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ON THE DETERMINATION OF NUMBERS BY THEIR

SUMS OF A FIXED ORDER

J. L. SELFRIDGE AND E. G. STRAUS

1. Introduction. We wish to treat the following problem (suggested
by a problem of L. Moser [2]):

Let {x} = {xu •••,#„} be a set of complex numbers (if one is
interested in generality, one may consider them elements of an algebra-
ically closed field of characteristic zero) and let {σ } = {σlf , σ ,nΛ be

\s)

the set of sums of s distinct elements of {x}. To what extent is {x}
determined by {σ} and what sets can be {σ} sets ?

In § 2 we answer this question for s = 2. In § 3 we treat the
question for general s.

2. The case s = 2.

THEOREM 1. If n Φ2k then the first n elementary symmetric func-
tions of {σ} can be prescribed arbitrarily and they determine {x} uniquely.

Proof. Instead of the elementary symmetric functions we consider
the sums of powers, setting

Σfc — Σ σ ί *

Then

( 2 )

(l) Σ* = i>?= Σ (χh + χHr = \ Σ

Σ K + Xi/ - Σ (2a?4)*) .

Expanding the binomials and collecting like powers we obtain

= lA2n - 2«)Sk + I

Thus, since the coefficient of Ŝ  does not vanish, we can solve re-
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848 J. L. SELFRIDGE AND E. G. STRAUS

cursively for Sk in terms of Σi> > Σ* I*1 particular Σi> > Σn deter-
mine Su , Sn—and hence xL, , xn—uniquely.

THEOREM 2. If n — 2k then Σi> "•> Σ&+i wwsί satisfy a certain
algebraic equation and {σ} will not always determine {x}.

Proof. Equation (1) for Σ f c + 1 yields

/ Q \ v-i J. ^-i I rC "T" 1 A n C

(2) Σ.« = - 2 Σ ( z jSΛ+1.,

where Sl9 , Sfc are expressed by (1) as polynomials in Σi> *φ t Σfc
To prove the second part of the theorem we proceed by induction.
Assume there are two different sets {xlf ••, x2k-i}, {Vi, ••• *,:ί/a*-i}-

which have the same {σ}. Then consider the two sets

{X} = [χλ + α, , a^-! + α, 2/i, , 2/2Λ-I}

= {xi9 , Λj.fc-i, y\Λ~ a, , 2/.fc-i 4~ <̂ }

Clearly every sum of two elements of {X} is either σt or σ4 + 2α
or a?< + 2/j + α and the same holds for the sum of two elements of {Y}.

The sets {X}, {F} will clearly be different for some α. To show
that they are different for any a Φ 0, rearrange {x} and {y} so that
α?4 = 2/i * = 1, 2, , m m > 0, and #, =̂ ι/fc for j , k > m. Then since
2/4 + α = a?t + α i = 1, 2, , m, the sets {X} and {Y} will be different
if {xj \j>m} is different from {x3 + a \ j > m}. But this is clear for
any α Φ 0.

Since {σ} clearly does not determine [x] for n = 2 the proof is
complete.

In a sense we have completed the answer of the question raised in
the introduction for s = 2, however there remain some unanswered
questions in case τι = 2\

1. 7/ {σ} does not determine {x} can there be more than two sets
giving rise to same {σ} ?

The answer is trivially " yes " for k — 0,1 and is " no ?> for k = 2.
It seems probable that the answer is "no " for all & > 2, however we
can see no simple way of proving this.

2. For what values of n does there exist for all {real) {x} a trans-
formation yL — A (xlt , xn), different from a permutation, so that {x}
and {y} give rise to the same {σ} ?

This question was suggested by T. S. Motzkin who gave the answer
for s = 2.
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LEMMA 1. // n > s and the above functions fi exist then they are
linear.

Proof. The sets {y}, {x} are connected by a system of equations

ViL + + Viβ = xh + + x,t .

Here the indices il9 « , i s are themselves functions of {x}. However,
since they assume only a finite set of values, there exists a somewhere
dense set of {x} for which the indices are constant. We restrict our
attention to that set. Let Δ^y% =f.(xl9 , xk + h, , xn) -fi(xu ,
#fc> •••,#») then we obtain

( 3 ) Δ^yh + + 4 X - 0 or A .

If we let Ui be the difference of 4Λ)2/« for two different sets of
values of {x} then, since the right-hand side of (3) is independent of
the choice of {x}, we obtain

( 4 ) uh + . + uis = 0 .

Summation over all sets {il9 , is} c {1, , rc} yields

( 5 ) %t + u.z + + un = 0 .

