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1. Introduction. Let R, denote Euclidean n-space. Select a cartesian
coordinate system in R,. Let X, X,, ---, X, be n linearly independent
points of R, and with the usual point-vector notation we arrive at the
set 4 of all points

g1X1+g2Xz+ cte +ann

such that ¢, ¢, --- , g, are rational integers. The set 4 is called a lattice
and X,, X,, ---, X, are said to form a basis of the lattice 4. For a
given lattice the basis may be chosen in an infinite number of distinct
ways. Butif in coordinates x,=(w;, @y, -+, €;s) for =1,2,.--, n, then
the absolute value of the determinant ||x;,|| is independent of the choice
of basis. This number is called the determinant of the lattice A and is
denoted by d(4).

A convex body K of n dimensions is a closed, bounded, convex set
in R, with inner points. A lattice 4 is said to be K-admissible if no
point of A other than the origin 0 is an inner point of K. The critical
determinant 4(K) of K is then defined to be the infimum of d(4) ex-
tended over all K-admissible lattices A.

Denote by p(4), p(A), ++ -, p(4) the least upper bounds respectively
of real numbers ¢, ¢, -« -, ¢, such that ¢,K contains at most 7—1 linearly
independent points of 4, for ¢=1,2, --.,n. The numbers z,(4), u(A),
«oe, t(4) are called the successive minima of 4 with respect to K. The
question has been raised whether the inequality

(1) (D A) -+ - p( DAK) = d(A)

is true for convex bodies K that are symmetric in the origin 0. This
is known to hold for n=2 [1] and for n=3 [4] but the general case
remains open. It is shown here that for n=2 the inequality (1) holds
for convex bodies that are not necessarily symmetric in 0. This result
is then applied to extend to such bodies a theorem of Mahler’s [2] on
two-dimensional convex bodies symmetric in 0.

2. Preliminary lemmas. Henceforth all considerations will be in
R,. Thus let K be a two-dimensional convex body. The following
lemmas are needed for the proofs of our theorems.

LEMMA 1. Given o lattice A there exists a lattice A* such that
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(1) d(4%)=d(4),
(ii)  pu(A4¥)pf A7) Z pi( D)1 4),
(i) p(4*) <2p(47).

A proof of this result has been given by Rankin [3] for K sym-
metric in 0. However his proof makes no use of the symmetry of K
and so we may refer the reader to it for a proof of the lemma. The
next result is classical.

LEmMMA 2. If X, X, are two linearly independent points of a lattice
A such that the triangle with vertices X,, X,, 0 contains no point of A
apart from its vertices them X, X, form a basis of A.

Let C be a convex set in R, and for any point X in R, define the
shadow S(C, X) of C in X to be the set of points Y such that the line
segment YX produced past X meets C. That is to say, S(C, X) is the
set of Y such that ¢tX+ (1 —#)YeC for some ¢>1. Thus if X is
not an inner point of a convex body K and Cc K then S(C, X) does
not contain an inner point of K. For assume that this assertion is
false so that there is an inner point Z say of K which is also in S(C, X).
By definition of S(C, X) the line segment ZX produced past X meets
C and therefore also K. This implies that X is an inner point of K
contrary to the hypothesis.

LEMMA 3. Let K be a convexr body containing the origin as an inner
potnt. Let X, X, be a pair of linearly independent points of the bound-
ary of K such that mo one of the points —X,, —X,, + X, + X, is an inner
point of K. Then the lattice generated by X, X, is K-admissible.

Proof. Take coordinates such that X, X, are the points (1, 0), (0, 1)
respectively. Let C be the triangle with vertices (0, 0), (1, 0), (0, 1).
Then Cc K from which it follows that no one of the sets S(C, X)),
S(C7 Xz)’ S(C’ _Xl)7 S(C’ —)(z)! S(C’ Xl +Xz)y S(C’ —‘Xl‘*‘Xz)’ S(C’ XI_XZ)J
S(C, —X,—X,) contains an inner point of K. But the union of these
sets contains every point with integral coordinates other than 0, that is
to say it contains every point of the lattice generated by X,, X, other
than 0. This completes the proof of the lemma.

3. On the successive minima. In this section we prove the following.
THEOREM 1. If K is any convex body in R, and A a lattice then

(D HAK)<d(A) .

Proof. If K does not contain 0 as an inner point then 4(K)=0 and
the theorem is trivial. We therefore assume from now on that 0 is an
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inner point of K. Now any convex body may be approximated arbit-
rarily closely by strictly convex bodies i.e. convex bodies such that their
boundaries contain no line segment, so by an obvious continuity argu-
ment there is no loss of generality in assuming that K is strictly convex.
Finally by Lemma 1 it is evident that we may also assume (1) <2p,(A).

