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Let 2JΪ be the set of all Lebesgue measurable subsets of the closed
interval [0, 1], and let A, B e 2Jϊ. It is well-known that 9ft becomes a
pseudo-metric space if distance is defined by

d(A, B) = m(A -B) + m(B - A) = m[(A - B){j{B - A)] ,

m denoting the Lebesgue measure. See [1, pp. 31-32]. It is the purpose
of this paper to extend SSR to include the non-measurable sets and to
examine some of the properties of the resulting space.

If we remove the restriction that A and B be measurable, and let
them be any subsets of [0,1], then if

P(A, B) = m*(A - B) + m*(£ - A), and δ(A, B) = m*[A - B) U (B - A)]

(where m* denotes the exterior Lebesgue measure), it is easily seen that
pseudo-metric spaces @ and X are obtained, corresponding to p and δ
respectively. The properties which we discuss of @ and Z are the same
and are proved analogously, so we shall state and prove our results for
the space @ only, it being understood that similar theorems and proofs
hold for S.

LEMMA 1. A necessary and sufficient condition that p(A, B) = 0 is
the existence of sets Zγ and Z2, both of Lebesgue measure zero, such that

Necessity. If p(A, B) = 0, then m(A - B) = m(B - A) = 0. Since
A\J(B - A) = A[jB = B[jA = B{J(A - B), Zx and Z2 may be taken as
B — A and A — B, respectively.

Sufficiency. If A u ^ = δLJZ2, then

P{A, B) ^ piAtAΌZJ + p{A\jZl9 B[jZ,) + p(B\jZ%, B) = 0

The relation p(A, B) = 0 is seen to be an equivalence relation defined
on the elements of @ hence, those elements are partitioned into equiva-
lence classes. Let [A] denote the equivalence class which contains A.
It is clear that if C e [A] and D e [B], then p(A, B) = p(C, D). If @*
is the set of all equivalence classes defined above, and if /o([A], \E\) —
p{A, B), then @* becomes a metric space with the metric p([A], [B]).
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LEMMA 2. // Bn e [An] for n = 1,2, --., then [ U ^ i Aw] = [ U ϊ - A ]

and [f|n=i An] = fln-i £»]-

LEMMA 3. if A is measurable and B e [A], then B is measurable.

There exist Zτ and Z2 such that A u ^ = 5 U ^ 2 with m(Zx) = m(Z2) = 0.

Let B denote [0,1] — B. Then B\JZ2 is measurable and since

B = (B{JZ2) - (JSΠZ2), S is measurable.
It follows from Lemma 3 that the sets in each equivalence class are

either all measurable or all non-measurable. Thus the space @*=9JΪ* (j ϊi*,
where 3JI* is the space of all equivalence classes of measurable sets, and
•Jϊ* is the space of all equivalence classes of non-measurable sets. It
should be noted that 3JΪ* is the metric space corresponding to the well-
known pseudo-metric space Wl defined at the beginning of the paper.

In the following we will omit the asterisks and square brackets,
and will write @ for ©*, etc., and p(A, B) for p([A], [B]). When we
write 4 e S , 4 may be considered either as an equivalence class or as
a representative element of that class.

THEOREM 1. The space @ is complete.

The proof is similar to that given in [1, p. 32].

THEOREM 2. For every A e & and every positive number e < 1, there
exists B 6 @ such that 0 < p{A, B) < e.

Proof Case I. m(A) = 0.
If m(A) = 0, then A e [φ], Φ denoting the empty set. Let B e @

be an interval of length < ε. Then p(A, B) = p(φ, B) = m(B) < e.
Case II. m*(A) > 0.

Let I e & be an interval of length < ε, such that m*(/ίl4) > 0.
If B = A - /, then

5) = p(A, A - /) = m*\_A - (A - /)] = m*(/ Π A) g m*(/) < ε .

COROLLARY 1. // in Theorem 2, Ae 9Jϊ, ίftera ΰ (as constructed) e 2B.

