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ON SEMI-NORMED *-ALGEBRAS

CHIEN WENJEN

1. Introduction. The notion of semi-normed algebras was introduced
by Arens as a generalization of Banach algebras [2, 5]. They are called
locally multiplically-convex algebras by Michael [16]. Various properties
of Banach algebras have been generalized to semi-normed algebras [5,
16,21,22,23].

We repeat here a few definitions. Let A be a linear algebra over the
field K of complex or real numbers. A nonnegative real-valued func-
tion V defined on A is called a semi-norm if it satisfies the following
conditions :

V(x+y)£ V(x)+ V(y), V(xy)^ V(x)V(y), V(λx)=\λ\V(x). Suppose there
is a family Ύ^ of semi-norms such that V(x) —0 for all Ve y only if
x=0. A is a semi-normed algebra if all the translations of the sets on
which V(x)<e, where e is real and Ve Ψ\ are taken as a subbase of
topology, and is complete if it is complete with respect to the uniform
structure defined by the various relations V(x — y)<e. A is called_an
*-algebra if there is a semi-linear operation * such that (λx—yz)* = λx*
—z%y^jX%if—x. A subset U of A is called idempotent if UU c U; it is
called multiplicatively convex (m-convex) if it is convex and idempotent.
A is locally m-convex if there exists a basis for the neighbourhoods
of the origin consisting of sets which are m-convex and symmetric.

The present paper is devoted to generalizing the representation theo-
rems for commutative and noncommutative Banach algebras to semi-
normed algebras. An application of the Gelfand-Neumark-Arens
representation theorem for commutative Banach algebras yields a simple
proof of the spectral theorem for bounded self-adjoint operators in
Hubert space [14, p. 95], Our generalized representation theorem for
commutative semi-normed algebras gives rise to a similar proof of the
spectral theorem for unbounded self-ad joint operators.

The characterization of the algebra C(T, K) of all complex-valued con-
tinuous functions on a locally compact, paracompact Hausdorff space T
has been treated by Arens [5, p. 469]. We have a characterization
theorem for C{T, K) where T is a locally compact completely regular
space and also a uniqueness theorem for the space T [cf. the Banach-
Stone theorem, 6, p. 170, 20, p. 469]: If C(Tl9 K), C(Γ2, K) are topo-
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logically isomorphic, then T1 and T2 are homeomorphic. If T19 T2 are
Hewitt's Q-spaces [11, p. 85], the topological equivalence between the
spaces follows from the algebraic isomorphism between C(T19 K) and
C(T2, K), but not in general.

2. Functional representation*

2.1. THEOREM. Let A be a complete commutative semi-normed
^-algebra (with or without a unit) over the complex numbers K such that

2.2. V(xx*)^kvV(x*), for all Ve ^\kv>0). Then A is topologically
isomorphic to a complete self-adjoint subalgebra S of the algebra C(T, K)
of all continuous complex-valued functions (vanishing at infinity if A
has no unit) on T with k-topology, where T is the union of the mem-
bers of a family of pairwise disconnected and closed-open sets, (compact
if A has a unit, otherwise locally compact).

Proof. The elements x in A satisfying V(x) — 0 form an ideal Zv, a
kernel ideal of A. The quotient algebra A\ZV is a normed algebra when
V is used to define a norm, and the completion Bv of A\ZV is a com-
mutative Banach *-algebra. By Gelfand-Neumark-Arens representation
theorem [3, Theorem 1, p. 278], there exists a Hausdorff space (compact
if A has a unit, otherwise locally compact) Qv= ^-neighbourhood homo-
morphism, for which Bv is the class of all complex-valued continuous
functions (vanishing at infinity if A has no unit) on Qv such that

xv*(q)=xv(q) (q eQv,xe Bv).

and

(2.3) kvV(xv)^ sup \xv(q)\^ V(xv) .

Let

T= U Qr
ve

Retaining the original weak* topology for Qv and regarding all Qv as
pairwise disconnected and closed-open subsets, we have a locally compact
completely regular space Γ. The complex-valued continuous functions
on T are of the form /(*)= {fv}, where f,(t) e C(QV, K) and f(t)=fv(t) if
teQv.