Let X,, X, be two linearly independent points of A such that X e
w(MK, X, e p(NHK. 1t follows from the definition of successive minima
and the strict convexity of K that the triangle with vertices 0, X, X,
contains no point of 4 apart from its vertices. By Lemma 2, the points
X, X, form a basis of A.

By definition of the successive minima no point of the form ¢gXi
where ¢ is a non-zero integer is in the interior of p(4)K and no point
of the form fX,+AhX, where f, h are integers with A+0 is in the interior
of p(ANK.

Put ¢=p(A4)"'p(4) so that 1<¢<2 and suppose that there exists a
p4) K-admissible lattice of determinant ed{(A). Then 4(u(A)K)<cd(A) or

p(Dp (M AK) =d(4)

and the theorem is true. It then remains to prove that there exists a
t(4)K-admissible lattice of determinant cd(A).

By a preceding remark no point of the form gcX, where g is a non-
zero integer is in the interior of g(A4)K. Denote by 4* the lattice
generated by c¢X,, X, of determinant cd(A). If 4* is pm(4)K-admissible
then the theorem is true. Hence we assume from now on that A* is
not p(4)K-admissible. It is evident that ¢X,, X, are boundary points of
w(DK. Applying Lemma 3 we see that one of the points —cX;, —X,,
+¢X;, +X, is an inner point of #(4)K. Clearly —cX,, —X, are not inner
points of x,(4)K. Moreover ¢X,+X, is in the shadow S({X,}, X;-+X,) while
—cX,+ X, is in the shadow S({X,}, —X,+X,) and as X, e p#,(4)K whereas
X, +X,, —X,+X, are not inner points of g,(A)K so also ¢X,+X,, —cX;+X,
are not inner points of pm(4)K. We conclude that either ¢X;—X, or
—¢eX,—X, is an inner point of p(4)K. This is equivalent to saying that
the line ¢X,— X, with parameter ¢ meets u#(4)K in a line segment with
endpoints @, X, —X,, a,X,—X, such that

(i) 1=|al<e<]a,[=2
and

(ii) a, a, are of comparable sign.

On the other hand the line ¢X,+X, with parameter ¢ meets p(4)K
in a line segment one endpoint of which is X, the other endpoint being
of the form bX,+X, where 0<|b|<1. We distinguish the four cases
arising when the sign of a,, @, and the sign of b are both taken into
account.
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(1) >0, a,>0; b=0.

The lattice generated by the points ¢X;, a,X;—X, is of determinant
cd(4). We assert that this lattice is p,(4)K-admissible for assume that
this is false. Since c¢X;, a,X,—X, are both on the boundary of p(4)K
it follows from Lemma 2 that one of the points —cX,, —a,X;+X,,
(c+a)X,—X,, (c—a)X,+X,, (,—c)Xi—X,, —(c+a,)X;+X, is an inner
point of p(4)K. But by what has been said already this is impossible,
hence the lattice is p(4)K-admissible from which the theorem follows.

(2) >0, a,>0, b<0.

The lattice generated by the points ¢X,, a,X,—X, is of determinant
cd(4). We assert that this lattice is p(4)K-admissible for assume that
this is false. Since cX,, a,X,—X, are both on the boundary of (4K
it follows from Lemma 2 that one of the points —cX;, —a,X;+X,,
(cta)X,—X,, (c—a)X+X,, (a,—c)X,—X,, —(c+a)X,+X, is an inner
point of p#(A)K. But by what has already been said this is impossible,
hence the lattice is p(4)K-admissible from which the theorem follows.

(3) @, <0, a,<0; b=0.

The lattice generated by the points ¢X;, a,X,—X, is of determinant
cd(4). We assume that this lattice is p,(4)K-admissible for assume that
this is false. Since ¢X,, a,X,—X, are both on the boundary of p(A)K it
follows from Lemma 2 that one of the points —cX;, —a,X,+X,,
(c+a)X,:—X,, (c—a)X +X,, (a,—c)X,—X,, —(c+a)X,+X, is an inner
point of w(A)K. But by what has been said already this is impossible,
hence the lattice is p,(4)K-admissible from which the theorem follows.

(4) <0, @,<0; b<0.

The lattice generated by the points ¢X;, a,X,—X, is of determinant
cd(4). We assert that this lattice is p(4)K-admissible for assume that
this is false. Since ¢X,, a,X,—X, are both on the boundary of pm(4)K
it follows from Lemma 2 that one of the points —cX;,, —a, X+ X,
(cta)X,—X,, (c—a)X,+X,, (#,—0)X,—X,, —(c+a,)X;+X, is an inner
point of p(4)K. But by what has already been said this is impossible,
hence the lattice is p,(4)K-admissible from which the theorem follows.

