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LOWER BOUNDS FOR HIGHER EIGENVALUES

BY FINITE DIFFERENCE METHODS

H. F. WEINBERGER

1. Introduction. This paper gives lower bounds for all the eigen-
values of an arbitrary second order self-adjoint elliptic differential
operator on a bounded domain R with zero boundary conditions in terms
of the eigenvalues of an associated finite difference problem. When R
is sufficiently smooth, the lower bounds converge to the eigenvalues
themselves as the mesh size approaches zero. A certain class of self-
abjoint systems of elliptic differential equations containing no mixed
derivatives is also treated.

Upper bounds for the eigenvalues of a differential operator can
always be found by the Rayleigh-Ritz method. That is, one puts piece-
wise differentiable functions vanishing on the boundary into the Poincare
inequality [14]. It was pointed out by Courant [2] that in the case of
second order operators one can reduce the problem of upper bounds to
a finite difference eigenvalue problem by using piecewise linear functions
(see § 6).

Lower bounds are more difficult to find. The only known method
giving arbitrarily close lower bounds for the eigenvalues is that of A.
Weinstein [20], which is usually quite difficult to apply. It was shown
by G. E. Forsythe [5, 6, 7] that if the eigenvalues λλ^λ%<, ••• of the
two-dimensional problem

(1.1) Δu+λu=Q in R

with u=0 on the boundary are approximated by the eigenvalues
λ^ ^λf^<L of a certain finite difference problem on a mesh of size
h, then there exist constants r?VΓ2) * such that

(1.2) XjP£Xk-rmh*+o(h*) .

The r(/i0 cannot be computed, but are positive for convex R. However,
the o(h2) term is completely unknown, so that this asymptotic formula
cannot be used to bound λk below.

It was shown independently by J. Hersch [8] and the author [18,
19] that if λL is the lowest eigenvalue of (1.1) and if λψ* is the lowest
eigenvalue of a finite difference problem on a mesh that is slightly
arger than R, then ΛJft) and, in fact, a quantity slightly larger than #Λ>

are lower bounds for λτ.
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340 H. F. WEINBERGER

This result is here extended to higher eigenvalues, higher dimensions,
and variable coefficients by a modification of the method previously used
by the author. The basic idea is to define a mesh function by an
average over mesh squares of a linear combination of the first k
eigenfunctions of (1.1). One then defines the finite difference eigenvalue
problem in such a way that its Rayleigh quotient evaluated for this
mesh function can be estimated in terms of the unknown eigenvalue
4. By the Poincare inequality this leads to an upper bound for the
eigenvalue 470 in terms of λky which serves as a lower bound for λk in
terms of 470.1

For the sake of clarity, the method is first presented for the prob-
lem (1.1) in § 2. It must be noted that while the lower bound (2.25)
holds for all λk, it is not as good for λ1 as the bound previously given
either by Hersch [8] or the author [19]. It is smaller, rather than
larger, than /f° by a term of order h'\

The method extends easily to an equation in N dimensions with
variable coefficients when the operator contains no mixed derivatives.
This extension is made in § 3. Again the lower bound is smaller than
4Λ) by a term of order K\

In § 4 the general second order self-ad joint operator is considered.
The presence of mixed derivatives introduces complications. The lower
bound becomes 4/?) reduced by a term of order hυ\ Furthermore, it
becomes necssary to assume that R has no re-entrant cusps, corners,
or edges, and that it does not have infinite oscillations.

Section 5 presents an extension of the lower bound to a self-adjoint
system of second order equations with no mixed derivatives. The
extension to a system with mixed derivatives appears to be very
difficult, and is not done.

In § 6 the difference between upper and lower bound is discussed.
It is estimated explicitly for convex R. At the same time this discussion
serves to show when the lower bounds converge to the eigenvalues.

In § 7 we take account of the fact that the solution vanishing on
the boundary of a non-homogeneous differential equation can be character-
ized by a minimum principle (Dirichlet's principle). Using the methods
developed for eigenvalues, we give a method for finding a lower bound
for this minimum. It is, of course, true that in this case one can
get a get a lower bound by Thomson's principle. However, this principle
involves solutions of the differential equation which may be difficult to
find as well as difficult to compute with. Finite difference methods are
more amenable to high speed computation. The upper and lower bounds
so obtained, together with the function that gives the upper bound,
can be used to find upper and lower bounds for the solution at an

1 A similar idea was used by L. Collatz [1] to establish the order of magnitude of
\λ/c ~λk\.
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interior point by the method of Diaz and Greenberg [3, 4].
Section 8 indicates the extension of our method to an important

class of higher order operators. This extension is applied to the problem
of the vibrating clamped plate.

2. The basic bound. Let the eigenvalues of

(2.1) Δu + λu = 0 in R,

u = 0 on the boundary R

be denoted by

(2.2) λx S λ* ̂  .

Let the corresponding eigenfunctions, normalized so that

(2.3) [ u*dxdy=l

be denoted by ulf u%9

Consider the x-y plane divided into squares by lines x—mh, y—nh,
m, n — 0, ± 1 , ±2 . Let Rh be a region consisting of a union of entire
squares of this grid and having the property of containing not only R,
but also all its left and downward translates of distances up to h :2

(2.4) Rk z> {(x, y)\(x+a, y+β)eR for some Q ̂  a ^ h, 0 ^ β ^ h} .

