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l Introduction, Many methods have been employed for establish-
ing the classical result, Theorem 2.1, concerning the existence of func-
tions Xi(t) satisfying a system

(1.1) fj(x; ί) = 0, ϋ = l ι 2 , . . . , w )

of n equations in n unknowns (xlt •••,#„) = x with (tlf , tp) = t, where
all variables and functions are real valued, and f3(a β) = 0. The
object of this article is to present a new proof of the theorem by a
constructive method of successive approximations involving corrections
related to the gradients in #-space of the functions f3(x β).

To establish Theorem 2.1, a sequence a?(m)(£) with x^(t) = a will be
defined, where x^(t) is obtained by adding to aj(m-1)(ί) a vector correc-
tion J# (m~ i : )(ί) which is equal to a certain constant, p, times the vector
sum of corrections parallel to the gradients of the fό(x β) at x — a.
The vector Ax(m-i:>(t), for a fixed ί, is a special case of the corresponding
correction of an iterative process for solving a general system gj(χ)=zθ,
(j — 1, . . . , fc), k 2> 7?-, introduced by the authors in a previous article [2].

For a particular system (1.1), the method of the present paper
would be applicable to obtaining values of the xt(t) by use of a digital
computing machine for any t sufficiently near t — β. Section 6 in [2]
describes a related small arc method with the same objective the two
methods differ in the values of the arguments used in fundamental
matrices which appear with similar roles in [2] and below. The method
of [2] might be superior computationally to the method of the present
paper. However, in § 6 in [2], Theorem 2.1 below was employed as a
starting point. Thus the present paper shows that the composite
gradient method is effective to establish the supporting Theorem 2.1 as
well as the related small arc method of [2] for computing values of the
implicit functions.

In connection with the present article, it is pertinent to mention
the proof of Theorem 2.1 by E. Goursat, [1], extended by William L.
Hart, [3] and [4], to various infinite systems. In the Goursat method
for (1.1), a system
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(1.2) Xj = Φj(x;t) O' = l , 2 , . . . , w )

equivalent to (1.1) is constructed by use of the inverse of the matrix1

A — (α<j), ai5 — dfj(a β)/9#4 then a solution x(t) of (1.2) is defined by
applying the method of successive substitutions to (1.2). In contrast,
under the same hypotheses as those of Goursat, § 2 employs a system
(1.2) constructed by direct use of A, without forming its inverse. This
feature might be of computational advantage. In case n — 1, the present
method with p = 1 is identical with the Goursat method.

Either Goursat's method or the present method can also be regarded
as a constructive algorithm solving the problem of elimination of n — 1
variables xl9 , xn-λ from n equations fό(x t) — 0 leading to a relation
(such as xn = xn(t)) between the remaining variables (xn, tl9 , tp).

The problem of solving y = F(x u), F = (F19 , Fn) and y = (y19

•• ι2/n)» by x = Φ(y u) (inversion with and without parameters), for
nonzero Jacobian Fx, is only apparently more general than the solution
of (1.1) (to subsume it set t = (y,u),f'= F— y) and thus is equally
amenable to our iterative procedure.

2. Construction of a system (1.2) equivalent to (l.l) We shall
consider (1.1) subject to the following hypotheses :

ί0 -v (The fj are continuous, and all derivatives θfjldxt exist and

(are continuous in some open neighborhood 12 of (x = a t = β).

(2.2) fj(a;β) = 0 (j = 1,2, . . . , n).

(2.3) The matrix A — (αo), aυ = 9/j(α β)jdxiy is nonsingular.

In a -spaee, let the positive gradient of f3(x β) at x — a be defined
as having the magnitude (Σ?=i^u)1/a> nonzero because of (2.3), and the
direction angles Ψi3 specified by

(2.4) cos Ψi3 = aυwjι w3 = ( Σ α?j)* .