The above four cases exhaust all possibilities and so the theorem is
proved.

4. A decreasing function. In this section we apply Theorem 1 to
prove for any two-dimensional convex body a theorem of Mahler’s [2]
on two-dimensional symmetric convex bodies. Thus let K again be any
two-dimensional convex body and choose a coordinate system such that
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(x,, @) are the general coordinates of a point. Denote by K(¢) the set
of points in K that satisfy the inequality |x,|<¢. Mahler [2] has shown
that if K is symmetric on the origin then 4(K(¢))/t is a decreasing funec-
tion of ¢, for t>0. We will prove the following theorem.

THEOREM 2. If K is any two-dimensional convex body then A(K(t))/t
is & decreasing function of t for t>0.

Proof. 1f K does not contain the origin as an inner point then
A(K(t))=0 for all £>0, and the theorem is trivial. So we assume from
now on that 0 is an inner point of K. Further, appealing to a continuity
argument similar to that employed in Theorem 1 it is evident that the
truth of Theorem 2 for all strictly convex bodies K implies its truth for
any convex body. Hence we assume from now on that K is strictly
convex.

The theorem will be proved if for any given ¢>0 we can show
A(K(s))[s<A(K(t))[t for all s greater than ¢ and sufficiently close to ¢.
Thus let ¢>0 be fixed. Denote by 4 a critical lattice of K(¢), that is
A is a K(t)-admissible lattice such that d(A4)=4(K(t)). Let N(A) be the
number of points of 4 which are on the boundary of K(f) but which
are not on the boundary of K, under one proviso, namely that if a pair
of points of the form =+ X both satisfy the above condition then the
pair is to be counted as one point. We distinguish cases.

(1) N(A)=0.

Since any bounded region of the plane contains only a finite number
of points of A it follows that there exists an &¢>0 such that A is
K(t+¢)-admissible and therefore also K(s)-admissible provided only that
t<s<t-+e. But for such values of s, K(t)CK(s) and thus 4(K(t))=
A(K(s)) whence

AK @)t = A(K(s))/s .

(2) N(A)=1.

Denote by X a point of 4 on the boundary of K(¢) but not on the
boundary of K. If there is another such point then it is necessarily-X.
There exists an ¢>0 such that the ray 0X produced meets the bound-
ary of K(t+¢) in an inner point of K and such that K(¢+¢) contains
no point of A within its interior other then 0 and +X. Let s be such
that t<s=<t-+¢ so that K(s) also contains no point of A4 within its in-
terior apart from 0 and =+ X. Let further pm(A), p(4) denote the
successive minima of 4 with respect to K(s). Evidently m(4)=1 and
moreover X lies on the boundary of p¢,(4)K(s). But X lies on the boundary
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of K(t) and furthermore the ray 0X produced meets the boundary of
K(s) in an inner point of K. Therefore g (4)=t/s. By Theorem 1

m(Dpf A) A(K(s)) = d(4)

hence
(t/s)4(K(s)) = A(K(t))
or
A(K(s))/s= A(K(t)/t .
(3) NU)=2 .

There exist two linearly independent points X;, X, say of 4 on the
boundary of K(t) but not on the boundary of K. This implies that their
x,-coordinates both satisfy the equality |x,|=¢. If their z,-coordinates
both have the same value we may assume X;, X, to be chosen so that
the line segment connecting the two points contains no further point
of A. It then follows from the strict convexity of K and the fact that
0 is an inner point of K that the triangle with vertices 0X,X, contains
no point of 4 apart from its vertices. By Lemma 2 the vectors X, X,
form a basis of 4. But either X,, X, both lie on the line a,=t, or one
lies on this line while the other lies on the line x,= —¢, or else they
both lie on the latter line. In all cases the points of 4 are confined to
the lines z,=nt, n=0, +1, +2, ... . For given s>t denote by A(s) the
set of points (x,, sw,/t) where (w,, x,)e 4. Then A(s) is a lattice of deter-
minant d(4(s))=(s/t)d(A)=(s[t)4(K(¢)). Moreover A(s) is K(s)-admissible
since all points of /(s) lie on the lines a,=mns, n=0, +1, +2, --+ and
those that lie on the line x,=0 coincide with those points of 4 lying on
this line and these points other than 0 are not inner points of K so
also are not inner points of K(s). Hence

A(K(s)) =d(A(s)) = (s/t)4(K(2))
or
A(K(s)) s (K@)t .

The above three cases exhaust all the possibilities and we coneclude
that the theorem is true.

Part of this work was done at the University of Manchester under
the supervision of Professor Kurt Mahler to whom I am very grateful
for advice and encouragement at all times.
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