The mapping

P : x 6 A->x(t)^ {xγ(t)} e C(T, K)

maps A onto a subalgebra S of C(T, K). P is isomorphic for, if x
maps to zero functional, then V(x) — 0 for all Ve *-/>" and x is the zero
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element of A.
In fact, P is a homeomorphism. Denote the open set in A consisting

of all x such that V(x)<e by 0(V, e) and the open set in C(T, K) defined
by sup \f(q)\<kre by O'(QF, e). It follows from the inequalities 2.3 that

QβQv

P maps 0(F, e) onto a subset of C(T, K) containing O'(QF, e). This pro-
ves the continuity of the inverse mapping of P from S onto A.

Let W be a compact subset in Γ contained in the union of QVi, ,
QVn. It is clear that P maps the intersection of 0(Vu e), , 0(Fn, e)
onto a subset in C(Γ, i£) contained in the intersection of O'(Vlf ejkv)r ,
O(Vn9e/kv)9 and S, that is, in the intersection of O'(W, e\kv) and S.
P is therefore continuous.

The completeness of S is an immediate consequence of the complete-
ness of A and inequalities 2.3.

2.4. COROLLARY. Let Mv be a maximal ideal in Bv (the completion
of the quotient ring Av—AjZv) and let f(t) be a complex-valued continuous
function on the space T. Then f(t) belongs to S if fr(Mu)=fϋ(Mu) when-
ever U^ V.

Proof Mv is actually a point in Qv and/F(M"^) belongs to C(QV, K).
Let ΓI uv be the natural mapping of Bv into Bυ when U^ V. Then
Πuv(fv)=fu whenever U^ V if fv(Mυ)=fjiML). Hence the corollary [16,
Theorem 5.1].

This immediately yields the following result [cf. 5, p. 471].

2.5. THEOREM. Let Abe a commutative complete semi-normed * — al-
gebra with a unit (without unit) satisfying 2.2. Then an element x in A
has an inverse (reverse) if x(M)Φθ (x(M)Φ—l) for each closed maximal
ideal M in A.

3. Spectrum. An element h in a complete semi-normed *-algebra
A satisfying 2.2 is called Hermitian, if h*=h; and an Hermitian ele-
ment h is called positive, if its spectrum consists of nonnegative numbers.

3.1. THEOREM. The spectrum of every Hermitian element h is real.

Proof. Suppose A has a unit. Let A1 be the minimal complete
*-subalgebra of A containing h. Then Aλ is commutative. By Theorem
2,1 Aj is equivalent to a closed subalgebra S of C(Γ, K). The corres-
ponding function h(M) of the element h in A is real-valued. For any
nonreal number λ, the function h(M)~ λ is not equal to zero anywhere.
The theorem follows from Theorem 2,5.
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3.2. THEOREM. Every closed self-adjoint subalgebra Ao of a complete
semi-normed ^-algebra A with a unit (without unit) satisfying 2.2 contains
inverses (reverses).

Proof Rickart has proved that xv e Aov (the completion of AQυ=AJZv)
has an inverse (reverse) iff both xv*xv and xvxv* have inverses (reverses)
and that the inverse (reverse) of xv is contained in Aov iff the inverses
(reverses) of xv*xv and xvxv* are contained in Aov [18, pp. 531-532].
Since every closed maximal ideal in A contains a kernel ideal [5, p. 466],
it follows from Theorem 2.5 that AQ contains inverses (reverses) of its
Hermitian elements, and hence of all its elements which have inverses
(reverses) in A.

3.3. COROLLARY. Let Ao be any closed self-adjoint subalgebra of A.
Then the spectrum of xe Ao relative to AQ is identical with the spectrum
relative to A.

3.4. THEOREM. Let x be a normal element, that is, xx*=x*x, of A
(with or without a unit) and let f(λ) be a complex-valued continuous func-
tion (vanishing at infinity, if A has no unit) defined on the spectrum &
of x. Then f{x) defines an element contained in every commutative closed
self-adjoint subalgebra of A which contains x.

Moreover if s{λ) = f{λ) + g{λ),p{λ) = f(λ)g(λ)iq{λ) = f(λ),r{λ) = λ, then
) = f(x)g(x)9 g(a?) = /(<&)*, r(x)=x.

