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1. Introduction. In previous papers [1;6] the notion of sub-
harmonic functions was generalized by replacing the dominating family
of harmonic funections by a more general family of functions. The object
was to require of the dominating functions the minimum properties
necessary to study the boundary value problem by subfunction tech-
niques. In a natural way these properties were separated into two
parts : first, those properties sufficient to obtain functions which are
solutions in the interior of a domain and, second, those properties suf-
ficient to obtain agreement of the solution with the prescribed boundary
values on the boundary of the domain. In particular the aim was to
choose properties which would be sufficient to insure that a solution
would take on prescribed boundary values at any boundary point p at
which an exterior circle could be drawn intersecting the closed domain
only in the point p. In a recent paper Inoue [5] points out an error
in this second aspect of [1]. Inoue then lists properties of the dominating
functions which are sufficient to insure the regularity of boundary points
at which exterior triangles can be drawn. In his paper these properties
are embodied in six postulates the first four of which are essentially
the same as the first four postulates of [1]. Postulates 5 and 6 given
by Inoue are used in studying the behavior at the boundary and are
naturally more restrictive but they are such that the theory can be
applied to elliptic partial differential equations which have the property
that the difference between two solutions is subharmonic when positive.

In the present paper we use only the portion of the theory of sub-
functions which is based on the first four postulates of [1] to obtain
some results concerning the Dirichlet problem for certain types of
elliptic equations. We shall give some results concerning the linear
equation

( 1 ) AZ—{—(I((E, y)zx‘}‘b(a” y)zy"‘{"c(x’ y)z-——f(x, y) ’

0%, 0% e .
where Az=—°"1"°  and the quasi-linear equation
oz oy

(2) a(p, Q)r+2b(p, 9)s+c(p, ¢)t=0,
2, 2 2

where p:ai, q:@?-, r:%, s:—az“, and t=0% In particular we
ox oy oz’ 0x0y 0x*
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shall give a theorem concerning the Dirichlet problem for the minimal
surface equation

(3) 1+¢)r—2pgs+(1+p*)t=0

for non-convex regions. The result is quite weak but is perhaps of
some interest since results ef this type are very meagre indeed.

2. {F}-functions and sub-{F} functions. In this section we shall
list for convenience the postulates satisfied by the {F'}-functions and
some theorems given in [1]. For simplicity our language will be in
terms of the plane, however, our statements in this section could be
phrased in terms of Euclidean space of any number of dimensions.

Let D be a given plane domain and let {k¥} be the family of all

circles with radii less than some fixed number and such that K=K+t cD
where K is the open circle bounded by x and K its closure. Throughout
the paper we shall use 2 to indicate an arbitrary bounded domain such

that 2c D and the boundary of 2 will be represented by w. We shall
use single small italic letters in this seetion to represent points in the
plane.

Let there be given a family of functions {F(xr)}, which we shall
call {F'}-functions, satisfying the postulates that follow.

PoSTULATE 1. For any re {t} and any continuous boundary value
function %(x) defined on &, there is a unique F(x; A ;x)e {F(x)} such that

(@) F(x;h;c)=h() on k,
and (b) F(x;h;x) is continuous on K.

POSTULATE 2. If A(x) and A, (x) are continuous on re {¢} and if
h{x)—hy(x)<M on k¥, M=0, then

Fl;h ;6)—F(x; by 6)SM

in K; further, if the strict inequality holds at a point of k¥, then the
strict inequality holds throughout K.

PosSTULATE 3. For any ke {¢} and any collection {A,(x)} of func-
tions #,(x) which are continuous and uniformly bounded on &, the
functions F(x; %, ; k) are equicontinuous in K.

DEFINITION 1. The function s(x) is defined to be a sub-{F'} func-
tion, or simply a subfunction, in D provided

(a) s(x) is bounded on every closed subset of D,
(b) s(w) is upper semicontinuous in D,
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and (e) s(@)=<F(x)e {F(x)} on te {k} implies s(x)<F(x) in K.

DEFINITION 2. The function S(z) is defined to be a super-{F'}
function or a superfunction in D provided—S(z) is a sub-{—F'} function
in D.

