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1. The method described in this paper presents an algorithm by
which at least two roots of an equation can be approximated starting
with the same first approximation. This is achieved by introducing
a parameter and choosing its numerical value appropriately. In particular,
in case of real roots, two adjacent or the largest and the smallest roots
are approximated by the use of two different values of the parameter.
This is discussed in §3. In case of conjugate imaginary roots the real
and imaginary parts of the approximations are easily separated. This
is discussed in §4.

2. Let f(z) be an analytic function within and upon a circle C,
and let the roots of the equation f(2)=0 within and upon the circle be
denoted by a,, =1, 2, ---, and their multiplicities by m, respectively.

We consider the expansion into the partial fractions of (u—2)%f"(2)/[f(?),
where % is a positive integer and u=a, or z but otherwise arbitrary,

(1) (u—2)f"(2)[(2)= 2 mu— ;)" /(2 —a;)+¢:(2) »

where ¢.(2) is analytic within and upon the circle, and the sum is taken
over all the roots a, starting with j=1.

By differentiating (1) »—1 times and dividing by (—1)""'(n—1)! we
derive

(2) an/[f(z)]n:; mj(u—aj)k/(z_aj)n+¢n(z) ’ n=k,

where ¢,(2) is analytic within and upon C. The function Q, , =@, .(z, u)
can be evaluated by the formula

n-=1

(3) Qua= 3 (%) =2y 171D,

Jj=0

with D, evaluated recursively

D, =Jz SR =) Do s/ G+ DI HF DR -] (=1 !,
Dy,=1, D1=f'(2)

(4)

The function @, , can also be evaluated recursively, and both Q,, and
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D, can be expressed in the form of determinants [1, 2].
We rewrite (2) as follows

(5) Quall AT =m(u—aFe—a)"
{1+ E—arim(u—ay] Sm—a)le—a)y 4.6 ]},

where the summation starts with j=2. Now, if we assume that » and
z are given such values that

(6) Ku—a’l)/(z_a’l)‘>l(u—a’j)/(z—a’j)l ’ .7:2’ 37 ftty
and

l(w—a,)/(z—a.)| >|(u—8)/(z—=C)| ,

for any ¢ on C, the following result follows :

( 7 ) (u_a‘l)c—b/(z—al)a:}iz} Qn,n—b/[.f(z)]aQn—a,n—c ]

where a,b, and ¢ are constants satisfying the conditions imposed on the
subscripts of @, in (2). An approximation to a; is obtained with a
finite n.

Of particular practical value are the cases when the left hand side
of the equation has only w—a,, or z—a,, or both of the first or second
degree.

3. The reason for introducing the parameter » into the problem
is that more than one root can be approximated with the same D,, D,,
«++ D, by using different appropriately chosen values of ». This will be
illustrated when the left hand side of (7) is either u—a,, (¥x—a,)/(z—a,),
or 1/(z—a,), namely :

(8) (2= )/ (=) =it f2)Qu-s1/@r
(9) 2=, =lim f(E)Qn-1,n-1/Qun-s

(10) 0=y =1im Qu Qs

(1) (2= )/ (=) =l FE)Qn-1.1-+/ Qo

Let us assume that z=x is real and that the two roots closest to
x are also real, a;<z<a, w—a,<a,—2. Then, as it can easily be
verified, an approximation to a, can be obtained with any u,>z, and
oo <u, < [(a,+a,)r—2a,a,]/(2c—a,—a,) ; an approximation to a, can be
obtained with any [(¢,+a,)x—2a,a,]/(2x—a,—a.,)<u,<x (Diagram 1). The



A METHOD OF APPROXIMATING THE COMPLEX ROOTS OF EQUATIONS 279

above inequalities defining %, and u, should also be used when a,<w is
the largest real root of an equation and a, the smallest (Diagram 2).

Before applying any of (8)—(11), an approximation to @, can be
obtained by using a more particular case of (7) [1, 2]:

(12) z—a,=lim f(2)D,,/ D, =lim [f®(2)D,]'"

This gives an idea as to the location of the root closest to .

\%%

!
)

__N_

_UI

u, Y,

LA;I_I/_,.