Proof Let Ao be a commutative closed self-adjoint subalgebra of
A containing x and let Mv be a maximal ideal in AQV. Then Ao is equi-
valent to a closed self-ad joint subalgebra S of the algebra C(T, K) of
all complex-valued continuous functions on a locally compact completely
regular space Γand /(xviM^^fix^Mu)) whenever U^V. By Corollary
2.4, f(x{M)) determines a unique element, denoted by f(x), contained in
Ao. The first part of the theorem is proved.

The second part of the theorem is obvious.

3.5. THEOREM. The sum of two positive elements is positive.

Proof Suppose A has a unit. Let h and k be two positive elements
in A and let Ao be the minimal closed self-adjoint subalgebra of A con-
taining h+k. Since the inverse of hv+kv+λe for any nonnegative num-
ber λ and each Ve >Λ [13, p. 52] the function h(M) + k(M) + λ does not
vanish at any M. The theorem follows from Theorem 2.5.

3.6. THEOREM. The Hermitian elements of a complete seminormed
*-algebra satisfying the condition 2,2 constitute a lattice,
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Proof. To any Hermitian h, there is a positive element \h\ corres-
ponding to the function \λ\ by Theorem 3.4. Let h and k be arbitrary
Hermitian elements and define.

hvk=i(h+k+\h-k\), hΛk=i(h+k-\h-k\). Then the Hermitian ele-
ments constitutes a lattice.

4. Closed self-ad joint subalgebras.

4.1. THEOREM. A commutative complete semi-normed *-algebra A
satisfying the condition 2.2 is equivalent to a closed, separating self-ad-
joint subalgebra S of the algebra C(T0, K) of all complex-valued continuous
functions (vanishing at infinity, if A has no unit) on a completely regular
space Tfl with a topology which has at most the open sets of the k-topology,
that is, with a topology p^k.

Proof. By Theorem 2.1, A is equivalent to a closed self-ad joint
subalgebra £ of C(T, K), where T is a union of pairwise disconnected
and closed-open sets (compact if A has a unit, otherwise locally compact).
Let x(t) be the corresponding function in S of the element x in A. De-
note by TQ the class of all subsets of T:

La—{t; x(t)—x(a) for each xeA} .

Following Cech's notation, Let p denote the mapping :

a e T-*La

and let [/, /] denote those elements p(t) of To such that f[t) e I, where
f(i) is a continuous real function belonging to S end / is an open inter-
val. The topology generated by considering all these [/, /] as a subbase
is called £>-topology.

It is easy to see that p is a continuous mapping and that for any
aeT, there is an [/, /] containing p(a). Let [f, /J and [/2, J2] be any
two open sets in To containing p(a). If both fλ{ά) and /2(α) are different
from zero, we can assume without loss of generality that fι{a)—fz{a)
and that I, and /2 are identical. We define gt(t)=ft(t) if /4(ί)^/t(α), and
gί(t)=2f^a)-fi(t) if ft(t)>ft(a), i = l, 2. Then gλ{t) and gtf) are continu-
ous functions. Let g(t)=gλ{t)/\gt(t). It is clear that [g, I](z[f, /]Π [/2,
/ ] . In case f(a)~0 and //α)=£θ, we can assume that fλ(t) and fλ{t) are
nonnegative. Let g{t)~fλ{t)—f{t). An interval / can be so chosen that
[g, /]c[/ τ, /](Ί[/2, / ] . Hence Tΰ is a topological space. Cech has proved
that To is Hausdorff and completely regular [8, p. 827].

Now the closed subalgebra S of C(T, K) is a closed, separating sub-
algebra of C(Γ0, iη.
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4.2. REMARK. It is clear that the elements in the space To are the
closed maximal ideals in the algebra A and the jO-topology is the weak*
topology. Professor Arens has constructed examples to show that TQ is
not necessarily locally compact. He has also constructed a completely
regular space T such that C(T, K) with A> topology is not complete. [4,
p. 234]. We have, however, the following.

4.3. THEOREM. The necessary and sufficient condition that a com-
mutative complete semi-normed ^-algebra A satisfying the condition 2.2
be equivalent to C(T, K), with k-topology, of all complex-valued continuous
functions on a locally compact completely regular space T is :

To any closed maximal ideal MQ in A, there are an xeA and an
ε>0 such that the intersection of the maximal ideals M satisfying the
relation \x(MQ)—x(M)\^ε contains a kernel ideal.