Let g(x) be a bounded function defined on w, the boundary of £,
and define

9, (xy) =lim inf g(x) ,

x€ L)

and

W

g*(x,)=lim sup g(x) .
€ 0

DEFINITION 3. The function ¢(x) is an under-function (relative to
g(x)) in 9 if ¢(x) is continuous in 2, is sub-{F} in 2, and ¢(@)=g(x)
on w.

DEFINITION 4. The function ¢(x) is an owver-function (relative to
g(x)) in Q if ¢(x) is continuous in 2, is a super-{F'} function in 2, and
P(z)=g(@) on w.

PoSTULATE 4. If 2 is any bounded domain comprised together with
its boundary » in D and if g(x) is any bounded function defined on w,
then the associated families of over-functions and under-functions are
both non-null.

DEFINITION 5. By a solution of the Dirichlet Problem for Q relative
to {F(x)} and relative to a given bounded boundary value function g(z)
on w, we shall mean a function H(x) which is continuous in 2, satisfies

(4) 94(a0)<lim inf H(z)<lim sup H(z)<g*(a,)

z€Q-mp TE Q>
at each 2,¢ w, and is such that for each & e {r} with KcQ we have

(5) Hx)=F(x; H;x) in K.

DEFINITION 6. We shall say that a funetion H(x) which is continuous

in 2, and which satisfies (5) for each ke {k} with Kc®Q, is an {F}-
function in £.

DEFINITION 7. Given a bounded domain £ such that 2cD and a
bounded function g(x) defined on w. We denote by H,(x) and H*(x) the
functions defined by
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H, (x)= sup () ,

and
H*(z)= inf ¢(=),
ve{}

where {¢} and {¢} are the associated families of under-functions and
over-functions respectively.

THEOREM 1. Given any bounded domain Q with 2cD and any
bounded function g(x) defined on o, then the associated functions H.(x)
and H*(z) are {F'}-functions in 2 [1; p. 303].

DEFINITION 8. The point x,ew is a regular boundary point of 2
relative to {F'(x)} provided that for every bounded function g(z) defined
on o the associated functions H, (x) and H*(x) satisfy (4) at .

THEOREM 2. If all points of @ are regular boundary points of £,
and g(x) is continuous on w, then the Dirichlet problem for 2, relative
to {F(x)} and g(x), has a unique solution [1; p. 304].

The next theorem shows that regularity of a boundary point ‘‘in
the small >’ implies regularity ‘‘in the large .

DEFINITION 9. For a point x,€ w, a circle £ with center at x, and
with Kc D, and constants ¢>0, M, and N, a function

s(x)=s(x; ;e M, N)

is a barrier subfunction provided :
(@) s(x) is continuous in 2N K,
(b) s(x) is a sub-{F'} function in 2N K,
(©) s(w)=N—e¢,
(d) s@)<N+2 on wNK,
and (e) s(@)=M on 2Nk.

DEFINITION 10. With the notation of Definition 9, a function S(x)=
S(x; ke, M, N) is a barrier superfunction provided :
(a) S(w) is continuous in KN 2,
(b) S(x) is a super-{F'} function in KN 2,
() S(x)=N-+e,
(d) S@)=N—-2¢ on oNK,
and (e) Sx)=M on 2Nk.

THEOREM 3. If jfor x,c¢w and Jfor each set of constants €>0, M,
and N, there exists a sequence of circles k,=kx,) with centers at x, and
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radit 7,(x) — 0 for which barrier subfunctions s(x ; k,; ¢, M, N) and bar-
rier superfunctions S(x; k,; e, M, N) exist, then x, is a regular boundary
point of 2 relative to {F(x)} [1; p. 305].

3. Equicontinuity at the boundary. In this section, before turning
our attention to differential equations, we shall show that a property of
{F'}-functions given as Postulate 8 in [1] is a consequence of Postulates
1 and 2.

THEOREM 4. For any circle ke {s}, if the functions {h[(x)}, uni-
Sforwly bounded and continuous on k, are equicontinuous at ¢, €k, then the

Sfunctions F(z; h, ; k), defined in K, are equicontinuous at .