We consider the class Mh of functions v(mh, nh) defined at mesh
points (mh, nh) in Rh and vanishing at boundary points of Rh. The
eigenvalues (2.2) are to be approximated by the eigenvalues

(2.5) λψ> ^ λ ψ > ^ •••

of the finite difference problem

(2.6) Δhv + λwv = 0

where v is a mesh function of the class Mh, and

(2.7) Δhv—h~2[v(mh+h, nh)+v{mh—h, nh)+v{mh, nh+h)

+v(mh, nh—h)—&.v{mh, nh)] .

The eigenvalues (2.5) are bounded above by the Poincare (Rayleigh-
Ritz) inequality [14], which states that for v19 v2, ••• , vk of class Mh

and linearly independent
2 Equivalently, if the intersection of R and the square mh<C%<.(m + l)h, nh<jJ<S,n+l)h

is non-empty, then (mh, nh) is an interior point of Rh,
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(2.8) ft* < max D ^
" i f A 1 Σ

where

(2.9) Z)Λ(v) == Σ {[v(mh+h,nh) - v(mh,nk)J + [v(mk,nk+h) -v(mk,nh)f} .
(hh)€R

Let %(a?, ?/) be a continuous piecewise continuously differentiable
function in the whole x-y plane which vanishes outside R. We define
the mesh function

1 u(mh+a, nk+β)dadβ.
o Jo

Because of (2.4) this function belongs to Mh. We note that

(2.11) [ [u2dx dy-h?Σu v{mh,nhf

Σ \\[u(mh+a, nh+β) - v{mh, nh)Jdadβ .Σ

By definition (2.10)

(2.12) Γ [h[u(mh + a, nh + β) - φ A , wλ)]dα dβ = 0 .
Jo Jo

Consequently, each integral on the right of (2.11) is bounded by the
integral of the gradient of u times the reciprocal of the second free
membrane eigenvalue for the square of side h:

(2.13) Γ [h[u(mh+a, nh+β) - v(τnh, nh)J da dβ
Jo Jo

^ — [h[h\gradu(mh+a, nh+β)\2dadβ .
7Γ2JθJθ

Replacing this in (2.11) and summing over all the squares, we have

(2.14) (ί u*dxdy -h2Σ>v*^~\\ \grndu\2dxdy .
JJβ Rh 7Γ2JJi2

Now let

(2.15) u = ξ1u1+ ••• +ξkukf

where the ut are the normalized eigenfunctions of (2.1), and the & are
any real numbers. Then we have

(2.16) υ = ξιVl +
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where the Vt are defined in terms of the ut just as v is defined in terms
of u by (2.10). Inequality (2.14) can be written in the form

(2.17) A1 Σ (6iVi + + M* ^ Σ Ά - ~ Σ *& .
Λ Λ i-i Π2ί=i

This gives a lower bound for the denominator of the ratio in (2.8). In
order to be certain that the mesh functions v.t are linearly independent,
we assume that h is chosen so small that this lower bound is always
positive. That is, we take

(2.18) h2 < τr2/4 .

We now turn to the numerator in (2.8). We note that if u and v
are again related by (2.10), we have

(2.19) v(mh+k, nh) — v{mh, nh)

da\ dβψ(a) — (mh+a, nh+β),
o Jo dx

with a similar formula for v(mh, nh+h)—v{mh9 nh). Here we have put

/ a 0 <: a^k

(2.20) ψ(a)=l2h-a h ^ a ^ 2h .

^ 0 elsewhere

so that

ψ{a) da = h2 .

o

Consequently, we can write

(2.22) 5 L l g r a d u^dxdy~DM

= h'1 Σ [hda[h dβ φ(μ)\\ — (mh + a, nh+β)
BK Jo Jo Li dx

} 2

+ I ψ {mh+β, nh+a) - h'1 <y(mh, nh+h) ~ v(mh, nh)} Π ^ 0.

Again making the substitutions (2.15) and (2.16), we have

(2.23) Dh(ξlVl + + ξkvk) ^ Σ m
ί = l

Inserting (2,17) and (2.23) in the bound (2.8) yields
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(2.24)

Solving

(2.25)

for λk we find

max

the lower

4 >

k

Σ î£i

bound

_ 4

This bound was derived under the assumption that (2.18) holds.
However, if (2.18) is violated, (2.25) is trivially true. Thus, the lower
bound (2.25) holds for all k such that Λg° is defined (k at most equal
to the number of interior mesh points of Rh). The same type of
consideration will apply in all the derivations to follow. That is, one
derives the lower bound by assuming an inequality like (2.18) to hold,
and then finds that the lower bound also holds when the inequality is
violated. We shall suppress this argument in what follows.

3. Variable coefficients, no mixed derivatives. We now extend the
results of the preceding section to an eigenvalue problem in N dimensions.
We consider the problem

(3.1) - Σ - / τ (V ~ ) + gu = λrw in R,
«-i dx% V dx% /

u = 0 on the boundary R .

Here R is a bounded iV-dimensional domain. The functions p\ q, and
r are assumed to be piecewise continuously differentiable. We assume
pι and r to be positive and q non-negative in the closure of R. The
eigenvalues are arranged in increasing order

(3.2) λτ ^ I, ^ -

and the corresponding eigenfunctions, normalized by

(3.3) [[ ru2 dv = 1

are called u19 u2, .
The space is divided into iV-cubes by the planes xi^mihy mί = 0,

± 1 , ±2, . . . .
We again denote by Rh a region consisting of the union of mesh

cubes, and containing not only R but all its translates in negative
^-directions of distances up to h. We denote by Mh the class of functions
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v{mιh, , mNh) defined at mesh points and vanishing at all such points
on the bounday of or exterior to Rh.