Now let £ be the least positive integer so that uiχ+ + n%% — 0 for
all {ij, , i j c {1, , n}. Then ί | n, for w = mi + r with 0 < r < ί
implies

wh + + n%r = ux + u2 + + un - Yiμh + + u3) = 0

for all {ilf , ir} c {1, , n}, contrary to hypothesis.
Since n > s > t we must have n> 2b. If t > 1 then

Uj= — (uh + + uitmmi) for every j $ {iu , it-i} .

But there are more than t such j , say j u •• ,^ t. Hence

MJt + * + Uh = - ί(%tl + + M*tβl) = 0

or uh + + ^ ί _ 1 = 0 for every {il9 , it-i} c {1, , w} contrary to
hypothesis. Thus £ = 1 and

^ — u^— = ^w = 0 .

In other words Δ^y^akV = const. Thus 4Λi>2/ι + J ^ v ^ = ^'^Vi s o

that a(^ = aikh and

2/ι = Σ ^i^fc
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THEOREM 3. If n > s and there exists a nontrivial transformation
Vι = fifaif , xn) which preserves {σ} then n = 2s and the transformation
is linear with matrix (up to permutations)

-1
s

1
8

1
s

8-1

s

1
s

1

s

1
s

8 - 1

Proof. We know by Lemma 1 that the transformation must be
linear. Let yi = ^kaikxk then

( 6 ) yh + + ylg = Σ K* +

Hence, for fixed fe, we have

+

( 7 )
o for

= ̂  +

sets {iif

+

l for ( g l J ) sets {ilf . . . , i β } .

Since w > s two elements α i fc, α j f c in the same column satisfy

aίk + α<lJfc + + aι&_ik = 0 or 1 ajk + ahk + + α i g_ i f c = 0 or 1

} — {ΐ, j } .where {iu •••,*,-,] e {1,
Hence

(8) α, = Q>)k o r = ajk ±

Let the two values assumed by terms in the fcth column be ak and
1 + αfc. From (6) we see that both values must occur. On the other
hand if both ak and 1 + ak would occur more than once then
max(αilJb + + at k) — min(d|lfc + + aisk) > 2 in contradiction to (7).

If 1 + ak is assumed only once, say akk = 1 + aΛ, then 0 = sak or

( 9 )
θ i Φ k .

According to (6) we have

(10)

We now repeat the argument that led to equation (8). Since n > s
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we can write for any pair (i, j)

Σ (<V + + a*, .*) + Σ αiJfc = Σ (<V + + α, ,) + Σ <*>,-* = §

where {i^ , is-τ} c {1, , n) - {i, j}. Hence Σ L i aiJb = Σ*-i ^» and
according to (10), s Σ ϊ - i aM = ^ so that

(11) Σα<fc = 1 i = 1, •••, w .

Combining (9) and (11) we obtain

(12) akj = ί 1 '̂ = *
10 i =£ fc .

In other words, every column contains 0 and therefore ak — 0 for
k = 1, , ?2. Thus the transformation is a permutation.

The only nontrivial case arises therefore if the value ak occurs only
once, say akk = αfc. Then s — 1 + sak = 0 and

Combining (11) and (13) we obtain

/-, ,x Λ ^i n(n — 1) s — 1 w / ^

fc = l i = l S S S

and hence n = 2s. It is now clear from (11) that each row and column
contains exactly one term — (s — l)/s and that the matrix (up to per-
mutation) is the one given in the theorem.

3. General s. The procedure which led to Theorem 1 can be
generalized. First we define, for every s, a function which is a poly-
nomial in n, 2k, 3fc, , sfc. Let

(15) j\n, k) - A Σ ( - irv-1 Σ V
S P i Ί

where the outer summation is over all permutations P on β marks, each

permutation being composed of a% i-cycles i = 1, * , r , and ί =

tti + + ar. Thus

(16) /(n, fe) = n-1 - -|(« - l)(2fc + s - 2)w-a + (s - l)(β - 2)[A(3* + s - 3 )

+ —(β - 3)(2fc+1 + s - 4)~LS-3 + ( - l)s(s - i;

o J
- ( - l)s(s - 1)! β*"1 .
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THEOREM 4. For every s consider the system of Diophantine equations
f(n, k) = 0 k = 1, 2, , n. If n satisfies none of these then the first n
elementary symmetric functions of {σ} can be prescribed arbitrarily and
they determine {x} uniquely. If f(n, k) = 0, then the first k elementary
symmetric functions of {σ} must satisfy an algebraic equation.