Proof. Assume that |A(x)|<M on r for all A, x)e {h(x)}. Since
the functions {%,(®)} are equicontinuous at x,, it follows that given ¢>0
there exists an are ¢ of x with midpoint at x, such that

|h(x)—=h (2)|<e on &

for all 4 (x)e {h(x)}. Now let the function g(x) be continuous on &,
g@)>M on k—o, g(@)=—M+e on o, and g(x)<—M+2¢. For any
k(@) e {h,(x)} set

e,=h(x,)+M=0,
then
Fa;h,;k)—e,<F(x;g;k)

on k. Therefore, by Postulate 2
F@;h,;8)—c,<F(x;g;t) in K

for each A,(x)e {h,(x)}. Since F(x;g; k) is continuous in K, there exists
a circle &, with center at z, such that

Fx;g;6)—F@,;9;6)<e in KNK, .
Then
F@ih,;k)—c,<F(x;g;r)<ectF(x,;9;k)<3e+F(y; by 6)—c,
in KN K, hence, for any A,(2) € {A,(x)}
Fx b, &)—F(w; hy; 5)<3¢  in KNK, .
By a similar argument there exists a circle x, with center , such that
F(x;h,;5)—F(x,; hy; £)>—8 in KNK,.

Hence, if &; is the smaller of &, and &,, then
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|F(a; by s K)—F(a; by s )| <3¢ in KNK,

and the functions F(x; 4, ; k) are equicontinuous at a,.

Theorem 4 obviously remains valid under weaker conditions. For
example, the theorem remains valid if Postulate 1 is weakened by
assuming that the boundary value problem is solvable for some class of
continuous boundary value functions defined on ¢ which under the uni-
form topology is dense in the set of all continuous functions defined on
k. Also, Theorem 4 remains valid if instead of dealing with a circle
ke {k} we state the theorem in terms of a bounded demain 2 with

Q2c D and assume x, is a regular boundary point of 2. However, in
this case the proof draws on Postulates 3 and 4 as well as Postulates 1
and 2.

4. Applications to elliptic partial differential equations. In this
section we shall show that the solutions of certain types of elliptic
partial differential equations satisfy Postulates 1 to 4. We shall also
consider some regularity criteria for boundary points with respect to
these equations. It will be more convenient in this section to return to
the customary (z, y) representation of points in the plane.

First we shall consider Postulate 2 since it states a characteristic
property of the solutions of a wide class of elliptic differential equations.
We consider the function E(z, ¥, 2, p, g, 7, s, t) and make the following
assumptions :

(1) FE is continuous in all 8 variables in the region 7' defined by
T {(x, yyeD |
—o<l2,0,¢7 8t +x
where D is a domain in the ay-plane.

(2) The first partial derivatives E,, E,, E, E,, E,, and E, are con-
tinuous in T, E*—4E.E, <0, E,>0, and E,<0 in T.

THEOREM 5. The solutions of the elliptic partial differential equation

(6) E(SL’, Yz, 0,4, 7,8, t):’o
2, 2 2,
where p:ﬁf‘i, q:,af’z», r.—_a—z_, s:~£ﬁ~, and tzgif- satisfy Postulate 2.
ox oy o fady oy*

THEOREM 6. The functions s(x,y) and S(x,y) of class C® in the
subdomain QC D, are respectively a subfunction and a superfunction in
Q with respect to solutions of (6) if and only if

(7) E(x, Y, S, Se» Sy» Sexy Says Syy) =0

and
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(8) E(@,, S, Sz, Sy Sixs Sery 1) =0

mn 2.

The proofs of Theorems 5 and 6 follow immediately from the maxi-
mum principle for solutions of elliptic partial differential equations which
has been discussed by Hopf [4].

We consider now the linear elliptic equation
(1) L(z)= dz+a(x, y)z.+0(z, y)z,+c(z, y)z=f(=, y) .

We assume that D is a bounded plane domain such that a(z, y), bz, v),
o(x,y) and f(x, y) are Holder continuous in D and ¢(x, ¥)<0 in D.

THEOREM 7. The solutions of (1) satisfy Postulates 1, 2, 3, and 4.

Proof. It follows from Theorem 5 that the condition ¢(x, ¥)<0 in
D insures that Postulate 2 is satisfied.

It is known [9] that there is an 7,>0, depending on max [|al, [b],
lel, | F1] in D, such that Postulate 1 is satisfied for the family {x} of
circles with radii less than or equal to r, and with K=K-+scD. The
uniqueness part of Postulate 1 follows since Postulate 2 is satisfied.