Let u(x\ • •• , xN) be a continuous piecewise differentiate function
vanishing outside R. Then by definition of Rh the mesh function

(3.4) v{m}h, , mNh) = h'Λ . u{mιh+aι)da} . da*

is in Mh. We define the mesh function3

(3.5) φn'h) =

Analogous to (2.11) we have the identity

(3.6)

. [rίmΛ+αMmλ+α) r ( m A M Λ ) ? τ ^

#β 0 6 Λ * ^ Λ r(mιh+ai)

Also, by (3.4) and (3.5)

(3.7)

Thus, we are again led to a free membrane problem, and we find

(3.8) ( [ru-^rvY do^llloί^^ JlΛ j g r a d ruim'h+aψda1... dα

where we have put

(3.9) rm = min r(x\ , ^ ) .

By the triangle inequality

W/2 f f ) 1/2

i | \ 2 | d | Z F j« ) 1/2 ( Γ

|gradm| 2cm ^ J r2|grad
Hence we have

3 The definition of r(x) outside R is rather arbitrary. We choose it in such a way
that the term in the bracket is the mean value of r over the intersection of the domain

of integration with R. Since λk decreases with increasing Rh, we can assume without
loss of generality that Rh is minimal with respect to the analogue of (2.4\ so that for
squares corresponding to interior points of R^ this intersection is not empty. Similar
considerations will apply to the mesh functions formed from the other coefficients.
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(3.11) K« Σ rv2 ^ f ru2dV - J*-[κ[ \ pι

dx1

where

(3.12) K = max (£) ,

L = m a x ( lgrad

We also find

(3.13) [ qυ?dV - hN ^ ?v2 - Σ ( . [ g « - ^ ? ^ ^ ^ ^ 0
JR Rh Rh JO^cPgh q

where we have put4

(3.14) ΊΪWh)

Using the function ψ(a) defined by (2.20), we find that

(3.15) [ p'f-^ΐdV-h^-'Σ, ~v\mlh) [v(mιh+h, m2h, ••• , mNh)
JR V dxι / R

- v{τn}h)-\\ φwη?-—™- ^ 0 ,
) pι(mιh+aι)pι(mιh+aι)

where we have put3

(3.i6) -fan=[A-*- \

In this way we find that if we define the quadratic form

(3.17) Q(w) = hN Σ U" 2 Σ p3Mmιh+dl}h) - wim'k)]2 +
Rh I ί-1

for mesh functions w in Mh, where3

(3.18) p -\h j o s ^ s 2 f e - p ί ( m % + α i ) J

4 See footnote 3. We make the convention that q—Q if the integral diverges or if
q=0 in an open set.
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and q is defined by (3.14), then

(3.19) Q(v) <;

We now define the numbers λγ° <Z λψ> ^ as the successive minima
of a ratio of quadratic forms :

(3.20) λ^ = min — 5 £ ^ L

The 47 i ) are eigenvalues of the finite difference problem

(3.21) L^h)w + qw = λ^rw ,

where

(3.22) L^w{mιh) = - / r 2 Σ {v\mιh) [wirrth+d^h) - w(m%)]

— p^mϊh—dijh) [w(m%) — w{wuh—δi<?/&)]} .

The equation (3.21) is clearly a finite difference analogue of (3.1).
We now proceed exactly as in § 2 to let

(3.23) u = ξλuλ + + ΪJCUJC

where the ut are the normalized eigenfunctions of (3.1). Then

(3.24) v = £&! + + ξ^Vj,

where the vt are related to the ut by (3.4). We apply the Poincare
inequality

(3.25) 4Λ ) t

together with the inequalities (3.19) and (3.11) to find

(3.26) 4Λ ) ^
Π2

7rVmL J

Solving for λk we obtain the lower bound
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(3.27) λk ^

πrn

Clearly this lower bound differs from 470 only by a term of order
h2. It should be noted that it is independent of N and, except for 4Λ)

itself, of k. For the case of the Laplace operator treated in section
2, K=rm=l and L=0. Then (3.27) reduces to (2.25).

We note that (3.27) simplifles considerably when the function r is
constant so that L—0 .

4. The general self-ad joint case. In the preceding section we
restricted ourselves to the differential equation (3.1), where no mixed
derivatives occur. In this section we shall treat the general case

(4.1)
J-I dx1

u = 0

dxj
in R ,

on R .

Here a ί j is assumed to be a uniformly positive definite symmetric matrix
in R, r is assumed positive, and q non-negative. All coefficients are
taken as piece wise differentiate.

We keep the notation of § 3. In particular, we consider the
continuous function u vanishing outside R, and the mesh function v in
Mh defined by (3.4).

The inequalities (3.11) and (3.13) can be used almost without change.
The problem is to find a quadratic form in v which can be bounded from
above in terms of the quadratic form

(4.2) f \±<t>toJBu
J B L U - 1 dx% dx3

and which approximates this form for small h.
We begin with the identity

(4.3) ( Σ ^
Jϋ ij-i dx1

= Σ t Σ - ~aikwΛ \
J L

a31-— (mph+a*>)
dx1

a3lwι Ida1

Here atJ is the inverse matrix of aίj, and we have defined the mesh
matrix3
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(4.4) ~aυ(mιh) = [h'N[ Ί ai3(mιh+aι)da} daN~\ * ,

i.e.,

(4.5) Σ h~N\ τ (iip{nιιh+aι)da} daN apj{mιh) = (5έj ,

and the mesh vector

(4.6) Φ'^tH , -^
L jogtfgh dxκ

While wk is clearly an approximation to du/dx*, it cannot be obtained
from v or any other mesh function. Therefore, (4.3) does not give a
quadratic form in v. However, since the finite difference

(4.7) dMim'h) = h'^vimfh+dji) - v(m%)~\

also approximates duldxk, it must approximate wk. We estimate the
error introduced by using dk\v\ instead of wk. It follows from the
triangle inequality that

(4.8) I/^Σ Γ Σ a^dJLvidjivi + qv*]\1'* ^ \h* Σ Γ Σ cFwiWj +

+ \h» Σ Σ a'KWi-dJLv]) (Wj-djl
{

qv

1/2

It can be seen from the definition (4.4) that largest and smallest eigen-
values of aίj lie between the maximum of the largest eigenvalue and
minimum of the smallest eigenvalue of aίJ in the cube of definition.
Hence, ~aij is still positive definite so that the triangle inequality applies.
The first term on the right of (4.8) is bounded by means of (4.3). The
second term is the error due to replacing wk by dk\y\. We shall bound
it.

