interior to a simple, closed,
convex curve C in the Euclidean plane, the line ξ—pχq cuts C in a pair
of points u and v. If C has at most one segment then the Hubert
distance from p to q, defined by

h(p, q) = log up vq
uq vp

is a proper metric (where up denotes the Euclidean distance from u to
p), and is invariant under projective transformations. The geometry
induced on the interior of C is a Hubert geometry, and the Hubert lines
are carried by Euclidean lines [2].

We shall be concerned here with curvature at a point defined in
a qualitative rather than a quantitative sense (cf. [1, p 237]).

DEFINITION 1. The curvature at p is positive or negative if there
exists a neighborhood U of p such that for every x, y in U we have

2 h(x,y)~^h(x, y) ,

respectively

2 k(x, y)^h(x, y) ,

where x, y are the Hubert midpoints respectively of the segments from
p to x and p to y. If there is neither positive nor negative curvature
at a point then the curvature is indeterminate at that point. This
qualitative curvature is clearly a projective invariant.

In order to state our result we need one more concept.

DEFINITION 2. A point p is a projective center of C if there exists
a projective transformation, π, of the plane so that πp is the affine
center of πC.

A projective center is characterized by the following. Let ξ be
a line through p, and let fnC={w, v}, and let p\ be the harmonic con-
jugate of p with respect to u and v. Finally, let Lp be the locus of
all p'ξ. Then p is a projective center if and only if Lp is a straight line.

Conic sections are characterized by the fact that every point in their
interior is a projective center [3]. We can now state our main result,
which solves a problem of H. Busemann [1, Problem 34, p. 406].

THEOREM. If p is a point of determinate curvature then it is
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a protective center of C. In particular, if the curvature is determinate
everywhere then C is an ellipse and the Hilbert geometry is hyperbolic.

We first establish some lemmas.

LEMMA 1. For any point p, interior to C, there exists a line η
(possibly the line at infinity) which intersects Lp in at least two points
and does not intersect C.

Proof There is at least one chord of C which is bisected by p.
If ?! is the line of such a chord then ξτ intersects Lp at qx on the line
at infinity. If Lp has a second point at infinity then the line at infinity
satisfies the lemma. If Lp has only one point at infinity then Lp is
a connected curve. It cannot lie within the strip formed by the two
supporting lines of C which are parallel to ξL for then it would intersect
C. There is therefore a point q2 of Lp outside this strip and the line
y — qiXq* satisfies the lemma.

COROLLARY. For every p in the interior of C there exists a protective
transformation, π, so that πC is a closed, convex curve, and so that πp
is the midpoint of two mutually perpendicular chords of πC whose end-
points are points of differentiability of πC.

Proof Since all but a denumerable set of points of C are points of
differentiability, we may choose the line η of Lemma 1 so that r]t\Lp

contains p^ and p\t and so that C is differentiate at its points of
intersection with ξτ and ξ2. Now let πt be a protective transformation
which maps η into the line at infinity, and let π2 be an affine transfor-
mation which maps π1ξι a n d ^ ^ into perpendicular lines. Then π — π%πx

has the required properties.

LEMMA 2. // a chord of C, of (Euclidean) length 2k, has p for its
midpoint and if q is a neighboring point on the chord at (Euclidean)
distance ds from p, then dS=(2jk) ds + O(ds3), where dS—h{p, q).

Proof If the endpoints of the chord are u and v, and the order
of the points on the chords is u, p, q, v, then, by definition,

)
up /\vp—pq/ V k Λh—ds

k 2\ k ' 3V k

Ύ ~2\k
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LEMMA 3. Let (r, θ) be polar coordinates whose pole p is an interior
point of C at which the curvature is determinate. If C is differentiate
at the ends of two perpendicular chords which bisect each other at p,
then C satisfies the "one-sided" differential relations

( 1 )

for all θ0.

d ,
dθ '

d ,
dθ

( esc 2Θ \
V r 2 /

ί esc 2Θ \

L = -̂ ..ι

\ = d \

( esc 2Θ

t r3

( esc 2Θ
(θo -fπ)"