Diagram 1 Diagram 2

4. Let now z=2x« be real equidistant from two conjugate imaginary
roots a+bt and a—bi. Then u can be taken in the form xz-t+#: and the
real and imaginary parts in the equations (8)—(11) can easily be separated.
In this case, if x is closer to a-+bi and a—bi than to any other root of
the equation, and if the equation has no more imaginary roots, any
positive ¢ can be taken to approximate a—bi (Diagram 3). If the
equation has another imaginary root not much more distant from 2« than
a—bi, and with real part closer to x than a, a large value of ¢ would
be required (Diagram 4). The imaginary root a—bs can be approximated
with some positive ¢ (Diagram 5) even if there is a real root which is
closer to x than to a—bi, but not very close, and if the real part, a,
is close to z.

ti

I
f E
/ a+bi ﬁ N
t
[
\ \ a-bi

Diagram 3 Diagram 4 Diagram 5

a~bi

We shall now give the explicit formulas for the real and imaginary
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parts of a root a, in the four cases given by (8)-(11).
We designate z=x-ti, as before, where « and ¢ are real, ¢>0,
a,=a—Dbi, Qn,n:An,n"*'?:Bn,m Qn,n-len,n—1+iBn,n—1r where

— 2 _1yvi-1f P \g25-2 n—2
- A= =5, (=1 ()= AP Dsy

Buw=t5, (=1 (5L 1 AP Dupe

Appr= 2 (=177 @ =2 A2 Doy
By =t (= 1)@ = e[ f@)]" Dy, .

(14)

The sums being taken over all 7, for which the binomial coefficients do
not vanish, starting with j=1.

Now by using (8)-(11) we get respectively
T—a= lnl_r};le tf(x)[Bn—1,n—1(f(w)An—l,n—1 - Ann)

(15)
—An—l,n—l(f(w)Bn—l,n—l _Bn,n)]/A ’
b=—lim tf(w)[An—I,n—l(f(x)An—l,n-l'_'AJn,n)
(15) noe
"‘Bn—l,n-—l(f(a’)Bn—l,n—l_Bn,n)]/d ’
where

4= [f(x)An—l,n—l_An,n]z+[f(x)Bn—1,n—1_Bn,n]z H
(16)  z—a=lim f(@)(Ann-14n-1n-11FBnn-1Bu-1,0-1)[ (A% n-1+ B n-1) 5

(161) b=Ilim f(w)(An,n—an—l,n—l _Bn,n—lAn—],n—l)/(A;zz,n—l +B,,-1) 5

n—oo

(17) r—a=lim (An.nAn,n—l+Bn,an,n—1)/(Afb,n—1 +Bozz,n—1) ’
(171) t—b =lim (An,an,n—l _Bn,nAn,n—l)/(Afa,n—l +B3z,n—1) H
(18) x——a:}}m tf(x)[Bn—l,n—z(f(x)An—l,n-Z_An,n—l)
—'An—l,n—-z(f(x)Bn—l,n—z_Bn,n—l)]/Al ’
18) b=lim t f(@)[An-1,0-2(f (@) A 1,n-2—An,n-1)
1 _Bn—l,n-z(f(x)Bn-l,n—2_Bn,n—l)/Al ’
where

4,=[f@)Ap-10-1— Ann-1 I +LA@)By-1n-2—Bup-i] -

5. Results analogous to those presented above can be obtained by
considering other expansions similar to those given by (2). We mention
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here one such result assuming that f(z) has only simple zeros. We
consider then (u—=z)*/f(z) instead of (x—=z)®f'(2)/f(z) and derive the
equation

(19) LRI = 5 A=)l —a,) + 44

where A, are constants.

(20) @i =3 (§)u—ay- L@ Pa- -

(21) P, =3 @) =&Y Pacyes P=1.

It would suffice now to replace Q.. by Q.. in all the previous formulas.

6. If f(z) is a polynomial of degree N and k=mn, then the last
member on the right hand side of (2) equals —N. If taken to the left
hand side, it would contribute the term N[f(2)]" to Q,. consequently,
N[f(z)]" and N[f(2)]** will be contributed to 4,, and A,-,,-, respectively
in (8), (9), and (10). In case of equation (19), however, the last member
would be reduced to —A,—A4,— -+ —Ay.
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