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1. Introduction. von Neumann’s minimax theorem [10] can be
stated as follows: if M and N are finite dimensional simplices and f
is a bilinear function on Mx N, then f has a saddle point, i.e.:

max min f(p, v)=min max f(u, v) .

WEM YVEN VEN  pENM
There have been several generalizations of this theorem. J. Ville [9],
A. Wald [11], and others [1] variously extended von Neumann’s result
to cases where M and N were allowed to be subsets of certain infinite
dimensional linear spaces. The functions f they considered, however,
were still linear. M. Shiffman [8] seems to have been the first to have
considered concave-convex functions in a minimax theorem. H. Kne-
ser [6], K. Fan [3], and C. Berge [2] (using induction and the method
of separating two disjoint convex sets in Kuclidean space by a hyper-
plane) got minimax theorems for concave-convex functions that are ap-
propriately semi-continuous in one of the two variables. Although these
theorems include the previous results as special cases, they can also be
shown to be rather direct consequences of von Neumann’s theorem. H.
Nikaidd [7], on the other hand, using Brouwer’s fixed point theorem,
proved the existence of a saddle point for functions satisfying the
weaker algebraic condition of being quasi-concave-convex, but the strong-
er topological condition of being continuous in each variable.

Thus, there seem 1o be essentially two types of argument: one
uses some form of separation of disjoint convex sets by a hyperplane
and yields the theorem of Kneser-Fan (see 4.2), and the other uses a
fixed point theorem and yields Nikaido’s result.

In this paper, we unify the two streams of thought by proving a
minimax theorem for a function that is quasi-concave-convex and appro-
priately semi-continuous in each variable. The method of proof differs
radically from any used previously. The difficulty lies in the fact that
we cannol use a fixed point theorem (due to lack of continuity) nor the
separation of disjoint convex sets by a hyperplane (due to lack of con-
vexity). The key tool used is a theorem due to Knaster, Kuratowski,
Mazurkiewicz based on Sperner’s lemma.

It may be of some interest to point out that, in all the minimax
theorems, the crucial argument is carried out on spaces M and N thatl
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are finite dimensional simplices. When concave-convexlike functions are

considered, the topological conditions of compactness and semi-continuity
are used only in reducing the problem to the finite dimensional case.
For quasi-concave-convex functions, however, semi-continuity is needed
in a more crucial way, as can be seen from the example in 3.6.

2. Fundamental notions and definitions. The following definitions
of concavelike and convexlike functions were first considered by K.
Fan [3]. They generalize the concepts of concavity and convexity and
are valid for spaces without linear structure.

2.1. A function f on MxN is concavelike in M if for every
my €M and 0=t<1, there is a e M such that

tf (1, )+ =0 f (e v) = f(pr,v) for all ve N .

2.2. A function f on MxN is convexlike in N if for every
v,v,€ Nand 0 <t <1, there is a ve N such

tf( v)+ A=) f (1, v) = f(pr,v) for all pe M.

2.3. A function f on Mx N is concave-convexlike if it is concave-
like in M and convexlike in N.

2.4. A function f on Mx N is quasi-concave in M if {p: f(p,v)
> ¢} is a convex set for any »e N and real c.

2.5. A function f on M x N is quasi-convex in N if {v: f(x, ) < ¢}
is a convex set for any pe M and real c.

2.6. A function f on Mx N is quasi-concave-convex if it is quasi-
concave in M and quasi-convex in N.

2.7. A function S on MxN is u.s.c.-ls.c. if f(p, ) is upper
semi-continuous in g for each v e N and lower semi-continuous in » for
each pe M.

2.8. For a function f on Mx N, we set
sup inf f=sup inf f(#,v),
LEM VEN

inf sup f=inf sup f(r,v).
veEN pEM
2.9, The convex hull of X will be denoted by "X

2.10. The closure of X will be denoted by X.
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3. Minimax theorems for quasi-concave-convex functions. The aim
of this section is Theorem 3.4. The method of proof, making use of
3.1, 3.2, and 3.3, is very different from any argument used previously
in obtaining minimax theorems.

3.1. THEOREM. Let S be an n-dimensional simplexr with vertices

Gy »roy Q. If Ay -ov, A, are open sets such that Sc U A4, S—A4, 1s

1=0

convex, and a;¢ A, for 1+7 (4,7, =0 ---,n), then N A;#0.
i=0

Proof. We can set A,= OL]BL,,; where the B,,, are open and
k=0
B.,. C B,:«1. Since S is compact, there is an integer N such that
Sc U B,,. By a theorem of Knaster, Kuratowski, Mazurkiewicz [5],
i=0

we have N 4, D N B,,y#0.
$=0 i=0

i=
3.2. THEOREM. Let A={ay, ---,a,} consist of n+1 points in a li-

n
near space of dimension k < n. Then N T(A—~ {a,})1+0.
i=0

Proof. N "= 1{a;\ ) D {a,l #0 for j=0, -+, n.
i=0

%)

Hence by Helly’s Theorem [14], we have the desired result.

3.3. LEMMA. Let M be a convex set, Y a finite set, and f a func-
tion on MxY, quasi-concave and upper semi-continuous in M. Suppose,
n addition, that Y is minimal with respect to the property: for each
re M there is @ yeY with f(p, y)<c. Then there ewists p,e M such
that f(u, y)<c for all ye'Y.