Proof We first introduce Cartesian coordinates, with origin p, so
that the ?/-axis intersects C at points of second order differentiability,
and so that the axes do not coincide with the two given chords bisected
by p. The curve C is then given by an " upper" arc y=yL(x) and
a " l o w e r " arc y——y%{χ). Let the bisected chords lie on the lines
?!: y — ax and £ 2 : y — {Ha)x respectively. Let bL = (dx, adx) and d = (2dxf

2a dx) on ξ19 and bΛ = (dx, —(l/a)dx) and α2 = (2cZa?, ~{2la)dx) on ξ2, where
dx is positive and chosen so that bLfbzyclf and c2 lie inside C. Assume
that p is a point of negative curvature. Then.

( 2 ) 2 h(mly m2) ^ A(Ci, c2).

where m« is the Hubert midpoint of the segment from p to ct.
To show that h{mί1bi) — O(da?)y we define dSι=h(p, cτ) and dsι—pc1.

With 2& representing the Euclidean length of the chord on ξ19 it follows
from Lemma 2 that dSι — (2jk)dsι + O{dsι)f and hence that

( 3 ) h(p, mj = 1 dS, = 1 d* + O(dSl

3) .

Also, from Lemma 2 and the relation dsι~2pbι, it follows that

( 4 ) A(pf 6,)= I Λ I

Since λ(m!, 60= |Λ(p, m^)—h(p, 6α) |, equations (3) and (4) imply that Λ(m!, 60
= O(ώ1

s). But ώ 1 =ώ?(l+α ϊ ) 1 / a = O(ώ?), hence % 1 ; 60 = O(cZα;3). Similarly,
h(m2,b2) — O(dx3), and therefore

( 5 ) h(mu b1)+h(τni9 62) =

From the triangle inequality,
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( 6 ) h(mu m^hfa b2)—h(mv, b^)~

This, together with (5), yields

( 7) h(mlf m 2 )^h(b l f b2) -O(dx3) ,

and from (1) and (7) we obtain

( 8 ) 2 hφ19 b%)<h(cl9 cJ + O(dx3) .

We now wish to calculate the distances in (8). First, we have

( 9 ) h(blf bj = h[(dx, a dx), (dx, - -- dx)]

= log[l +

yx(dx) + dx
a

Vi(dx)-adx y2(dx)~1dx
a J

a dx Ί
α 2/χ(ίte) J ' '^ L~ ' 2 / 2 ^ ) -I

tt^

α y2(dx) J

Using the Maclaurin expansion of the logarithms, and collecting first
and second degree terms, we obtain

(10) h(bu h)=dx(a+ -
\ aa / L y^dx) y%(dx)

μ_ _±_

Because both of the functions yλ{x) and 2/2(α?) are convex and have second
derivatives at x=0, they can be represented in the form

(11)

and hence

(12) JL = A _ »ί(°)
2/i(άc) yt(0) 2/1(0)
_ 1 _ = 1
^(ώ?Y y!(O)

The substitution of (12) in (10) gives

(13) , b.i)=dx(α+ i-ϊ-1-. _ yψ- + J - li*u Ί
V α/L 2/ϊ 2/5 y\ J

2
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where 2/4=2/*(θ) Hence

(14) 2A(61,6a) =
a A 11 11 lί1 iiι

2 V α Λ 2/J 2/5

By the substitution of 2 dx for dx we obtain

(15) ( ^ ( ) \ ^ ^
V a/Ly1 yλ y\ y\

a A y\ y\

Substituting this and (14) in (8) we have

(16) 2dx(a+1

y\
<2ώjfα+lϊ L + .L-^^-M

V a/Lyι yt y\ y\
+dx(a- X Y - V - AΛΊ+O(dx3) .