Let the constant a be a uniform upper bound for the eigenvalues
of aij; that is,

(4.9) a = max - < ^

Then the same bound holds if aίj is replaced by aiJ. Hence,

( 4 . 1 0 ) F Σ Σ a ' K W i - d l v ] ) ( w j - j F Σ ( * )

We use the identity
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(4.11) wt(mιh) - dlv\{mιh) = ( . φ(aι) ̂ L (mιh+aι)daτ - da*

where

(4.12) φ(a)=

— h-N-ιa{2h-a) 0 ^ a ^ h ,

— h~N-\2h-af h ^ a ^ 2h .

The volume integral is actually over the intersection of the
rectangular parallelepiped with R. On the boundaries of the parallelepiped
the integrand of the surface integral vanishes by the construction of

φ. Thus, the last integal is only over the part of R cut by the paral-
lelepiped.

We apply Schwarz's inequality and the triangle inequality to (4.11),
and note that R is covered twice by each set of parallelepipeds. Using
the fact that u—Q on R we have

hN
JV Γ

Σ
l / 2

Here F is an arbitrary positive function defined on R. To estimate the

last term on the right, we note that Φ | da%\dn \ dSa represents the pro-

jection perpendicular to the α?*-axis of the total surface. We call vh the

maximum number of intersections of R with any line segment of length
2fa parallel to one of the coordinate axes. Clearly, vh is a monotone

increasing function of h. If R is at all regular, vh is bounded, and

equals 2 for sufficiently small h. Noting that <p2^—h2~%

Ny {da'ldnl^l,
4

and that the projection of any one layer of area within the parallelepiped
in the ^-direction is at most hM~λ we have

where

(4.15) Fm = min F,
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Again taking account of the fact that R is covered twice by each
set of parallelepipeds, we have

{ N

* ξ£<«.-<
l/2 ( I 1 JV f / fi2Ί. \2 )l/2

f F(
2Fm Jή \dn

It thus becomes necessary to bound the integral of the sum of
squares of the second derivatives of u, and a boundary integral of the
square of the normal derivative of u. We begin with the latter.

We utilize an identity which was found for the Laplace operator
by F. Rellich [16], for hyperbolic operators by L. Hδrmander [9], and
which was extensively used for purposes similar to the present one by
L. E. Payne and the author [11, 12, 13]. Let fι{x), ••• , fN{x) be an
arbitrary piecewise differentiate vector field in R. The identity is

(4.17)

\
J B

dx1 dx

where we have written

(4.18)

and nk is the outward unit normal on R.
We now assume that the vector field /* has the property that its

outward normal component on R is positive :

Σ Pnk > 0

Then we can put

(4.19) F = Σ Pnk Σ

in (4.16). For example, if R is star-shaped with respect to the origin,

we may take fk=xk. More generally, if R is represented by an equation
R(x) — 0 where R(x) is a twice differentiable function in R whose outward

normal derivative on R is positive, we may take p — dRldx7". It still
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remains to bound the right hand side of (4.17). For this purpose, we
restrict ourselves to the function

(4.20) u = £%! + + ξku
k

where ulf , u* are the first k eigenfunctions of (4.1) normalized by
(3.3). Then

(4.21) J^(u) = Σ ξn(Q-^r)u .

The integrand of the first integral on the right of (4.17) is a quad-
ratic form in the gradient of u. Since the lowest eigenvalue of aiJ is
assumed to be positive and bounded away from zero, there exists a
constant c defined by

Σ ( > 2
u^Adxk dxk

(4.22) c = max ^

Thus, the first integral on the right of (4.17) is bounded by

(4.23) c[ Σ ^ ^ ^ d F

Substituting (4.21) in the second integral and using Schwarz's
inequality, we find the bound

(4.24) Mλ{κΆ + + Λ.eϊ}1'1 {m + + 4fi}1/2

where

rΣ<W4

Thus we find

(4.26) j \ i ^ ) 2 ^ ̂  Φifϊ + +

1/2 ( n1 N ) 1/2

f i , j = l

1 { ^ + + 4fj1/2 {^ + +

We now estimate the first integral on the right of (4.16). For
this purpose we extend an argument used in the case of the two-
dimensional Laplace operator by L. E, Payne [10].
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We let

(4.27) ai} = V~ξgi3

where

(4.28) g = det \gt}) ,

In three or more dimensions one can solve (4.27):

g= {det [α"]}-<*'*-*> ,
(4.29)

g*1 = {άet[aίj]}1/N-2au .

In two dimensions (4.27) implies άet[atf\ = l. If this is satisfied,
one takes gij—aίJ. If not, one must make a change of dependent and
independent variables to arrive at det[aiJ] = l. We assume this to have
been done.