For any (x £) and each j define, formally, a vector correction Δ3x for
a?, where x is considered an approximation to a solution of /,(# t) — 0,
by specifying the ίth component J ^ of Δ3x as follows :

(2.5) Δ3xi — — ̂ //a; t)wγ cos ϋΓ̂  ,

with a constant /> > 0 to be restricted later. Then define the com-
posite vector correction Δx for x, considered now as an approximation
to a solution of (1.1), by specifying for Δx the ith component

1 Capital italic letters represent n by n matrices. The transpose of a matrix A is
denoted by A'. We treat a; as a one-rowed matrix.
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(2.6) Δxt = Σ Δfl, or, Ax = Σ Δp .

By use of (2.6) we introduce, formally, a sequence x(m:>(t) of approxima-
tions to a solution of (1.1):

(2.7) α<0)(£) = α x<m\t) = a?^- 1^) + z te^" 1 ^) , m > 0 .

From (2.5), the ith coordinate ^ ( m ) (£) is given by

(2.8) *,(«>(*) = α^" 1 ^) - P± ai3wγUx^ Ήt) *) .

Let the components Φt of a vector 0 = (Φly Φ2, •••,(?„) be defined by

(2.9) 0,(0? t) = a?, - /> Σ ai3w-3%(x ί) .

Then (2.7) is the sequence of approximations x(m>:>(t) arising if the method
of successive substitutions, with x^(t) = a, is used to seek a solution
of the system

(2.10) x = φ(χ, t) .

By use of (2.1) and (2.3) we find that (1.1) and (2.10) are equivalent
systems.

We remark that, in £-space, Ax of (2.6) is invariant under an
orthogonal transformation of coordinates and under an alteration of
fj(x t) to kjfj(x t) if h5 Φ 0. Thus, before considering the existence
and convergence of sequence (2.7), we may assume that (1.1) has been
altered by dividing fό{x t) by wj of (2.4). Then, without change of
notation, from (2.4) and (2.5) for all j we obtain

n

(2.11) w1 = l; AjX, = - pa^f^x t) Σ o>h = 1
i = l

Note that AA is symmetric and positive definite Hence there
exist positive characteristic constants λu , λn and an orthogonal matrix
S — (spq) such that

(2.12) SAA'S' - (δtJλ{) = D, where δit = 1 and δi3 = 0 if i Φ j .

Now, in (1.1), let the coordinates be changed from (xτ, , xn) to
(zlf ,zn) — % by the orthogonal transformation x = zS. Then, with
g3(z t) =fj(x t) when x = zS, and a = γS oτ γ = aS', (1.1) becomes

(2.13) (7/2 ΐ) = 0, where gfy β) = 0 , (i = 1, 2, • • •, rc) .

If we let δ υ = % / r )̂/9«i and JB = (δ^ ), we have

(2.14) B = SA; BB' = SAA'S' = D fi;5 = A!A .
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From B'B = A!A on comparing main diagonal terms we obtain Σ?=i^ —
Σ?-iαu " 1> f° r a ^ i Hence, if sequence (2.7) is formed for (2.13) by
use of the analogue of (2.11) in the ^-coordinates, from (2.8) we arrive at

[ = γ z^\t) = z^~ι\t) + Δ^-ι\t)y m > 0
(2.15)

On account of the invariant features which were mentioned concerning
the gradient corrections Ax^m'Ύ\t) of (2.7) for (1.1), it follows that the
existence of all 3(m)(£) for any t is equivalent to the existence of all
χ(m^(t) and that x^{t) and zw(t) represent the same point. We shall
find it convenient to discuss z(m)(t) instead of # ( m )(£).

We introduce the functions

(2.16) φh(z ;t) = zh~p tbhjgj(z t) (h = 1, . . , n),

and consider the following system, obtained as in (2.10), which is equiva-
lent to (2.13):

(2.17) zh = φh(z;t) (λ = l, . - . , r c ) .

In (2.17) the φk and all derivatives dφhldzt are continuous when (z t) is
in Ωj now defined with coordinates (z t). With φ = (φlf , φn), sequence
(2.15) can be written

(2.18) z^(t) = γ z^{t) - φ(2C»-0({) t) .