Proof. The necessity is obvious. The sufficiency follows from
Theorem 4.1 and Corollary 2.4.

4.4. REMARK. Theorem 4.3 generalizes the theorem of Arens
characterizing the algebra C(T, K), where T is a locally compact, para-
compact Hausdorff space. [5, p. 469]. Let A be an algebra with a
locally finite partition of unity. (For definition and notation, see 5, p.
463) To any maximal closed ideal MQ, there exists an uv such that
uv(Mo) — dΦθ, since MQ contains a kernel ideal. There are only a finite
number of W such that W(ur)Φθ, say, Wlf ••• , Wn. Let FF0 = max.
(WΊr * Ί Wn). The intersection of the closed maximal ideals M satisfying
\uv{MQ)—uv(M)\^L dj2 evidently contains ZWΰ.

4.5. THEOREM. For the algebra C(T, K) of all complex-valued conti-
nuous functions (vanishing at infinity) on a locally compact completely
regular space T with k-topology, there is one-to-one correspondence between
closed ideals in C(T, K) and the closed subsets of T.

This is a generalization of a theorem due to Stone [20, Theorem 85]
and the proof is straightforward.

4.6. COROLLARY. For the glgebra of all complex-valued continuous
functions (vanishing at infinity) on a locally compact completely regular
space with k-topology, there is one-to-one correspondence between the closed
maximal (regular) ideals of the algebra and the points of the space (the
point at infinity is not included).

4.7. THEOREM. The necessary and sufficient condition tivo locally
compact completely regular spaces T and T' be homeomorphic is that the
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algebras C(T, K) and C(T, K) of all complex-valued continuous functions
(vanishing at infinity) on the spaces ivith k-topology be topologically iso-
morphic.

Proof. Following Stone's idea, we define the closure of a family of
closed maximal (regular) ideals in C(T, K) as the hull of the kernel of
the family [14, p. 56]. It is clear that a subset of the space T is closed
iff it is equal to the hull of its kernel when it is considered as a set of
the maximal (regular) ideals in C(T, K).

4.8. REMARK. The homeomorphism between the spaces T and T
does not follow from the algebraic isomorphism between C(T, K) and
C(T',K). For example, the space Γϋ+1(g)Γω+J-(ί2, ω) [11, p. 69] is
pseudo-compact, completely regular, locally compact, and C(T, K) and
C(βT, K) are algebraically isormorphic, while T and βT are not homeo-
morphic.

5. Spectral theorem for unbounded self-ad joint operators in Hilbert
space.

5.1. Let L be the algebra of all real-valued continuous functions
defined on a locally compact Hausdorff space T and vanishing off compact
sets. It is well-known that every nonnegative linear functional on L is
an integral [14, p. 44].

A family of real-valued functions on a space is called monotone if
it is closed under the operations of taking monotone increasing and de-
creasing limits. The functions belonging to the smallest monotone
family including L are called Baire functions.

A topological space T is called hemi-compact by Arens [1, p. 486]

if there exists a sequence T% of compact subsets of T such that \j Tt = T

and every compact subset of T is contained in some Tt. Every topo-
logical space which is both ^--compact and locally compact is hemi-com-
pact.

5.2. LEMMA. Let G be a *-representation of the algebra C0(T, K) of
all complex-valued continuous functions vanishing outside compact sets on
a hemi-compact Hausdorff space T, which is a union of painvise discon-
nected, closed-open compact sets Tlf T2, , by a family 55 of operators
in a Hilbert space H. Let H be spanned by a sequence of closed linear
manifolds H19 H,, , orthogonal in pairs, such that each operator of %$
is blinded on Hi and G is a bounded *-representation of the algebra
C(Tt, K) of all complex-valued continuous functions on Ti by a family of
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operators on H^ Then G can be extented to a * representation of the
algebra B(T, K) of all Baire functions bounded on compact subsets of T,
and the extension is unique, subject to the condition that Jxy(f) — (Gfx,y)
is a complex-valued integral for every xe H,ye iϊ*.