We consider giό as the metric tensor of a Riemannian space. We
derive the tensor identity (using summation convention)

(4.30) VT9*ι(9i%iV>\,)m = 2VJ gMgij\nVΊcuxjl+uuumι-\

= 2V~g g^g^ίu^u^+UuU^+^MjiU^

= 2VY gkιgi3uHkuιjl+2v/Ίj~gijuι(g1clulJcl)lj

— 2V~g Ri3uXiuX3 .

Here we have used symbol u for covariant differentiation. R%n is the
Riemann curvature tensor, and Rij is the contravariant Ricci tensor (see,
for example, [17]):

(4.31) Rij ΞΞ 0 V » Γ— d* Ing

where

(4.32) j p u i
lίml 2

+2 " L dxm ' dxι Θa

is the Christoffel symbol of the second kind. We have

(4.33) uu = ~Γ>

du
- - \ v \ dχp

and consequently
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(4.34) gklum = ^(u)lVJ

where S^(u) is the operator (4.18). The left-hand side of (4.30) is a
perfect divergence. Integrating (4.30) over R, applying the divergence
theorem, and transposing terms gives, after use of (4.34),

(4.35) \ VJWuXilμX5ldV = \ I ^-iv^—^j)^ dS
JR 2 JR dar \ dxι dxj J

Ox1 dxj\ V g J J« dxι dx3

Here we have used Euclidean elements of volume and area.
We now restrict ourselves to functions u of the form (4.20), so that
) = 0 on the boundary. Then by the divergence theorem and (4.27)

(4.36) -\ «« * » (_^£0 W = ί I
JR dxι dxj\ V g J )RV g

But when u is given by (4.20), S/'(μ) is given by (4.21). By the triangle
inequality we find the bound

(4.37) {Ĵ  ̂  j^iuγ dvψ s {«s + + a)}1/2 + {urn + + m)y/2

with

(4.38) h = max (—?LΛ
\ry g 1

and

(4.39) h = max (-£•=) .
W g /

For the last term on the right of (4.35) we put

(4.40) d - max (ΫI*!MΔ .
xβR

Then

(4.41) f τ/7-B 1 ^—— dV ̂  d \ aij^-™~ dV ^ d(̂ €? + +

We come now to the surface integral in (4.35). We suppose that

in some neighborhood of the surface R there is defined a differentiate

function R(x) vanishing on R and such that the outward normal deriva-

tive is positive. Since R(x) vanishes on R we may put
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(4.42) u(x) = R(x)ψ(x)

in the neighborhood of ίi. Then we see that on R

« ι\ \Aφ<f & + ωW (>
dn J L θxk dxι dxι dxj dxι dxj \ dx« dxι

Also on R

(4.44)
to* to >

Since u is taken of the form (4.20) and the ut satisfy (4.1),

vanishes on R. Hence, we may eliminate the derivaties of ψ occurring
in (4.43) by setting (4.44) equal to zero. Finally, to identify ψ in terms
of u we take the normal derivative of (4.42) to find

(4.45) *L °K
φ

dn On

Thus, we arrive at

(4.46) anJ-
V ; dxk

U P q* 9aΛr dx*θ&) dx})\dn)

The coefficient of (du/dn)2 is clearly independent of the particular func-

tion R(x) used to represent R. It is a local geometric property of R.

In fact, if gij is the unit matrix, the coefficient is just —2(iV—1) times

the mean curvature of R, as can be seen by taking for R(x) the distance

from R. If gi3 is the metric of a flat space, the divergence term is

still proportional to the mean curvature of R in this space. The first

part of the coefficient arises from the fact that we are mixing a

Euclidean and a non-Euclidean metric.

Setting

(4.47) β - max { -

where F is defined by (4.19) in terms of the arbitrary vector field

pointing outward on R, we have by (4.26)
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(4.48) 1 f α« - 9 f ^ A ^ M ntdS < e £ dS
dn

^ ce(λ& + + λ&) + Af^Rtf + - + 4ί2,}1/2 {m + +

We note that in order to have a finite e it is necessary to assume
that the coefficient of (dujdn)2 in (4.46) is bounded above. Since this
coefficient, at least in a flat space, is proportional to the negative of the

mean curvature, one sees that this implies that R has no re-entrant
corners, edges, or cusps. On the other hand, non-re-entrant corners,
edges, and cusps cause no difficulty. It is easily ascertained from the
asymptotic form of a solution of (4.1) that the integrals of the squares
of the second derivatives, which we are seeking to bound, actually
diverge at re-entrant corners, edges, and cusps.

Having bounded the right-hand side of (4.35), we turn to the left-
hand side. The positive definite symmetric matrix gίJ may be expanded
in terms of its eigenvalues 0<μ^μz^ • ^LμN and orthonormal eigenvec-
tors in the form

(4.49) 0w = Σ
p=ί

Then

frjίfc

(4.50) Qkl9ιjuuk^\ji — Σ /Vg((

JV / JV

S/^Σ^Σ^
JV

,.2 V 9/2

— r^l ./ i ™ \lk y
ί,k=i

the last equality being due to the orthonormality of the eigenvectors.
Now by virtue of (4.33) and the triangle inequality

1/2

(4.51) ]f Σ ( J ^ L Y d 7 p ^ { ( Σ u\«dV
\ j R ί = i \ (JQ(J J ) v J R &, fc — 1

f f TV r jv c m ) ft

+ Σ Γ Σ
 p.k°

Thus, letting

(4.52) b ΞΞ max ( — ί = - ) = max
\μ\V g / V—"J Σα*

and
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(4.53) m

and applying Schwarz's inequality we have

ϊ 1/2 ( f ϊ 1/2

\ i b l v i)dv\
(Γ N / Qβo, \2 ϊ 1/2 ( f(4 54) 1L § (-f^) dv\ = i b l v a

\
J

We return now to the original problem. We define the quadratic func-
tional Q(w) of mesh function w by

(4.55) Q(w) E= hN Σ ί Σ ^ i j ^ M d,M + gu
Rh U,j=ί

where dt is the first difference operator in the xι direction defined by
(4.7), and αίJ and q are the average functions defined by (4.9) and (3.14).

