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DISTAL TRANSFORMATION GROUPS

ROBERT ELLIS

Let X be a topological space and G a group of homeomorphisms of
X onto itself. Then G is said to be distal if given any three points
x, y, z in X and any filter j ^ ~ on G, then xj?r-*z and yj^~'->z implies
that x — y. The above definition of distal is a topological variant of
the one given in [2] the two notions coincide when the underlying
space X is compact.

This paper deals with two topics in the study of distal transforma-
tion groups. First, a recursive characterization of these groups is given
in a general setting, and second it is shown that under suitable restric-
tions on X and G, distal is a property strong enough to imply equi-
continuity of G. In order to make this statement precise a few
definitions are needed. For a complete discussion of the following
notions, the reader is referred to [2].

Let a, b be functions of X into X and let xe X. Then xa will
denote the image of x under α, and ab the composite function first a
then b. Under the operation of composition Xx is a semigroup such
that the maps b->ab (b e Xx) are continuous for all a e Xx, and the maps
b-*ba (b e Xx) are continuous for all continuous functions a of X into X.
The group G may be regarded as a subset of Xx and its closure T
formed. One may also consider S the closure of G in the topology of
uniform convergence on X. When X is compact, S is a topological
group of homeomorphisms of X onto X but is in general not compact,
whereas T is compact but is in general not a group. Hence in study-
ing T instead of £ the emphasis is on the algebraic rather than the
topological structure.

A subset A of G is said to be syndetic if there exists a compact
subset K of G such that AK—-G. (If no topology is specified for G,
then it is assumed to be provided with the discrete topology.) A point
x e X is an almost periodic point with respect to G if given any neigh-
borhood U of x, there exists a syndetic subset A of G such that
xA=[xa\a e A]aU. If every point of X is an almost periodic point
with respect to G, then G is said to be pointwise almost periodic.

Let / be a set with cardinal number α>0. Then each geG induces
a homeomorphism {xi\iel)~^{xig\ie I) of Xa onto Xa which will also be
referred to as g. Under this identification G becomes a group of
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homeomorphisms of Xa onto Xa.
The characterization mentioned in the second paragraph is that if

xG is compact for all x e X and X is Hausdorff, then G is distal if and
only if G is pointwise almost periodic on Xa for all cardinals α>0.

The following lemma is probably well-known but the proof is included
for the sake of completeness. For references to the literature see [3].

LEMMA 1. Let S be a compact Hausdorff space with a semigroup
structure such that the maps s->ts (s e S) are continuous for all teS.
Then there exists an idempotent ue S.

Proof. Let if denote the class of non-null compact subsets E of
S such that E'ZCLE. Then &'Φφ since Se if. If i? is ordered
by inclusion, an application of Zorn's lemma shows that there is a
minimal element A in if. If re A, then rA is a non-null compact
subset of S such that rAe tf and rAczA. Hence rA=A since A is
minimal. Thus there exists peA with rp—r. Define L = [a\ae A and
ra=r]. Then peL, and L is a compact subset of A. Moreover k,
leL imply that rkl—rl — r) that is L2czL. Thus Le S? and so L—A.
Hence reL; that is r2=r. The proof is completed.

THEOREM 1. Let X be a Hausdorff space and G a group of homeomo-
rphisms of X onto X such that xG is compact for all x e X. Then the
following statements are pairwise equivalent.

(1) The closure T of G in Xx is a compact group.
(2) For every cardinal α>0, G is pointwise almost periodic on Xa.
(3) There exists a cardinal α > 1 such that G is pointwise almost

periodic on Xa.
( 4 ) The group G is distal.

Proof. (1) implies (2). Let α be a cardinal >0, and let / be a set
of cardinal α. Let x^(xt\ie I)e X1 and U a neighborhood of x. Then
there exists a finite subset J oί I and open subsets Vt (i eJ) of X such
that xe W^xiWAie^aU where W4=Ft(ieJ) and Wt=X(i el-J).
Let N=[t\teT and xtte F<(i6 J)]. Then N is an open neighborhood
of the identity e of T. Let t e T. Since the map r->rs (r e T) of T
onto T is a homeomorphism for all seT, ί~W is a non-null open subset
of T. Hence there exists geG such that g e t~xN that is t e Ng^aNG.
Thus TaNG, and so TaNK for some finite subset K of G. Since G
is a subgroup of ϊ7 and KaG, G(z(Nn G)K. Thus A—Nr\ G is a syndetic
subset of (r with a^LcC/.

That (2) implies (3) is clear.
(3) implies (4). Let xr y} zeX and let j^~ be a filter on G such
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that x^-^z and y^-^z. Let α be a cardinal >1, / a set of cardinal
α, and i and j two distinct elements of /. Let w = {wh\k el)e Xa such
that wk—x, kΦj and w3 = y. Then wJF'-^u — (uk\k eI) where uk=z(kel).
Hence uewGa x(wkG\keI). Thus uewG which is a compact set on

which G is pointwise almost periodic. Therefore by [2 4.07] w e uG.
Consequently there exists a filter Sf on G such that u%?->w; that is
Z&-+X and z^-^y. Thus #=2/.

(4) implies (1). Since Γ c x(xG\χe X), T is a compact subset of Xz.
That T2dT follows directly from the definition of T and the fact that
the maps t-*st (t e T) and t-+tg (t e T) of T into Γ are continuous for all
seT and # e G. It remains to be shown that given t e T then it is in-
vertible and that t~ιeT.