Proof. The function F(fif x, y) = (Gfix, y), defined for f e C(Γ4), x e Hίf

yeHf, is a bounded integral on C(Tt) and thus is uniquely extensible
to BiTi). [14, p. 93]. Hence the lemma [17, p. 312].

5.3. THEOREM. TO any self-adjoint operator R in a Hilbert space
H, there exists a unique family of projections {Eλ} depending on the
parameter λ, satisfying

(a) Eλ<E» or Eλ=EλEμ for λ<μ ,

(b) #Λ + 0 = #Λ >

(c) lim Eλ — 0 and lim Eλ = I,
Λ—> — c o λ—>co

such that

# = ( ME, .

Proof Let bt be a set of real numbers, i = 0, ± 1 , ± 2 , ••• , such
that

( 1 ) for all i.b^b^;

( 2 ) lim bt = co

( 3 ) lim bi— — oo .

Then there exists a set of closed linear manifolds \Hi},i = l,2, ••• ,
orthogonal in pairs, spanning i ί , and such t h a t R is defined on Ht and
satisfies the relation [15, 17]

Let Pi be a projection on H such that Pix=x if xeHif and P t# = 0
otherwise. Now Px, P2, , and R generate a commutative semi-normed
*-algebra A, the semi-norms of its elements being the norms of the
operators in H^ By Theorem 2.1, A is equivalent to a closed self-adjoint
subalgebra S of the algebra C(T, K) of all complex-valued continuous
functions on a hemi-compact Hausdorff space T, which is a union of a
sequence of pairwise disconnected, closed-open compact subsets Tlf T2, •-.
S is, in fact, the algebra C(T, K) itself.
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Any real continuous function f(t) on the space T is a Baire func-
tion. Define a continuous function /„ such that fn(t)—f{t) if ί6 3\u...
uTn and /„(£) = 0 otherwise. Let #™eL so that gnϊmfn, where #™
vanish outside the sets 2\, , Γnf and let gn=g\V vg%. Then #wf/
and / is a Baire function. Also the characteristic functions of closed
subsets in T are Baire functions.

Let R be the image of the operator R. Given ε>0, we can choose
χu i = 0, ± 1 , ±2, such that Jlt->oo,L(->-ooas i->oo and, for all i,
^ > ^ _ : , ?H — ^_!<ε. Let ^ be the characteristic function of the closed
set where R^λ, and choose λt

r from the interval [̂ _i, ̂ ] .
Then

and hence

! - Σ W λ . - E λ . )ll <ε for each F e ^ .

The theorem is proved.

6. Imbedding algebras into rings of operators in Hubert space.

6.1. THEOREM. Every complete semi-normed *-algebra A with or
without a unit, satisfying the condition V{xx*) — V{x)V{x*) for each
V 6 5^, can be isomorphically mapped onto a closed self-adjoint subalgebra
Aλ of the algebra of all linear operators in a Hilbert space H— Σ Hv

suck that if xeA maps to XeAlf then X is bounded in each Hv and
V{x) = \\x\\v for each Ve "̂*, where \\x\\v denotes the norm of X in Hv.

Proof By Gelfand-Neumark representation theorem [10, Theorem 1
12, p. 409], the completed quotient algebra Av can be isometrically mapped
onto a closed self-adjoint subalgebra of the algebra of all bounded
operators in Hilbert space i?F.

Let

H= Σ Hv

veψ

be the set of all complexes h~{hv] ,hve Hv, with

Σ IWIV<~

The algebraic operations and inner products are defined as follows :

λh={λhr}, K + h^ih.y + h.y] , (h19 Λ,)= Σ (hιr-h2V) .
veψ
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Let ki={hiV}. Then \\ht—hj\\z — Σ Whv—hjvW2- ll^4 —Aj||->0 implies

\\hiv—hjV\\~->0 for each V. For any fixed V9 hiV approaches to an ele-
ment hoV in Hv as a limit when i approaches infinity. Then ht->hQ= {hov}
which belongs to H, and H is complete.

The corresponding operator X in H of an element α e i is defined

as X—{XV), where Xv is the operator in Hv corresponding to xveAv.

Now Xh={Xyhr} with

The domain of X is dense in H, for it contains all those elements {hv}
where hv are 0 except for a finite number of them. It is clear that
X(H)aH and X(Hv)aHv.
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