We let λ[h^λ(

2

h^ ••• be the successive minima of the ratio

(4.56) - # * >

Jc

with respect to mesh functions w in Mh. Here r is defined by (3.5).
The minimizing functions and the minima satisfy the finite difference
equation

(4.57) - Σ dlά^djlw^im'h-duk) + q(mιh)w(mιh) = λwr{mιh)w(mιh) .

This is, of course, a finite difference analogue of (4.1).
The Poincare inequality (3.25) still holds. Taking for v the mesh

function defined by (3.4) and for u the linear combination ξ1u1+ +ξku-
of the first k eigenfunctions of (4.1), we get v in the form ξ1v1+ + ? Λ

We now put together the inequalities (4.8), (3.13), (4.3), (4.10),
(4.16), (4.54), (4.35), (4.48), (4.37), (4.41), and (4.26) to find

(4.58) {Q(fΛ + + £Λ)} 1 / 2 S J Σ lid1'*
U=i )

[(npΛ-fJ\ V ) £2 4- M^ΓV 2 P1 V 2 £2W2

Σ £2~|l/2 _j_ Γ/7 "SΓ1 £2\l/2 _ι_ (Ί 'V1 }2Λ2V\1/2"|2'| 1/2

x {c Σ m + Λfx[Σ m Σ W* + MlΣ m Σ «]1/2}1/2
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The denominator is bounded by the generalization of (3.11), namely

(4.59) ft'ΣίV^l--^ ίΣWi + £Σ3

where

(4.60) K = max

L — m a x ( | g r a d r2/v)

Insert ing these bounds in the Poincare inequality (3.25) yields

(4 61) ΛCΛ) < Λ1/2 + h1/2 {M<?λι/2 + cλ + Λί/I 1/2}1/2 J-zy^^i _i_ /^π _[_ i^f^/(1/2

_ (_ » * i * t 2 F m ί

1/2

1/2Ί2 Γ ^2

J L πλrm

^ a m λ Λ W l ^
30 ) J L πλrm

This is an implicit lower bound for λk. We note that the lower
bound differs from λ^ by a term of order hλ/2, rather than Kι as in the
absence of mixed derivatives. The inequality (4.61) does not reduce to
(3.27) when aij is diagonal.

5. Systems with no mixed derivatives. The process used in § 3 is
easily extended to a self-adjoint system of elliptic equations. We must
only consider the unknown function in (3.1) as a vector and the coef-
ficients as symmetric matrices. Thus we have

(5.1) ΣI - Σ ^j tef?) + Q^Λ = I Σ W, a = l,'..,n
β = U i = i dxι \ dxι/ ) β-i

We assume the matrices p^ p(jp and raβ to be positive definite and
qΛβ semi-definite, and all their components piecewise differentiable. We
put

(5.2) vβ(mιh) = h'N[ . u\m% + aι)daι . . . daN

and, writing r*β for the inverse of rΛβ,
3

(5.3) ~r«β(mιh)

Then we have, analogous to (3.6)
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(5.4) [ Σ rtpU-uPdV - h" Σ Σ J ̂  wV
JR cύ,β = l Rh α,β = l

Γ n Γ Ί Γ

— VI V r U* 7/Y — /*• Ή? r ?7δ —
— ^Ll \ ^Lί ' αfβ ' ΛY^ — ' <#γU ' ^ δ ^

Thus, putting

daN .

(5.5) rm --

L-

= min

xeR

= max

n

WΫ+

~ n

Σ p ( i

Γ A
= max Σ r*

XSR Loύ,β,y=i

where we have written p^a

the analogue of (3.1Ll)

8 gradr. γ

β for the

= min

'x€R

y

grad r β

î~f~ ~h£"2

inverse matrix of p^l we have

(5.6) Σ
R etf,β =

1/2

Similarly, defining3

(5.7) 'qΛβ{mih

where qΛβ is the inverse matrix of qaβ and3

(5.8) p

we find the analogues of (3.13) and (3.15). Thus, if we define the finite
difference eigenvalues λΫ0^.ffi<^ ••• as the successive minima of the
ratio

(5.9)

among sets of mesh functions (w1, , wn) in class Mh, we find again
the lower bound (3.27) for the eigenvalues of (5.1) in terms of those
of (5.9).
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(5.10) 4 ^

The considerations of § 4 do not appear capable of extension to
systems of elliptic differential equations containing mixed derivatives.

6. Error estimation. As has already been mentioned in the in-
troduction, it is rather easy to get upper bounds for the eigenvalues
λk by means of another finite difference problem. Thus in order to
determine the error, one must first calculate the eigenvalues of two
finite difference problems. If the error turns out to be too large, one
must reduce the mesh size and recalculate the eigenvalues. It is a
great saving of labor to have an a priori estimate of the error in terms
of the mesh size. For then one can pick a mesh size to give at most
a given error and do only one eigenvalue computation.

We proceed to estimate the error by considering the scheme for
obtaining upper bounds. For the sake of clarity we begin with the two-
dimensional Laplace operator case treated in § 2.