THEOREM 3. If Ae 5K awd ε > 0, ^ e ^ £ ^ 0 β îsίs C e ̂ J
0 < p(A, C) < e.

Proof Case I. m(A) = 0.
Let ikf be a set of real numbers such that for every measurable set

E, m*(M f] E)~m{E) and m*(MΓ\E)=0, m* denoting the interior Lebesgue
measure. (See [2], Theorem E, p 70.) In Case I of Theorem 2f let

Then
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p(A, C) = p{φ, C) = m*(C) = m(B) < e and m*(C) = 0 .

II. m(A) > 0.
In Case II of Theorem 2, let C = A — (/flilί), Λf described above.

Then f>(A, C) = m*( A - C) = m*{AΠ/ΠM)^m(/)< ε, and m*( An / Π Λf) =
m(4f l/)>0, m*(An/ίW) = 0. Since (AΓUnikf) e % C e 31.

THEOREM 4. ϊ ϊ is open in @.

Proof. Assume Theorem 4 is false. Then there exists N e 31 and
sets Mm e 9JI, m = 1, 2, , such that limm_oo jθ(iV, ikfw) = 0. The sequence
Mm, m = 1, 2, , is, therefore, a Cauchy sequence in @ and so by
Theorem 1 has a subsequence MWn, n — 1, 2, •••, such that limw_oo ̂ (lim
supw Λf^, ΛfTO) = 0. Since lim supw Mmn is measurable, this means that
N is measurable by Lemma 3, a contradiction.

The last few results can be summarized as follows.

THEOREM 5. Wl is perfect and nowhere dense in © 5R is open and
dense in @.

The remainder of the work is valid for both spaces, as only the
equivalence classes are dealt with (these being the same for @ and Z).

After having proven completeness for @ in Theorem 1, a natural
question to ask is " I s the space separable ? " . The theorem proved
here which demonstrates the existence of 2C(= f), where 2̂ o = c equiva-
lence classes in @ answers this question (and a similar one about a
countable basis) in the negative. It is also interesting to note that the
space 9Jί has exactly c equivalence classes. (In the following work Ω
is the first ordinal belonging to c.)

THEOREM 6. There exist f equivalence classes in the space @.

Proof. It will be sufficient to construct a well-ordered family
{Aa 10 ̂  a < Ω} of mutually disjoint subsets of [0,1], each of which
has m*(A») = 1.

Consider {Bβ \0 ̂  β < Ω} as a well-ordering of all closed subsets
Bβ of [0,1] which have a positive Lebesgue measure. For each β, 0 ^
β < Ω, let {x% I 0 ̂  a ^ β} be a well-ordered subset of Bβ such that
#2 Φ nξ't if β Φ β' or a Φ a!. This selection is possible since, for each
β, the set of all xξf with 0 ̂  af ^ βf < β has a cardinal number < c.
Set AΛ = {α$ I α ̂  β < β}, for each α, 0 ̂  α < Ω. By a simple argument
AαjΠA .̂ = φ, for α =£ a!. Now consider any Aγ if m*(AΛ) Φ 1, then AΛ

is contained in some open set Y such that m(Y) < 1. The complement
of Y is closed and has m([0,1] - Y) > 0. But m{[0, α?]n([0,1] - Γ)}
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is a continuous function of x for 0 ^ x ^ 1 therefore, this function
takes on all values between 0 and m([0,1] — Y), inclusive. This means
that there are non-denumerably many closed sets whose measures are
greater than 0 and which do not intersect A*. This is, of course, im-
possible by the construction of AΛ. Therefore, m*(AΛ) = 1.

Form the set of all subsets of the set of AJs> and take the sum
of each element of this power set. Any two such sums belong to two
different equivalence classes since they disagree in a set of exterior
measure 1. This set of sums has cardinal f. There are, therefore, at
least f equivalence classes, at most f such classes hence, exactly f.
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