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CONJUGATE SERIES AND A THEOREM OF PALEY

HENRY HELSON

1. Introduction. It is known that a trigonometric series

(1) ±ane^

does not have to satisfy condition on the size of its coefficients stronger
than the trivial one

oo

Σ I an I2 < °°
— oo

in order to be the Fourier series of a continuous function. One theorem
which gives precise content to this general statement is the following :

If {Ww}ϋΌo is a sequence of non-negative numbers such that

^ ' ~ \lVn<ooΣ

whenever (1) is the Fourier series of a continuous function, then

Σ < < «> .

The fact that (1) is the Fourier series of a continuous function does
not by any means imply the same for

( 2 ) Σ α»βifW

0

Therefore the following rather neglected theorem of Paley [5] lies deeper
than the result just stated.

THEOREM 1 (Paley). If {wn}™ is a sequence of non-negative numbers
such that

( 3 ) Σ\an\wn < OD

whenever (2) is the Fourier series of a continuous function, then

(4) ί > . < ~
0

In the next section we offer a new and simple proof of this theorem.
The proof depends on the fact that the conjugate series of a Fourier-
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Stieltjes series is summable (by Abel or Cesaro means) almost every-
where.

In several or infinitely many variables the analogue of the first result
mentioned is true. The main purpose of this note is to investigate a few
of the possible generalizations of Paley's theorem to functions of several
variables.

In § 3 we develop the notion of conjugate function in several
variables from a point of view somewhat different from that of other
writers. We cannot answer the natural questions about the summability
of conjugate series, but our result makes it possible (in § 4) to apply
a theorem of Zygmund on the summability of multiple power series in
order to generalize Paley's Theorem.

Finally, in the last section, we show by a simple example that Paley's
theorem cannot be extended to power series in infinitely many variables.
We do not know, however, whether power series in two variables have
Paley's property or not.

2, Proof of Paley's theorem. For each continuous function ψ with
Fourier series (2) define

( 5 ) F[Ψ] = Σ anwn .

The series converges on account of the hypothesis (3), and evidently F
is a continuous linear functional defined on a closed subspace of the space
C of continuous periodic functions. Extend F to a linear functional on
all of C. By a well-known theorem of F. Riesz, there is a complex
bounded measure μ defined on Borel subsets of the circle such that

( 6 ) F[ψ] = Γφ{-x)dμ{x) (all φeC).
Jo

In particular, for the functions φ{x) = einx (n — 0,1, 2, •) we have two
representations for F\ψ] given by (5) and (6):

(7) Wn = F[φ]= Γe-ίn*dμ(x) .
Jo

If we define wn by (7) for n < 0, the Fourier-Stieltjes series of dμ is

Σ wne
inx .

— oo

Now every Fourier-Stieltjes series is summable almost everywhere by
Abel (or by Cesaro) means [7, p. 59]. The same is true, although more
difficult to prove, for the conjugate series of a Fourier-Stieltjes series
[7, p. 146]. It follows from these facts together that
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is summable almost everywhere.
Instead of (5) we could have defined F as

where tQ9tlt are any real numbers. The same argument shows that

Σ wne
ιtneinx

is summable for almost all x, no matter what values the tn have. But
this implies (4) [7, p. 125], as was to be proved.

3. Conjugate series. Denote by Tk the torus group in k dimensions,
and by T the compact infinite-dimensional torus. The dual of Tk is the
lattice group J^ζ in k dimensions. The dual JS^ of T is the group whose
elements are sequences of integers (nu np •••) which are all zero but
a finite number. A summable function / on Tk has Fourier series

( 8 ) f{xλJ • , α?fc) ~ Σ Φ*i> > rc*)β«<ni"i+ " + " Λ > .