From (2.16) and BB! = Z) we obtain ^ 7 ~ °M ^ £i "

(2.19) IMnAl = I - P Σ bhjb,j = i - ^ ,
dzh j-i

(2.20) .β_Mr_lA). = o , if Λ ̂  i .
02

Let μt = 1 — pλt and σp = max^ n | μ% \. Since ( x̂, , λn) are the

characteristic constants of AA! and Σ?=i α?j — 1 f° r a ^ i> w e have

Σ Λt =
ί-l

Then the following lemma can be proved easily as in [2]2.

LEMMA 2.1. In order that σ p < 1, it is necessary that 0 < p < 2,
ΐέ is sufficient that

2 See formulas (4.16)-(4.18) in [2] with r-=
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0 < p g 2\n (0 < p < 2\n if n = 1) .

Moreover, the minimum value of σp occurs for a single value p = pQ

where

— < Po < - 2 i 7 Z ~ i l ΐ/ n > 2, and p0 = 1 if n ^ 2 .

For each ί, and i = 1, 2, , n, let (2; = ξ(ί) ί) be a point in β and
define

(2.21) vH(t) = *feijp-L*l - M l - ^ ) .

Let F(ί) = (vAi(ί))>
 a n ( i introduce the following matrices :

(2.22) BP = I-PD = (dM(l - Pλt))

(2.23) U(t) - BpV'(t) + V(t)Bp + V(t)V(t) = (M|J(ί)) .

Note that ui3(t) is a polynomial with each term of degree 1 or 2 in the

elements vt3(t) of V(t). Let H(t) = [Σu=i <( ί )P / a

LEMMA 2.2. Sβίecί ^ > 0 so that σp < 1, αraZ choose <? > 0 m t t σp <
0 < 1. Γ/^e^ ί/^ere exist ε> 0 α^d (5 <£ ε, δ > 0, swc/̂  ίΛαί, ί/3 ||ί — β\\ ̂  5,
Ib — ϊ\\ ^ e, and αM ||6 ( i ) ~ r| | ^ ε in (2.21), ί/̂ en the functions g5{z ί),
dg5(z t)/dzif and zω(t) exist and are continuous, and

(2.24) HsCDφ _ r | | ^ e (i _ β) ;

(2.25) 0 ^ ίf(t) ^ θ1 - σj .

To establish Lemma 2.2 first notice that, if t = /3 and all ? ( 0 = r in
(2.21), then all ^ ( ί ) = 0 and thus all utJ(t) = 0. Hence ε> 0 exists so
that the specified conditions are satisfied by the g1f dg.}\dzu and H(t) if
\\z - r\\ ̂  ε, \\t - β\\ ̂  ε, and all ||£<4> - r l l^ e in (2.21). From (2.18),
z<V(t) = φ(r ί) and thus ^(1)(/5) = r Hence, if δ is sufficiently small and
0 < 3 ^ ε, we have (2.24) when \\t — β\\^δ. This completes the proof
of Lemma 2.2.

THEOREM 2.1. Suppose that p > 0 and is such that σp < 1. Assume
that (2.1), (2.2), and (2.3) are satisfied. Then there exist ε > 0 and
δ > 0, (5 ̂  ε, ŝ cΛ #&a£, i / ||ί - /?|| g 5, all χW(t) of (2.7) ea?ώί, are con-
tinuous, and satisfy ||#(m)(£) — a\\ g ε. Also there existsf uniformly for

\\t - β\\ ̂  d,

3 For any vector z we use \\z\\ for the length. Thus, \\z\| = ( Σ ? = i ^ ) 1 / 2
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lira a><~>(ί) = x{t) ,
m-*oo

where x = x(t) satisfies (1.1). Moreover, if a point (x t) with \\x — a\\ ̂  ε

and \\t — β\\^ δ satisfies (1.1), then x = x(t).

To establish Theorem 2.1, we shall prove the corresponding facts
for the sequence z<m>(t) of (2.15) and system (2.17). Let p, θ, ε, and δ
be determined by Lemma 2.2 and, hereafter, assume that ||ί — β\\ ̂  δ.
Then z<?\t) and z^(t) exist in the region \\z - γ\\ ̂  e by (2.24), since
z< 0)(t) — γ, the following inequalities are true when k — 1 :

(2.26) \\z<*\t) - γ\\ ̂  e \\z™(t) - z^'^(t)\\ ^ eθk-\l - θ) .