Proof. Let Y={y, -+, ¥,} and set A,={p: f(n, y;)<ec} for i=0,
.--,n. Then the A, are open and M—A, convex. By hypothesis, for
each ¢, there exists a,¢ M such that a;e M—A; for j=i. Let A= {a,,

n
-+, a,}. Then "(A—{a,})' © M—A, and, since M c U A;, we must have
1=0

N 'AM—{a;})'=0. Hence, by 3.2., A spans an n-dimensional simplex in

i=0

M and, by 8.1, there exists a g, € (ﬂ\ A,.
1=0

3.8'. LEMMA. Let N be a convex set, X a finite set, and f a func-
tion on X x N, quasi-convex and lower semi-continuous in N. Suppose, in
addition, that X ts minimal with respect to the property : for each ve N
there is an xe X with f(x,v)>c. Then there exists v,e N such that
Sz, v)>c for all xe X,
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3.4. THEOREM. Let M and N be convex, compact spaces, and f a
Junction on Mx N, quasi-concave-convexr and u. s. c.-1. s. c.. Then sup inf
f=inf sup f.

Proof. Suppose sup inf f<e<inf sup f. Let A,={v: f(g, v)>c}
and B,={p¢: f(¢,v)<c}. The A, are open and cover N. Since N is
compact, a finite number of the 4, cover N. Similarly, a finite num-
ber of the B, cover M. We can therefore choose finite subsets X, ¢ M
and Y, © N such that for each ve N, and hence for each ve Y1, there
is an x e X, with f(, v) >c¢; and for each z € M, and hence for each ze "X 3,
there is a ye Y, with f(g, y)< c.

Let X, be a minimal subset of X, such that for each ve'Y," there
is an e X, with f(x,»)>c. Next, let Y, be a minimal subset of Y,
such that for each peTX,? there is a ye Y, with f(g, y)<ec.

Thus, by repeating this process of alternately reducing the X, and
Y,, after a finite number of steps, we can choose finite subsets Xc M
and YC N such that X is minimal with respect to the property: for
each ve 'Y thereis an xe¢ X with f(z,»)>¢; and Y is minimal with
respect to the property : for each e "™X1 there is a ye Y with f(g,y)<e.
By 3.8, there exists g, e "X such that f(u, v)<e for all y e Y and hence
(by quasi-convexity) f(m, v)<<c for all »eTYY By 3.8, there exists
v, € "Y' such that f(zx, v,)>c¢ for all xe X and hence (by quasi-concavity)
Sy, vo)>c for all pe™X". Then ¢<f(pmy, vo)<c¢, which is impossible.

3.3. COROLLARY. Let M and N be convexr spaces one of which 1s
compact, and f a functton on Mx N, quasi-concave-convex and u. s. cC.
-l.s.c.. Then sup inf f =inf sup f.

Proof. Suppose M is compact and sup inf f<<e<inf sup /. Then
there exists a finite set Y N such that for any pe M there is a yeY
with f(y, y)<c. Taking f'=f/(M x'Y1), we get sup inf f’'<e<inf supf’
in eontradiction to 3.4 with N replaced by "Y! and f by f".

3.6. REMARK. In Theorem 3.4, the condition that f be u.s. c.-ls.c.
cannot be removed nor appreciably weakened even if the spaces M, N
are finite dimensional. To see this, we consider the following example.
Let M=N=[0,1] and f(z,»)=0 for 0<p<1/2 and v=0o0r 1;2<p<1and
v=1; flp,)=1 otherwise. We easily check that f is quasi-concave-con-
vex ; for each g, f(1, v) is lower semi-continuous in »; however f(g, 1)
is not upper semi-continuous in z. We also have: sup inf f=0 and inf
sup f=1.

4. Minimax theorems for concave-convexlike functions. For con-
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cave-convexlike functions, the topology for the spaces on which they
are defined plays only a secondary role. Theorem 4.2 (4.2') below, which
is the generalization of Kneser’s theorem to concave-convexlike functions
due to K. Fan {3], is not a special case of 8.4 since the concepts of
concave-convexlike and quasi-concave-convex are independent of each
other (see [7]). It is however a special case of 4.1" (4.1), which is it-
self an immediate consequence of 3.4 (actually, von Neumann’s theorem).

4.1. THEOREM. Let M and N be any spaces, f a function on Mx N
that s concave-convexlike. Lf for any c<inf sup f there exists o finite
subset XM such that for any ve N there is an xe X with flw,v)>c¢,
then sup inf f=inf sup f.

4.1'. THEOREM. Let M, N be any spaces, f & function on MxN
that is concave-convexlike. If for any ¢>sup inf [ there exists a finite
set YC N such that for any rpe M there is a ye 'Y with flyn, y)<ec, then
sup inf f=inf sup f.

4.2. THEOREM. (Kneser, Fan). Let M be compact, N any space, f
a function on M x N that is concave-convexlike. If f(p,v) is upper semi-
continuous in p for each v, then sup inf f=inf sup f.

Proof. If e>supinf f, let A,={z: f(p, v)<c} for each ve N. The
A, are open and cover M, hence a finite number of them cover M.
We may therefore apply 4.1°.

4.2 THEOREM. Let M be any space, N compact, f a function on
M x N that is concave-convexlike. If f(p, v) is lower semi-continuous in v
Jor each p, then sup inf f=inf sup f.
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