To this end let teT. Then tT is a compact subset of T such that
(tT)(tT)cztTTcziT. Hence by Lemma 1 there exists uetT such that
tf—u. Let xeX and ^ a filter on G such that ^~>u. Let y—χu.
Then x^-^xu—y, and y^->yu~xuλ—xu~y. Hence a?=y since G is
assumed distal. Thus ίra = #(ίEe X) that is n — e the identity of T.

Since eetT, there exists s e T such that £s = e. A similar argument
applied to s instead of t produces r eT with sr — e. Hence t — te — tsr—r
in other words ts—st—e. The proof is completed.

REMARK. Let X be a Hausdorff space, and let G be a distal group
of homeomorphisms of X onto X such that #G is compact for all xe X.
Then G is pointwise almost periodic on X.

A topologίcal group G is said to be generative provided that G is
abelian and is generated by some compact neighborhood of the identity.
The remainder of this paper will be concerned with the transformation
group (X, G, π) where X is a Hausdorff space and the group G is
generative.

THEOREM 2. Let X be locally compact zero-dimensional, let G be

distal, and let xG be compact for all xeX. Then G is equicontinuous.

Proof. By Theorem 1. G is pointwise almost periodic on XxX.
Hence G is locally weakly almost periodic on XxX [2; 7.07], and so
[(x, y)G\x, yeX] is a star closed decomposition of XxX[2; 4.16]. Let
xe X and a an index on X. Then a is a neighborhood of (x, x)Gf and
therefore there exists a neighborhood V of x such that (Vx V)Gaa
that is G is equicontinuous at x. The proof is completed.

The group G is said to be regularly almost periodic at the point
x e X if given any neighborhood U of x there exists a syndetic subgroup
H of G with xHcz U. If G is regularly almost periodic at x for all
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x e X, then G is called pointwise regularly almost periodic on X.

THEOREM 3. Let G be distal and let xG be compact zero-dimensional
for all xeX. Then G is pointwise regularly almost periodic on X.

Proof. Let xe X, U a neighberhood of x, and consider the action

of G on the invariant subset 7=α;G of X Let Gx = [g\ge G and xg—x\.

Then xhg~xgh=-xh{h e G, g eGx). Hence by continuity yg—y(y e Y, g e Gx).

For ke K—G\GX and ye Y set yk—yg where k—gGx. Then K may be

regarded as a group of homeomorphisms of Y onto Y such that xK~ Y.

By Theorem 2, K is equicontinuous, therefore T—closure of K in Yr is

a group of homeomorphisms of Y onto Y. Hence T is a topological

group.
Let t, seT such that xt—xs. Then since all the maps involved are

continuous and K is commutative, xkt=xtk=^xsk=xks (ke K), hence
yt~ys(y e Y), i.e. ί = s . Consequently, the map t->xt(t e T) of Γ onto Y is
continuous and one-to-one, hence a homeomorphism. Thus T is compact
zero-dimensional.

Now let V^UnY. Then JV=[£|£eT and xteV] is a neighborhood
of the identity of T. Hence there is an open closed invariant subgroup
L of T with LaN. Since L is open, there exists a finite subset F of
ί ί with T^LF. Set M=KnL. Then K=MF and Λf is a syndetic
subgroup of iί, such that xM<z V. Consequently H, the inverse image
of M under the projection of K onto G/Gx is the required syndetic
subgroup of G. The proof if completed.

THEOREM 4. Let X be locally compact metric, let G be distal, let

xG be compact zero-dimensional for all xe X, and suppose G contains

only countably many subgroups. Then the set of points R at which G is

equicontinuous is a residual subset of X.

As an example of the type of group being considered in Theorem

4, let / be a homeomorphism of Xonto Xand set G — [fn|τι = 0, ± l , ].

Proof. Let [Hn\n = l, 2, •••] be the set of syndetic subgroups of G,
and let a be a metric on X. For m, n positive integers set E(n, m) —
[x\xHnaS(x, 1/m)] where S(x, llm) = [y\a(x, t/)^l/m], Then E(n, m) is
a closed subset of X for all positive integers n, m, and \j[E(n, m)\n~
1, « ] = X by Theorem 3. Hence E(m) =\J[iτΛ E(n, m)\n = l, •••] is an
everywhere dense open subset of X. Let E— f)[E(m)\m~ 1, •••]. Then
E is a residual subset of X. Moreover, from the definition of E, it
follows that given any neighborhood U oΐxeE there exist a neighborhood
V of x and a syndetic subgroup A of G such that F A c Z7. Assume U
compact and let if be a compact subset of G such that AK—G. Then
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(Vx V)G=(Vx V)AKcz(Ux U)Ka(Ux U)G shows that (VxV)G is

compact and that f][(Vx V)G\V a neighborhood of x contained in Z7] =
Π[(Fx V)G\V a neighborhood of x contained in U~\. The proof that G
is equicontinuous at x is now completed as in Lemma 1 [1], Thus E(zR.

The theorems in the second part of the paper suggest the follow-
ing problems :

(1) Can the assumption that G is generative be dropped in any
of these theorems ?

(2) To what extent can the condition of zero-dimensionality be
relaxed in Theorem 2?
The example [1] of a ring of concentric circles rotating at different
rates about their common center shows that zero-dimensionality must be
replaced by some other condition i.e. cannot be dispensed with entirely
even if X is compact. It is conjectured that a sufficient condition would

be that X be minimal under G; that is that xG—X for all xeX. If
this were true then in the general case where all that is assumed is

that xG is compact for all xeX, the group G would be distal if and
only if G is an equicontinuous family of maps of xG onto xG for all
xeX.

The notion of distal was considered by Hubert see [4] in an attempt
to give a topological characterization of the concept of a rigid group of
motions. According to the above conjecture and Theorem 1 this would
be adequate if X were compact and there existed a point x e X with

xG=X.
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