If ke {x}, if (x, ¥, is an interior point of K, and if 2(x, y) is con-
tinuous in K, is of class C® in K, and is a solution of (1) in K, then
|2a(a0, %o) |= M and |2,(x, )| <M, where M depends on max [|al, [0], [c],
|£11 in K, max |2(z, y)| on k, the radius of &, and the distance from
(20, %) to £ [9]. This implies that Postulate 3 is satisfied.

Let 2 be any domain such that 2cD and let g(x, ¥) be any bounded
function defined on w. Then, if u(z, y)=r[a—e*] where «, 8, and r are
constants,

Liul=r(a—o) ofw, y)— ETPUD DT

a—e?

Choose /2 so that #>max |a(z, y)| in D, then choose a so that ¢ —e*>1

in 2. It is then clear that 7,>0 can be chosen large enough that the
function ¢(x, y)=7[a—e*] will simultaneously satisfy the conditions :

L[$]<f(z,y) in 2 and ¢(z, y)=g(z, y) on o.

Hence, it follows from Definition 4 and Theorem 6 that ¢(x, y) is an
over-function. Similarly, if 7,>0 is taken large enough,

d(@, y)=—rfa—e*]

will be an under-function. Postulate 4 is satisfied.
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Since Postulates 1 to 4 are satisfied it follows from Theorem 1 that,

given any domain Q2 with 2c D and any bounded function g(z, y) defined
on w, the associated functions H*(x,y) and H,.(x,y) exists and are
solutions of (1) in £.

THEOREM 8. Let 2 be a domwin with 2D and let (4, ¥) € w be

such that a circle &, can be drawn with K,cD and K,0Q=(xy, 3,). Then
(@, ¥o) s a regular boundary point of 2 relative to solutions of (1)

Proof. Making use of Theorem 3 we see that to establish the
regularity of (w, 9,) it is sufficient to show that barrier subfunctions and
barrier superfunctions can be constructed for all sufficiently small circles
with centers at (x,, ¥,). We shall consider only the barrier superfunctions
since the barrier subfunctions can be dealt with in an exactly parallel
way.

By the method used in Theorem 7 we can select a functions Sy(z, ¥)

which is continuous in 2, is of class C® in 2, and satisfies
(9) ' LIS]=f(x,y) in Q2.

Now assume that constants ¢>0, M, and N are given. Let (2, %) be
the center of x, and 7, its radius. Let &, be a circle with center at
(%, ¥,) and radius 7, <7, taken small enough that

(10) So@, ¥)=Sy(@y to)—e  on wNK .
Let

r= 1/(9/'_‘”1)2‘{" (y—u.)*
and

-n

w(x, Yy)y=r;"—r
One can easily verify that, if # is chosen large enough, then
11) LIw]<0 in 2,

furthermore, w(x,y) is continuous in 2, w(x, ¥,)=0, and w(x, y)>0
elsewhere in 2.

Now we consider two cases: N—Sy(x, #)=0 and N—Sy(a,, ,)<0.
First we assume N—S(a,, 4,)=0, then we can choose %,>0 such that

(12) haw(x, y)=M+ max |Sy@, y)|  on £NL2.

(@, 9)EQ

The function

S, y; k.5 6, M, N)=hw(z, y)+ S, y)+N—Su, %)
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is then a barrier superfunction at (z, ,) for the circle £,. This follows
immediately from (9), (10), (11), (12) and the definition of a barrier
superfunction.

Now assume N—Sy(, %,)<0. Again it is easily verified that, for
08>0 chosen sufficiently large, the function

(13) 'U(x, y):[N—SO(xO, yo)]eMz—xo)
satisfies
(1) Lv]<0  in Q.

Let the circle &, with center at (a,, %) and radius r,<7, be chosen small
enough that

(15) 'U(x7 y)gN—S(,(mo, yo)_ on wf) Kz .
Then let %2,>0 be taken large enough that
(16) haw(@, ) =M+ max [| S, v)|+lv@, »)|1  on kN2,

(=, YEQ

It follows from (13), (14), (15), and (16) that
S(x, y; 625 ¢, M, N)=hw(@, y)+v(@, ¥)+S(, v)

is a barrier superfunction at (x,, y,) with respect to the circle k..