Following a method suggested by R. Courant [2] (and already im-
plicitly contained in a paper of L. Collatz [1]), we divide each square
of the finite difference mesh into two triangles by means of a diagonal
in a fixed direction. Then, given any mesh function v of class Mh, we
can associate with it a piecewise differentiable function u by specifying
that it coincides with v at the mesh points, and is linear in each tri-
angle. This function vanishes on the boundary of the domain Rh. Fur-
thermore, if vlf 9vk are linearly independent mesh functions, the
corresponding functions ulf •• ,uk are linearly independent; and to the
linear combination £&+••• +ξkvk corresponds the linear combination
?i%i+ ••• +ξkuk. Letting μjc{Rh) be the kth eigenvalue of the fixed
membrane problem

(6.1) Δu + μu = 0 in Rh

with w=0 on the boundary of Rh, we have the Poincare inequality

I Igrad (ξ1u1+ + ξkuk)\2dxdy
(6.2) μk(Rh) ^ max J * * -

Since n depends linearly on its mesh values v, both the numerator
and denominator in (6.2) are quadratic forms in the mesh function v.
They have been explicitly determined by G. Polya [15], who finds that



LOWER BOUNDS FOR HIGHER EIGENVALUES 361

(6.3) \gmdu\2dxdy=Dh(v)

defined by (2.9), while

(6.4) f u2dxdy = I(v) ^h2Σ \v(zm, ynf - ~[v(a?»+A, V»)-v(xm, yn)Ύ
jRh Rh I 1 2

-v(xm 9y ny\ —~lv{xm+h,yn+h)-v(xm,yn)ΐ

We now let μfiί

(6.5)

ik •••be the successive minima of the ratio

Dh(v)

Letting vlf , v,c be the first k minimizing functions, we see from
(6.2) that

(6.6) μk{Rh) ^

Thus, we have upper bounds for the μτc{Rh) in terms of the minimum
problem (6.5), which can again be formulated as a finite difference pro-
blem. However, noting that

(6.7) I(v) ^ h? Σ v(xm, ynY - ~h?Dh{v) ,

we can bound the μ)P in terms of the eigenvalues 4Λ) by

(6.8)

assuming, of course, that h is so small that
the upper bound

. Thus, we have

(6.9) μ,{Rh) £

This process is easily extended to N dimensions. Here each mesh
cube is divided in an arbitrary but fixed manner into simplices with
vertices at the corners. Then the values of the mesh function v deter-
mine a function u coinciding with v at the mesh points and linear in
each simplex. We again find the bound (6.9) with the factor 1/4 replaced
by a constant cN depending on the dimensionality.

In the case of variable coefficients an extra error occurs because
the coefficients appearing in the quadratic forms for the upper bound
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are different averages of the coefficients of the differential problem
from those used in finding upper bounds. However, both are averages
over cubes of size at most 2h. Thus the differences will be at most h
times a constant depending on the maximum gradients of the coef-
ficients. This constant can be calculated. Thus we find in general

(6.10) μk{Rh) ^ λ™ + kf(h, λ<»)

where f(h, λίh:>) is an explicitly known bounded non-decreasing function
of h and λ<*\

Now since R is contained in Rh, μk{Rh)<h* However, if Rh is close
to R, we expect the μk{Rh) to be close to λk. The estimation of this
closeness depends on the geometry of R. For example, if R contains a
cut, the domains Rh will never have this cut, and so the μk(Rh) will
not approach the λk. However, if R is so smooth that the boundary of
Rh approaches that of R as λ-*0, then it fe easy to show that μk(Rh)-+h
and the inequality (6.10) together with the lower bound for λk proves
that XP +λ*.

If R is convex and contains a circle of radius "r, then one can see

that the image of R under a dilatation of the ratio (1+Shr'1): 1 about

the center of this circle contains a region Rh. The eigenvalues of this

image are (l+Shr'1)"2^ and they now lie below the μk(Rh). Thus, us-
ing (6.10) we have

(6.11) λk ^ (1 + 3&7-1)2 (#> + hf(h, 470))

In other words, we have an upper bound for λk differing from λk

h) by
a term of order h. The difference between this and the lower bound
thus approaches zero with h. In order to make this difference explicit,
we need only bound λf^ in terms of λk by the inequality (3.26), (4.61),
or (5.10) and use some upper bound for λk.

For another error estimate when R is not convex the reader is re-
ferred to § 5 of our previous paper [19]. While the argument is given
there only for the lowest eigenvalue, it applies equally well to higher
eigenvalues.

7. The non-homogeneous problem. We consider the elliptic dif-
ferential equation

(7.1) - Σ A. (avΆ + qu = G in R,
«J-I dxι \ dxj/

(7.2) u = 0 on R .

Here the coefficients aiJ and q satisfy the hypotheses of § 4, and G is a
given continuous function.
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By the well-known Dirichlet principle, u minimizes the ratio

( 7 3 )

(\/GdV)

among functions φ vanishing on the boundary. Let the value of the
minimum be (1/Λ) It is easily seen from the equation (7.1) that

(7.4) λ = ( uGdV = ( (Σ &— — + 'φ
}R }s\t,i=>i dxι dxj

An upper bound for (1/Λ) is easily found from the minimum principle.