(The formal summation is extended over all integral values of nlt , nk.)
Similarly we write for a summable f on T

(9) M, ) - Σ ^ y W l l l ) v

where the sum in the exponent is actually finite at each lattice point

k

Let N and X denote generic points of ^ζ (or of ^f) and of T
(or of T) respectively. In place of (8) and (9) we shall write

f(X) - Σ a{N)eiN'x

In the same way we write the Fourier-Stieltjes series of a bounded
complex measure μ on Tk or on T

(10) dμ{X) - Σ

Let S be a subset of j££ or of ^ we are interested in the opera-
tor Ts which carries every series (10) into

(11) Σ a(N)eiN'z .
s

If Ts carries the Fourier series of one function space into those of an-
other, we shall consider Ts at the same time as an operation on functions.
Our aim is to prove, by specializing S, that T$ is continuous in certain
topologies.
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DEFINITION. A subset S of JS£ or of £? is a half-space if
1° The origin is not in S
2° N e S if and only if -Nφ S (N not the origin)
3° M+ N belongs to S with M and N.

Fourier series with coefficients lying in a half-space have many of the
properties of analytic Fourier series of one variable [4]. The following
theorem of Bochner [1] generalizes a well-known theorem of M. Riesz.

BOCHNER'S THEOREM. // S is a half-space, then Ts is a bounded
operator mapping Lp into itself for each p > 1.

The main result of this section is of the same character.

THEOREM 2. If S is a half-space and f is a trigonometric polynomial
then

(12) UTsFU^KtUfll (alljKl),

where Kp is a constant depending only on p.

The proof is like that of the corresponding theorem in one variable
[7, p. 150], applied not to analytic functions but to elements in an ap-
propriate Banach algebra. The observations which follow are not new.

Denote by Cs the class of continuous function ψ on the torus having
Fourier series of the form

(13) φ(X)~b + Σ**WN'z

s

Cs is the closure, in the topology of uniform convergence, of the set of
trigonometric polynomials having the form (13). Therefore C8 is an al-
gebra, and in fact is a Banach algebra in the uniform topology. To each
maximal ideal M in Cs is associated a multiplicative linear functional of
norm one on Cs. The value of this functional on φ is denoted by φ(M).
The spectrum of ψ is the closed set of complex numbers φ{M), where
M ranges over the space of maximal ideals. If F is an analytic func-
tion defined on a region of the plane containing the spectrum of ψ then
there is an element ψ in Cs such that

ψ(M) = F[ψ(M)] (all M)

we may write simply ψ — F(ψ).
Suppose ψ is in Cs and 9ΐ <p(X) ^ ε > 0 for all X We assert that

)Rφ(M) ̂ > ε for all M. (The second statement contains the first, because
to each point X there is a maximal ideal Mx with ψ{Mx) = φ(X) for all φ.)
Indeed, the linear functional associated with any M can be extended to
the space of all continuous functions without increasing its bound, and
so has a representation



CONJUGATE SERIES AND A THEOREM OF PALEY 441

(14) φ(M) = \φ(X)dμM(X) (all φ 6 Cs)

with

(15)

The function <p0 constantly equal to one is in Cs and its value in every
maximal ideal is one. From (14) we obtain

(16) 1 = φQ(M) = \dμM{X) .

It follows from (15) and (16) together that μM is a non-negative measure.
Therefore in (14) we can separate real and imaginary parts to obtain

mφ(M) = \$ϊφ(X)dμM(X) ^ ε

as was to be proved.
Let p be an arbitrary fixed positive number. Suppose φ is in Cs and

$ϊ(p(X) 2> ε > 0. By what has just been proved, the function zp is analytic
on the spectrum of ψ, so we can form φp in Cs satisfying

(17) φ*(M) = φ(M)p (all M) .

Two cases of (17) are important. First, if MΣ is the maximal ideal de-
termined by a point X of the torus then (17) becomes

(18) Ψ%X) = Ψ(Xy (all X) .

Second, there is a distinguished maximal ideal Mo such that1

φ(M0) = \ψ{X)dσ(X) .

We conclude from (17) that

(19)

The second property of half-spaces has not been used up to this
point. We appeal to it now in order to observe that every real trigono-
metric polynomial is the real part of a trigonometric polynomial in Cs.

We are ready to give the proof of Theorem 2. Suppose first that
/ is a positive trigonometric polynomial:

f(X) = Σ b(N)ein'x ^ e > 0
1 dσ(X) denotes the element of Haar measure on the torus normalized to have unit

total mass.
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and set

φ(X) = 6(0) + 2 Σ b{N)eiN'x .