THEOREM 9. Let D be a domain in which the coefficient functions
wn (1) are Holder continuous. Then, if Q is any bounded domain with

Qc D and is such that corresponding to each (%, ) € w there is a circle
& with 2NK-: =(x, %) and of g(x,y) s any continuous function defined

on w, there is & unique function «x,y) which is continuous in 2, is of
class C® and satisfies (1) in 2, and is equal to g(x,y) on w.

Proof. This is an immediate consequence of Theorems 2 and 8.
In our consideration of the quasi-linear equation

(2) (I(p, q)7'+2b(p, Q)S+C(p! Q)t:()

we are going to employ two sets of conditions on the coefficient func-
tions, first, conditions (A): a(v, q), b(p, q), and c¢(p,¢) have Holder
continuous first partial derivatives, ac—b*=1, and a>0 for all (p, q).

Bers [2] has proved that, if a, b, and ¢ satisfy conditions (A), then
there exist functions %(p, q), O(p, ¢), and A(p, q) with k(p, ¢)>0, 6(0, 0)
=A4(0, 0)=0, and which are such that

00 _pq 04,00 _op Z_Azkc .

op op 0q q
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We now state conditions (B) on the coefficients of (2): There exists an
e>0 such that

17) a(l_jupf) n c(%‘i) + 2b(l’w2) <2

for all (p, ¢) where w=1"1+p*+¢*, further # and 4 can be chosen so
that

(18) P+
pl+q4

for all (p, ¢). Conditions (A) and (B) are satisfied by the minimal surface
equation (3) if it is normalized so that ac—b*=1. For this reason Finn
[3] calls equations (2) which satisfy conditions (A) and (B) equations of
““ minimal surface type .

In our application of the theory of §2 to equation (2), we let D be
the zy-plane and {x} the family of all circles in the plane.

THEOREM 10. If equation (2) satisfies conditions (A) and (B), then
its solutions satisfy Postulates 1 to 4.

Proof. Nirenberg [7; p. 138] has proved that if /" is any convex
domain in the plane with boundary y which is of finite length, which
can be represented parametrically by

) {xzx(s)
T ly=yls)

in terms of arc length s where a(s) and y(s) are of class C®, and
which has positive curvature everywhere, and if g(s) has a Holder con-
tinuous second derivative on 7, then there is a function 2(«, y) continuous

in I", of class C® and a solution of (2) in I", and such that z(a(s), y(s))
=g(s) on 7.

Finn [3] has shown that if (2) satisfies conditions (A) and (B) and
if 2(w,y) is continuous in K, is of class C® in K, and is a solution of
(2) in K, then at any point (2, ) € K |22, )|SM and [z.(x, y)|I=M
where M depends on max |z(z, y)| on &, the radius of &, the distance
from (x,, ¥,) to &, and other quantities which are fixed for any particular
equation (2). Using standard arguments [3; p. 411], one can then use
Nirenberg’s result to prove that Postulate 1 is satisfied. The bounds on
the first partial derivatives of solutions imply that Postulate 3 is satisfied.
That Postulate 2 is satisfied follows from Theorem 5 and since planes
are solutions of (2) Postulate 4 is obviously satisfied.

Thus, we can conclude that, if 2 is any bounded domain and g(z, y)
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is any bounded function defined on w, the functions H*(x, y) and H,(x, ¥)
of Theorem 1 exist and are solutions of (2) in 2. In particular this is
true of the minimal surface equation.

THEOREM 11. Let equation (2) satisfy conditions (A) and (B) and let
Q be any bounded plane domain with boundary o. If (%, y)Ew s such
that there is a circle & with center at (X, Y%) and a straight line = such

that =N (KN Q)=(x, o), then (2,7, 8 @ regular boundary point of Q
relative to solutions of (2).

Proof. Since planes are solutions of (2), barrier subfunctions and
superfunctions can obviously be constructed at (x, ¥,) for all sufficiently
small circles with centers at (w,, ¥,).