We proceed to find a lower bound. We define the mesh domain Rh as

before, the mesh function v in terms of u by (3.4), the mesh coeffici-

ents ~aίJ and g by (4.4) and (3.14), and the mesh function3

(7.5) G{nίh) = hr*\ , G(m% + aι)dax

Then, by Schwarz's inequality, the free membrane problem for the
cube, and (7.4)

LJ
uGdV -

= ΓΣ ( {u{m% + a1) - φΐhfiGim'h + a')dal . . . dc/\
L.Rh J0^<*l^h J

^ ΓΣ t Mm'h + a') - v{mlh)}2 da1 - daN~]
L RhJ0ύat£h J

x Γ Σ ( G{m% + a1)2 da1 . -daN~\

7Γ2 J S

where

(7.6)

G2dV^ — [ G2dV
7Γ2A JR

Σ α1

The inequality (7.5) gives the lower bound

We derive an upper bound for the form Q{v) defined by (4.55) in
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the same way as we derived (4.58). We must, however, use the dif-
ferential equation (7.1) instead of (4.1) and the single function u instead
of the linear combination (4.20). Thus, we find that the bound for the
first integral on the right of (4.17) is, by inequality (4.23), just cλ with
c defined by (4.22). However, the bound for the second integral on the
right of (4.17) becomes (we again introduce the summation convention)

(7.8) Pλ + 2

instead of (4.24). Here we have defined

(7.9)

Thus, (4.26) is replaced by

\l/2

(7.10)

Since sf(u) does not necessarily vanish on the boundary, (4.36) be-

comes

(7.11) Λ α« **
Vg

- ί gίj ^
J R dxι

Using the differential equation and the triangle inequality we bound

the first term on the right.

(7.12) * j ^ ) W (̂M)
\)RV g )

where

(7.13) Z3

If we eliminate the derivatives of ψ between (4.43) and (4.44),
without assuming S>f(u) to vanish on the boundary, we find

(7.14) α ( α
v ; 2 teH dx{ dx}

9 a ! . U^ 9a* 9a?1 ί V f i r f l r dx?)\dn

The integral of the second term just cancels the boundary terms of
(7.11) when we substitute in (4.35). The first terms on the right of

(7.14) is bounded as before by e Φ F(duldnf dS where e is defined by (4.47).
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Inequality (4.41) remains unchanged. Thus we derive in the same
way as (4.58) that

(7.15) {Q(v)Y12^ Λ1/2 + /*{ l ί c

U/2

1/2 ) 1/2

We now define

(7.16)

This quantity may be computed by a finite difference analogue of (7.1).
By the minimum property,

L < 9MJL < 9M
= /

But the right-hand side is bounded by an explicit function of λ and h
of the form (llλ)+o(hlι%) by means of (7.7) and (7.15). This gives a
lower bound for Ijλ in terms of ljλ(h).

The absence of mixed derivatives results in a great simplification.
Inequality (3.19) is valid, and we find

(7.18) - L ^ A

A

π I A

The upper bound for 1/λ can again be obtained by means of a finite
difference method using piece wise linear functions. Once this piece wise
linear function and the error (difference between upper and lower
bounds) is known, one can find a pointwise approximation to u at any
interior point by the method of Diaz and Greenberg [3, 4].

8. Higher order operators. The methods of § 3 are easily extended
to the eigenvalue problem

(8.1) Lu = λru in R

where L is an elliptic operator of order 2m, and all derivatives of orders
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up to m-1 of u vanish on R, provided the numerator of the correspond-
ing Rayleigh quotient is the integral of a linear combination of squares
of derivatives of u.

We illustrate the extension by applying it to the problem of the
vibrating clamped plate

ΔΔu = λu in R ,
(8.2)

u = du/dn = 0 on R

in two dimensions. The Rayleigh quotient may be written as

fQ ox J Ĵ LV dx*) V dxdy I V dt

\P o)
\ I u2dxdy

The domain Rh is defined as before. Mh is the set of mesh functions
vanishing everywhere except at the interior mesh points of Rh. The
finite difference eigenvalues λψ> & r e defined as the successive minima of
the ratio

(8.4)

with weMh and

(8.5) KλQ{w) = Σ {[^(m^ + &, ̂ ) — 2w(mh, nh) + w{mh—h, nh)f

+ 2[w(mk+h, nh+h) — w(mh+hy nh)

— w(mh, nh+h) + w(mh, nh)]2

+ \w(mh, nh+h) — 2w(mh, nh) + w(mh, nh — h)f] .

The mesh function v ig related by means of (2.10) to the function u
having continuous first derivatives and piecewise continuous second
derivatives and vanishing outside R.

We now find

(8.6) (( (d2u\ dxdy - h~* Σ b>(mh + h, nh) - 2v(mh, nh) + v(mh - h, nh)J
}}R\ dx2 / Rn

= h-2 Σ da\ dβψ{a)\ °1L(mh+a, nh+β) - h-2{v(mh+h, nh)
Rh J-Λ Jo L dx2

- 2v(mh, nh) + v(mh-h, nh)}~}* ^ 0 .

We have put
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((a+h)2

(8.7) 2ψ(a)= \h2+2ha-2d1

{(2h-ay h^a^2h.

A similar inequality holds for dιn\dyι. For the mixed derivative we

have

(8.8) JJ
iΛ dxdy

x [v(mh+h, nh + h) — v(mh+h, nh) — v(mh, nh+h) + v(mh, nh)J

S 2hΓ2h
φ{a)φ{β)

0 J 0

x (mh+a, nh+β) — h~2{v(mh+h, nh+h) — v{mh+h, nh)
L dxdy

"la

— v(mh, nh+h) + v(mh, nh)} dadβ

^ 0

with ψ(a) defined by (2.20).
Thus Q(v) is bounded by the numerator of (8.3). For the denomi-

nator of (8.4) we use the inequality (2.14) together with Green's theorem
and Schwarz's inequality to give

(8.9) (f u2dxdy -h2Σv2^ — I [ [ u2dxdy [ [ uAAudxdy ̂  .
MR Rh π2 I J J Λ J J Λ

The substitution (2.15) and Poincare's inequality then give

(8.10) X£» ^ j

which is a lower bound for λh.
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