Assume now, for m > 1, that z(k^(t) has been proved to exist, to be
continuous, and to satisfy (2.26) when k = 1, 2, , (m - 1). Then z^(t)
exists and is continuous also, by the mean value theorem with respect
to (zl9 , zn) for fixed t,

(2.27) Ziw(t) - z^~ι\t) = φW-Ht) t) - Φi(z<m-*>(t) t)

where f(m>ί)(ί) is a properly chosen point in z-space on the line segment
joining z<w(t) and z^m-ι\t). With f ^ = £<TO *>(ί) in (2.21), let F(ί) be
the matrix with elements vM(t), and let E7(ί) be defined by (2.23). Note
that ||e<w '>(a) - rll ^ ε. Then, from (2.27),

(2.28) I \\z

On applying the Cauchy inequality twice4 to the term involving U(t) in
(2.28), we find

\Lι LtϊJ J 11^ \^/ — &

From (2.26) for k = 1, 2, - . . , ( m - l ) and (2.29), we obtain (2.26) for
k = m. Thus, by induction, all zw{t) are defined and satisfy (2.26) if
\\t - β\\ ̂  δ. From (2.26), the series Σ ί - i Km )(ί) - 4 w " υ (0] is termwise
dominated by the series Σm-ie(l — θ)θm~\ and hence converges uniformly.
Thus the sequence zim\t) approaches a limit, z(t), uniformly for
\\t — β\\ ̂  δ. Since all z(m)(t) are continuous, z(t) is continuous. It
follows from z(m)(£) = φ{z^m'^(t) t) that « = «(ί) satisfies z = φ(z; t).

i As follows: [Σ
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To prove that z(t) is the unique solution of (2.13), suppose that (z t)
satisfies (2.13) for \\z — rll ^ e and ||ί — β\\ <̂  δ and assume that z Φ z(t).
Then, from z — φ(z t) and z(t) — φ(z(t) £), by details duplicating the
proof of (2.29), we have

||£ - z(t)\\ £ θ\\z - z(t)\\ < \\z - z(t)\\ ,

which contradicts the assumption that z Φ z(t). Hence the proof of
Theorem 2.1 is complete, because the point zw(t) in w-space is the same
point as a?(m)(£), and the region \\x — a\\ <: e is the same as the region

II* - rll ̂  e.

Note 2.1. With a different arrangement of details, we could arrive
at Theorem 2.1 with rectangular neighborhoods {\tt — βt\ ^ δ for all i}
and {\Xi — at\ < ε for all i} replacing the spherical neighborhoods
||ί - β\\ < δ and ||a? - α| | ^ e.

Note 2.2. In use of the sequence {#(m)(£)} in any particular case to
obtain approximate values of x(t), flexibility is introduced through the
presence of the somewhat arbitrary constant p. Greater flexibility could
be introduced (as in § 5 of [2]) by permitting suitably restricted varia-
tion in p, with p = p{m) at the mth iteration revised details would
establish Theorem 2.1. with this change.

Note 2.3. Suppose that (a β) is not a solution of (1.1.). With
only (2.1) and (2.3) as hypotheses, there exists e > 0 so that the region
(\\x - α| | ^ ε, \\t - β\\ £ ε) is in Ω and (2.25) is true when || t - β\\ ̂  e
and all ξ<» of (2.21) satisfy \\ξ<» - γ\\ ̂  ε, as in Lemma 2.2. Now
assume that

(2.30) \\Φ(a β) - a\\ < e(l - θ) .

Then, with x^(t) = α, there exists δ ^ ε, δ > 0, such that, if ||ί - β\\
^ δ, x^(t) exists and

(2.31) \\z^(t) - γ\\ = \\χV(t) - a\\ = \\Φ(a t) - a\\ ^ ε(l - θ) ,

which is (2.24). Thus, with hypothesis (2.30) replacing (2.2) and δ defined
as above, {x°n)(t)} converges as specified in Theorem 2.1 even when
(a β) is not a solution of (1.1)
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