It follows that if equation (2) satisfies conditions (A) and (B), then
in order that the Dirichlet problem have a solution for any convex
domain whose boundary contains no straight line segments, it is sufficient
that the Dirichlet problem have a solution for circles. Of course it is
well known that the Dirichlet problem for the minimal surface equation
always has a solution for convex domains whether or not their boundaries
contain straight line segments. It is known that the Dirichlet problem
for equation (2) is not always solvable for non-convex domains. In
particular an example of a boundary value problem for a non-convex
region which is not solvable for the minimal surface equation was given
by H. A. Schwarz [8; p. 42]. For a given domain £ with boundary o,
those points of w which satisfy the criterion of Theorem 11 are regular
with respect to equation (2), those points which are interior points of
straight line segments of o are possibly regular, but it seems likely
that all other points of w are not regular relative to solutions of (2).
The possibility remains that the Dirichlet problem for (2) for certain
types of non-convex domains may be solvable if the boundary values
are suitably restricted. Our last theorem contains a weak result in
this direction.

Let w, be the set of points of w which satisfy the regularity criterion
of Theorem 11. Let w,=w—w, and for 6>0 let w; be the set of points
of  which belong to w, or are within a distance ¢ of points of w,.

THEOREM 12. Let 2 be a bounded plane domain with boundary o for
which there is an R>0 such that for every (x,Y)€ w a circle & of radius
R may be drawn with QN K=(x,y). If for a given 6>0 the boundary
value function g(x,y) is continuous on o, is constant on each component
of ws, and is such that
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[1/——82— Jor 0<R
(19)  V,=max g(z,y)— min gz, v)< V.
z,y)€w z,y)€w S>R ,
[ oxr 707

then the Dirichlet problem for 2 with boundary values g(x, y) has a unique
solution for the mimimal surface equation (3).

Proof. As we have already observed the functions H.(z,y) and
H*(z, y) both exist and are solutions of (3) in Q. Since the function
g(x,y) is continuous on w, it is sufficient to show that inequality (4) is
satisfied at each point of w. This implies that the functions H,(z, y)

and H*(x,y) are both continuous in 2, agree on w, and consequently

coincide in 2 to give the unique solution of the Dirichlet problem.
Since by Theorem 11 the points of w, are regular, it will be sufficient
to show that at each point of w, we can construct an over-function and
an under-function which take on the given boundary value at the point.

Let (@, %) € ®, and let x, be a circle of radius R such that K,N Q2
=(a, ¥,). Translate the origin to the center of £, and rotate the axes
so that (x, ) becomes the point (&, 0). Draw the circle x; with center
at (R, 0) and radius 6. Then the function

(20) 8w, y)= BV @V —Ry

is of class C® on comp K,, Si(z,y)=0 on compK,, and S(R, 0)=0.
Furthermore, by substituting S.(«, ) in the left-hand member of equation
(8) one can verify that inequality (8) is satisfied in 2. It follows from
Theorem 6 that S(x, y) is a superfunction in 2 with respect to solutions
of (8). Finally, we also have that on x;Ncomp K,

{_ﬁ _ if 6<R

Ry 2 it o>R.
0+R
We define the function Sz, y) by

(22) Sy(=, y)=8(z, y)+9(E, 0) .

The function Sz, y) is clearly also a superfunction in £ because of the
form of equation (3). Now let M=max g(x, y) on », then the function

(21) min Sz, y) =

03 )_{M in 2N comp K,
(23) Y@ D= min (M, S, )] in ONE,
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is the desired over-function. To see this we first observe that ¢(z, y)

is continuous in Q since by (19), (21), and (22) Syx,»)=M on 2Nk,
The argument that ¢(z, y) is a superfunction is the same as that given
in [1; p. 306]. From the definitions of Sz, y) and w; it follows that
HR, 0)=g(R, 0) and ¢(x, y)=9(x,y) on .

Similarly

Sl(x’ y): —-S,((U, y) ’
and

s, y)=s(x, y)+9(R, 0)

are subfunctions in 2. The function ¢(zx, y) defined by

m in 2N comp K,

@, y)z{max [m, s(x,y)] in 2NK,
where m=min g(x,y) on » is an under-function with ¢(R, 0)=g(R, 0).
Thus inequality (4) holds at every point of » and

H*(x,y)=H,(z,y) in 2

constituting the unique solution of the Dirichlet problem.
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