Then φ belongs to Cs, and we can write φ — f + ig where g is a real
trigonometric polynomial having mean value zero. The expression for
φ in polar form is

φ = w(cos a + % sin a) ,

where w(x) = \ φ{X) \ and -π/2 < a(X) < π/2 .
Making use of (18) and (19) and the notation just introduced we

have

(\/<#σ J = (\ψdσ j = \φpdσ = \wp(cos pa + i sin pa)dσ

= \w* cos padσ ^ cos pπ-Uf2 + gψl2dσ ^ cos p 7 Γ f | g \pdσ .

That is, with A = (cos p7Γ-V1/p ,

From this inequality it is simple to prove (12) with a certain constant B
in place of Kp. By continuity the result holds for trigonometric poly-
nomials which are non-negative but not necessarily bounded from zero.

The passage to trigonometric polynomials of arbitrary sign is not quite
trivial. If / is real and has the form

f=g-h

where g and h are non-negative trigonometric polynomials, then by what
we have proved

(20) || Γs/US <: || Tsg \\l + II Tsh ||£ 5Ξ B"[\\ g ||f + | | h ||f] .

Decompose / into its positive and negative parts :

/ = Λ - / - Λ , Λ ̂  0, f+ Λ = 0 .

If /+ and /_ were trigonometric polynomials we could choose them for
g and h and obtain from (20)

(21) \\Tsf\\l^B»[2\\f\\n.

Of course they are never trigonometric polynomials unless one of them
vanishes, but they are non-negative continuous functions, and so can be
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approximated uniformly by non-negative trigonometric polynomials, say
by gn and hn respectively. Set fn = gn — hn. Writing (20) with fn, gnj

and hn and passing to the limit we obtain

But the sequence Tsfn obviously tends to Ts f in the norm of L2, and so
in Lv for each p < 2, so we obtain (21) after all.

There is no difficulty in extending the result to arbitrary complex
trigonometric polynomials, with a new constant which we call Kp, and
so the theorem is proved.

COROLLARY. If S is a half-space in Jίfζ or in -Sf the operation T8

transforms L into Lp for each p < 1 in the following sense : every Fourier
series is carried by Ts into a series summable in the metric of Lp to
a limit function. The summation is effected by every approximate iden-
tity consisting of trigonometric polynomials. The transformation carrying
f into Ts satisfies (12).

Let / be an arbitrary summable function on the torus, and let
{e19 e2, •••} be an approximate identity consisting of trigonometric poly-
nomials. (That is, each eό is a non-negative trigonometric polynomial
with mean value one and e5 * / tends to / in the norm of L for each /.)
Then {e3 * /} is a Cauchy sequence in L consisting of trigonometric poly-
nomials. By Theorem 2, {Ts(ej * /} is a Cauchy sequence in Lp for p < 1.
Consequently Ts(βj * /) converges in the metric of Lp to a limit function
Tsf, and (12) clearly holds. This is just the statement of the Corollary.

We do not know whether any method of summation effects point-
wise convergence almost everywhere of the series for Tsf However
the Corollary shows that Tsf always exists as a limit in mean. If / is
a real summable function, its conjugate can be defined as the real func-
tion g such t h a t / + ig = Tsf. Then g exists as a limit in mean, and has
many of the properties one expects of a conjugate function in one variable.
Our proofs have made strong use of the fact that S is a half-space we
do not know whether Tsf exists in any sense whatever if S is, for ex-
ample, the first quadrant of £ζ.

The device used to prove Theorem 2 can be used to extend other
classical theorems about Fourier series in one variable.

It is possible to assert the conclusion of Theorem 2 for certain sets
AS which are not quite half-spaces. For simplicity consider a half-space
in jδf. It consists exactly of those lattice-points (m, n) satisfying

(22) ma + nβ >0

for some irrationally related numbers a and β or else S consists of the
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lattice points satisfying (22) for some rationally related a and β, to-
gether with non-zero points on one ray from the origin of the line

ma + nβ — 0

We shall consider a half-space <S of the second type. Denote the other
ray (including the origin), which is not contained in Sf by R. With the
use of the theorem on conjugate functions of one variable it is easy to
prove that Theorem 2 holds for the set R in place of S. It follows
that the augmented half-space H consisting of all (m, n) with ma + nβ ^ 0
has the same property.