Proof. In the notation of Theorem 1 we have

(17) Σ* = Σ K + *«,+ •••+ χhf = —. Σ K + + *«,)*

where by D(t) is meant summation over all sets of subscripts i5 at least
t of which are distinct. Hence

s ! Σ * = Σ K + ••• + a?, )* - ( | ) Σ (2a?4l + α?<a + + a?,f x)
fc

* + + *./ - (J)

Continue cancelling terms until each summation is over D(l). The
coefficient of ΣA(m1xiι + ••• + mtxit)

k is just (— l)s~"f times the number
of permutations on s marks which are conjugate to one having cycles
of length ml9 •••, mt. This can be shown by a method quite similar to
that used by Frobenius [1]. Hence we may write

(18) β ! Σ» = Σ (~ 1 ) " Σ ( ^ + + mtxhy
P ) X fΣ
P

where the outer summation is over all permutations P on s marks, and
wfci> ' * > m ί a r e the lengths of the cycles of P. Now from the multinomial
expansion we have

Σ (m^ + + m^ Y = Σ Γ Ί V ^ 1 m ^ ^ S

)
 1 ι ih!.+i^kh! . . . it I λ ι

and the coefficient of Sk is (m* + + m*)So-ι. Substituting in (18)
and using (15), we obtain

(19) ( β - l ) I Σ » = Λ Λ , * )&+•••

where the terms indicated by dots do not involve Sk. Thus, if f(n, k) φ 0
for k = 1, , n, then (19) can be solved recursively for Si, , Sn in
terms of Σi> •••> Σn

On the other hand, if f(n, k) = 0 and /(rc, j) Φ 0 f or j = 1, , Jfc - 1
then (17) expresses ΣΛ a s a polynomial in Si, •• ,Sfc-i which in turn
are polynomials in Σi» ' * > Σ t - i
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COROLLARY. If f(n, k) = 0 then n divides (s - 1) ! sn~\
Thus {x} will always be determined by {σ} if s is less then the

greatest prime factor of n.

EXAMPLE 1. s — 3. Here (18) becomes

6 Σ * = Σ K + α?la + α?l3)* - 3 Σ (2a?tl + α?J* + 2 Σ (3α?4)
fc .

Expanding and collecting the coefficient of Sk, we get

f(n, k) = ri2- (2fc + l)w + 2 3*-1 .

This has obvious zeros at n — 1, k = 1 w = 2, & = 1, 2 n — 3, & = 2, 3.
Also, as we know from Theorem 3, there are zeros at w = 6,& = 3,5.
For all these values of n the set [σ] does not, in general, determine
{x} uniquely.

In addition we observe that f(n, k) = 0 has the solutions n = 27,
& = 5, 9 and n — 486, fc = 9. We do not know whether for these values
of n the set {σ} determines {x} uniquely or not. However we do know
that these are the only cases left in doubt.

THEOREM 5. // s = 3 then f(n, k) = 0 has solutions only for k =
1, 2, 3, 5, 9.

Proof. If /(?z, fc) = 0 then

(20) n = 2α 3δ with α = 0 or 1 .

Substituting (20) in j\n, k) = 0 we obtain

(21) 2α 3δ + 2τ-α 3*-*-1 = 2fc + 1 .

Let n be the smaller zero of f(n, k) for a fixed &. Then the other
zero is ri = 2χ-α 3*"6-1 and 6 < k - b - 1. Hence

(22) 2* = - 1 (mod 3δ)

and since 2 is a primitive root of 3&,

(23) k = 3&-T (mod 2 3&"T) .

But by (21) we have

3*-*-i < 2fc < 3a*/3 or A; < 3(6 + 1)

so that

3*"1 < k < 3(6 + 1) and hence 6 < 4 .
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If 6 = 3 then k = 9 (mod 18) and k < 12 so k = 9.
If 6 == 2 then 4 = 3 (mod 6) and k < 9 so k == 3.
If 6 = 1 then fe == 1 (mod 2) and fc < 6 so k = 1, 3, 5.
If δ = 0 then 4 < 3.

EXAMPLE 2. s = 4. Here (18) becomes

(24) 2 4 Σ * = Σ (%h + zh + xh + xhy

- 6 Σ (2xh + xh + xhf + 8 Σ (3α?4l + xi)
k

«Γ*2 '3 Ί ' Ί

+ 3 Σ (2a?4l + 2xhY - 6 Σ (4α?4)* .
V ' λ 2 4

Hence /(w, fc) = 0 becomes

(25) n3 - 3(2fc"1 + l)n2 + (2(3* + 1) + 3 . 2k'τ)n - 3 22*"1 = 0 .