V aJ\y{ y\ /J

By dividing both sides of this inequality by 2dx(a+lja), and then rear-
ranging the terms, we obtain

(17)
^ 2 / ι 2/2

Division of both sides of (17) by dx yields a new inequality whose right
side is O(dx) but whose left side is independent of dx. From this it
follows that

(18) Vi+ -»L- -Ua— MfJ--Ju
2/i 2/2 2 V α / V 2/J 2/2

Consider now a reflection in the 2/-axis taking C into a curve C which
is divided by the x-axis into an " u p p e r " arc z=zL(x) and a " l o w e r "
arc z—— zz(x). With the lines s = (l/α) and 2:=—αx playing the roles of
ξλ and f2, and with blf clf 62, c2 defined respectively by (cZα;, (1/&) dx), (2 tZa?,
{2fa)dx)1 {dxy—adx), and ( 2 ώ , — 2αcte), a repetition of the former argu-
ment leads to

(19) + ( a ) (

Since zι=yι and z\=—y\, (19) is also
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(20) - J £ __»L+ α

Combining the opposite inequalities (18) and (20), we obtain

(2i) Λ+JL_!(α_lV_I___IΛ=O .
V\ Vl 2 V a/\yl yι J

Since (21) is an equality, it is clear t h a t the same result would have

been obtained if all preceding inequalities has been reversed. In other

words (21) holds if p is a point of determinate curvature.

To express (21) in polar coordinates, let the polar axis be ξλ and let

0O designate the angle between the polar axis and the upper half-line

of the ?/-axis. The angles of inclination to the #-axis of the tangent

lines to C a t (0, yλ) and (0, y2) are aτ and α 2 respectively and the clock-

wise angles from the radius vectors to the tangent lines a t these points

are ω1 and ω%. From the standard relationships between polar and

Cartesian coordinates, it follows t h a t

(22) 3//

1(0) = tan a,= - c o t ω ^ \ - 1 ^
L r do

2/ί(0)= - t a n α 2 = c o t ω%=\-- ~d^\+
Lr do Λ

Also, by definition, α = c o t # 0 so •- (a— ) = cot 2θ0. Substituting this and
2 V a J

(22) in (21) we obtain

(23) Γ—L A ' ] +Γ_1... drl _{cot2θI 1

and hence

(24) Γ-1- *T~+ X cot2#Ί =ΓJ: .A. + .1 . .2
L r 3 d^ r2 >o L r 3 d<? r 2 >o+π

Multiplying both sides of (24) by 2 csc2#0—2csc2(^0+τz ) we have

C25) — (csc2θ)
K ' dθ r 2

= j ^ (csc2θ)

θo~ dθ " r2

Since (25) involves only first derivatives, it holds for all 0O for which

r is di f ferentiate a t both θ0 and 0o+7r. Since the one-sided derivative

exists everywhere, we get the desired relations in (1), for all 0O, from

the semi-continuity of the one sided derivative.

Proof of the Theorem. According to the corollary of Lemma 1 there

is always a projective transformation such that , after the transformation,
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p satisfies the conditions of Lemma 3. From (1) we obtain

(26)

where the integrals are Stieltjes intergrals and the interval (0O, θ) does
not contain a multiple of π/2. Hence

(27) 1 • • = - + kisin2θ, fe, = constant

where 0*-l) J -gfl^/J-,0'=l, 2, 3, 4) .

Since r is differentiable at the points for which # = 0,π/2, π,37r/2, we
obtain from (27), upon differentiation at these points, the relations
Λ1 = fc2=fc3 = fc4. On the other hand, if we replace θ by # + π in (27) we
obtain the relations kι=—k3f and foλ~—k±. In other words, ^ = 0 and
r(θ) = r{θ + π). Since this shows p to be a metric center, it was initially
a protective center.

The last statement in the theorem is well known (see [3] and e.g.
[2, p.164]).

If a Hubert metric is defined in the interior of an ^-dimensional,
convex surface S, the definitions for curvature and protective centers
are unchanged. The metric for the space induces, on any plane through
an interior point p, a two-dimensional Hubert geometry. If p is a point
of determinate curvature, it is a two-dimensional protective center for
every plane through it. Since the Lp locus for every plane section is
a line, it is easily seen that the total Lp locus must be a plane and
hence that p is a projective center of S. If curvature is determinate
everywhere then S is an ellipsoid and the geometry is hyperbolic.

It seems probable that a Hubert geometry can contain no points
of positive curvature.
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