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The purpose of this note is to show that two famous theorems of
Gauss can be derived from a common source. The theorems alluded to
are the following:

THEOREM 1. (The triangular-exponent identity)

(l) Π ^ - Σ ^ - 1 ^ 2 .
β=i 1 — Xs' s=i

THEOREM 2. (The evaluation of Gauss sums)

m - l (Λ/ΎΠ for m=l (mod 4)
( 2 ) Σ e2iΐίs2lm = I

s β ΰ I iVm for m = 3 (mod 4) .

Both these results will be obtained as consequences of the following
identity previously stated by the author [2] without proof.

A finite identity.

THEOREM. If Po = 1 and

n ( \ χ2s \

s = l V I — X23-1/

for n = 1, 2, , then

71-1 p 2«

( 3 ) A = Σ -£5-tf<ιn+ι> - Σ ^ s ( s- 1 ) / 2 = Sw

and

( 30 A; = Σ A ^ ( ^ + D =

 2 ^ x aj c-D/i = s^.
S=l P s S=l

Proof. We readily verify that

p
and by multiplying by ^ we find

Ps(l— xln~ι)
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( 4 )

where

P» .<»
Ps
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.+i) Pn-i , O D . - 0 « >

~2S+1 p

and

Now

ft+i.n = tf«.n (for s = 0, 1, , ro-2)

and since, further,

/90,n - 0 and an.un = x^~ι> ,

by summing (4) from s = 0 to s = %•—1 we obtain :

But this may be written An — An-λ — Sn — £>„_!, and by induction

An-Sn = A1-S1 = ± ^ - (1 + a?) = 0 .
1—#

This proves (3) and by adding #W ( 2 W + 1 ) to both sides we verify (3').
Gauss' triangular exponent Theorem (1), now follows at once from (3).

Proof of Theorem 1. The leading term in An (that is s = 0 in the
left side of eq. 3) is Pn. Since the remaining terms (s = 1, 2, ••• ,
n = 1) are of order x2n+1 and higher, the power series of the function
Pn(x) must agree with that of Sn(x) at least to terms of order xzn. By
induction the function P^ must have the power series SL and this
proves (1).

Proof of Theorem 2. The magnitude of

for any odd integer m is given by | G | = λ/m. This is easily shown,
[1, p. 163], by multiplying G by its complex conjugate. The real dif-
ficulty in Theorem (2) is to show that G is positive real or positive
imaginary according a s m s l o r m = 3 (mod 4). But the identity (3)
enables us to do this without undue computation.

First we write x = v2 where v = ei9. Then
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Pn = Vn

and if

sm (2s—1)0/

we may write

2w w - 1 /"")

( 5 ) S w = Σ v'C -1' = Σ v " + ' < 4 f l + 1 ) ^ -
Q

5') Σ
β-0

Now for any odd integer, m =2iV+ 1, if θ = 2πjm we have

and thus

+iv

Σ ^(iV+S) = ^ Σ
TOl +iv

G = Σ vs = Σ ^(iV+S) = ^ Σ

[ N 2V+1 1

V1 S(s-Ό _j_ V s(s-i)
ί-l ί-l J #

Therefore if m = An + 1 and iV — 2w,
w ^ 1 0 n Q

But ί;4w+1 = 1 and Qs = positive real for s = 0,1, , n so that

G = + τ/m m ̂  1 (mod 4)

And, if m — in + 3 and JV = 2n + 1, then

9 Γ n 0 n O ~\

n Γ ϋ ϋ Ί

But now v4w+3 = 1 and

Q = ήn[(2n+2)θ] Q = _ Q
sin ΐ(2n+ΐ)θ] n

and thus
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( 7 ) G = 2ί Σ sin [(2w + 1 -
* - o

which is positive imaginary. Therefore

G = + iVm m = Z (mod 4) .
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