We first note that this has solutions n = 1, k — 1 ) n — 2f fc = 1, 2 ;

w = 3, 4 = 1, 2, 3 n = 4, & = 2, 3, 4 n = 8, fc = 3, 5, 7. For these values
of n, the set {σ} does not generally determine {x}. When n = 12, k = 6
is a solution, and this case is left in doubt.

THEOREM 6. If s — 4 then f(nf k) = 0 &as solutions only for n —
1, 2, 3, 4, 8, 12.

Proo/. Let n = 3α 2δ where α = 0 or 1. Now if n > 3(2fc"1 + 1)
then 2 3kn > 3fc+1 2* > 3 22*"1 and the left side of (25) is positive.
Hence n < 3(2fc-χ + 1 ) < 2fc+1 if k > 3 and so b < k. (For k < 3 we have
listed all solutions of (25)). If k is even then 2(3* + 1) == 4 (mod 8) and
if fc > 4 then 8ra divides the other terms unless b < 2. Similarly if &
is odd then 2(3* + 1) == 8 (mod 16) and if k > 5 then b < 3. So b < 3
in all cases. Now suppose a = 1. Then (25) becomes

2rc - 3 22*-1 = 0 (mod 9)

or

2δ+1
 ΞΞ 22*-1 == 2 (mod 3)

and 6 is even. Thus n must be 1, 2, 3, 4, 8, or 12. It is easy to check
that none of these is a root for k > 7.

The corollary to Theorem 4 shows that exceptional pairs (s, w) are
in a certain sense quite rare. Of course it is trivial to remark that if
(s, n) is exceptional, then (n — s, w) is exceptional. Hence the remarks
for s = 2 apply equally well to s = w — 2 and we obtain the exceptional
pairs (6, 8), (14, 16), (30, 32), . But there are other cases with n > 2s
which our method leaves in doubt,
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THEOREM 7. We can construct arbitrarily large values of s such that
f(n, k) = 0 for some n > 2s.

Proof. If n < s then Σ f c = 0 but Si, •••,£» may be prescribed
arbitrarily. Hence the coefficient of Sk in the expansion of Σfc must be
zero if k < n. If n = s then Σ * = £* but S2, -- -> Sn may be prescribed
arbitrarily. Hence w = s is a zero of /(w, A:) for k — 2, , n. Thus
/(™, 1) = Πί: ϊ (n - i) /(rc, 2) = Πί-ifa ~ *) and/(w, 3) - (n - 2s) Πf-s (w - i).
If we divide f(n9 4) by its known factors then we obtain for s > 2

(26) /(rc, 4) - [̂ 2 - (6s - l)n + 6s2] Π (n - i)
4 = 4

and the equation

(27) n2 - (6s - l)n + 6s2 = 0

can be rewritten

(2n - 6s + I)2 - 3(2s - I)2 = - 2 .

The Pell equation ^2 — 3v2 = — 2 has the general solution

u + n / 3 ~ = ± (1 + i/3~)(2 + i/3") r r = 0, ± 1, .

Since u and v are odd, n and s are integers. It is interesting that all
positive solutions are obtained in the following simple way. When
k = 4, (s, n) = (2, 8) is a solution. Hence (6, 8) is a solution and putting
s — 6 in (27) yields (6, 27). Continuing in this way, we obtain (21, 27),
(21, 98), (77, 98), (77,363),.-. .

In a similar manner we obtain for s > 3

(28) j\n, 5) = O 2 - (12s - 5)n + I2s2](n - 2s) Π (n - i)
4 = 5

and all integer roots of the quadratic factor may be obtained with the
aid of the general solution of the Pell equation uz — 6v* = 75. Or we
could start with (2,16) and obtain successively (14,147), (133, 1444),
Starting with (3, 27) yields (24, 256), (232, 2523), . . . .

4. Concluding remarks. If we let {r} = {τlf «-, τnS} be the set of
sums of s not necessarily distinct elements of {x}, then {x} is always
determined by {r}. A method similar to the proof of Theorem 4 applies
with the coefficient of Sk always positive. Alternatively, if the xi are
real, xx < x% < < xn, we may determine them successively by a simple
induction procedure.

Our method is applicable to the case of weighted sums σt ..g | =
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Σ5-iαj#i/ The resulting Diophantine equations will however be of a
rather different nature. Thus, if the aό are all distinct then the ana-
logue to f(n, k) = 0 is

(29) (αf + a\ + + a^n8-1 = 0 .

In other words the uniqueness condition is independent of n and
depends on the at alone. For example if αL + a2 + + as = 0 then
{σ} remains unchanged if we add the same constant to all x. It is not
as easy to see what happens if (29) holds for some k > 1.
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