In the same way we can add to a half-space of dimension k in J2ζ
disjoint half-spaces of lower dimension, obtaining new sets for which
Theorem 2 and its corollary hold.

Let R and S be two half-spaces, or more generally, any sets having
the property of Theorem 2. Then TR — Ts is an operator carrying L into
Lp for each p < 1. For example, let R and S be the modified half-spaces
in -Sf defined respectively b y m ^ O and n < 0. TR — Ts operates on tri-
gonometric series in two variables by multiplying each term by a factor
εmn; this factor is 1 in the first quadrant (including the boundary) and
— 1 in the third quadrant (excluding the boundary), and vanishes in the
second and fourth quadrants.

By Bochner's theorem the operator TR — Ts carries Lp into itself for
p > 1. It is interesting to compare these results with theorems of simi-
lar nature but different proof by Calderon and Zygmund [3].

4. A generalization of Pa ley's theorem.

THEOREM 3. Let S be a half-space in J5%. Suppose {w(N)} is a set
of non-negative numbers defined for N in S, and having the property that

(23) I δ I + Σ I HN) I w(N) < ™
s

whenever (13) is the Fourier series of a function in Cs. Then

(24) Σ w(NY < oo .
s

Proof. As for one variable, the hypothesis implies that

(25) Σ
s

is the image under Ts of some Fourier-Stieltjes series, no matter how
the real numbers φ(N) are chosen. This assertion remains true if any
of the w(N) are replaced by zero, because (23) continues to hold. Sup-
pose now (24) is false. Then at least one of the 2* congruent cones

± nλ ^ 0, ± nλ ^ 0, , ± nk ^ 0
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obtained by choosing the k signs in these inequalities contains points over
which the sum (24) diverges. Denote such a cone by C. Replace w(N)
by zero for all N in S-C. Finally, by a linear change of variables bring
C into coincidence with the preferred cone

n, ^ 0, n2 ^ 0, , nk ^ 0 .

(The transformation carries S onto a new half-space.) Now we have
a counter-example to the theorem (which is assumed to be false) in which
w(N) vanishes for all N not in C.

Extend w to the complement of S so that

is the Fourier-Stieltjes series of a measure μ. For 0 < r < 1 define a
function fr on the torus by the absolutely convergent series

Σ w(N)r]ni] + '

For each r we have | | / r IL ̂  \\dμ |, and so by the corollary to Theorem 2

(26) || T8fr \\9 <£ Kp |1 / r \\^K (0 < r < 1) .

Moreover the corollary implies that

Tsfr(X) = S w W n i | + - + l W W e ^ .

Since w(N) vanishes on S-C this can be written

0

On account of (26) this series belongs to the space Hp (p < 1), whose
elements are analytic functions of k variables. A theorem of Zygmund
[6, p. 208] asserts that

lim TJT{X)

exists almost everywhere on the torus. But the numbers φ(N) are ar-
bitrary, and so we conclude as in the case of one variable that

Σ w(iv)2 < oo .
e

This contradiction shows that the theorem is true.

5. A counter-example. Let S be the subset of S^ consisting of all
lattice points N = (nl9 •) with each nf ^ 0. (S is not a half-space, but
rather the infinite-dimensional analogue of the quadrant in S/ζ.) Denote
by A the subset of S on which Σ n>j = 1.
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THEOREM (Bohr [2, p. 468]). For each φ in Cs with Fourier series
(11) we have

A

This result states exactly that the sequence {w{N)} equal to 1 on
A and 0 on S-A has the property of Paley's theorem but w(N) does
not even tend to zero, and certainly is not square-summable. So Paley's
theorem fails decisively in this setting.

For this sequence the series (25) is

(27) Σ euJeίxj ,

and this is the image under Ts of a Fourier-Stieltjes series no matter
how the real numbers t5 are chosen. For appropriate values of t19 t2J

••• (27) is non-summable for almost every point (xlf x2, •••)> a n ^ this is
true for each Toeplitz method of summation. Hence the theorem on the
summability of conjugate series in one variable cannot be extended to
this extreme situation. The analogous problem in two variables is open,
so far as we know, both for half-spaces and for quadrants.
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