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1. Introduction. Let Z denote the set of positive integers and
let P and @ be nonvacuous subsets of Z such that if n, e Z,n,¢€ Z,
(1, m,) = 1, then

1.1) n=mnm,eP2n e P, n,eP;

suppose also that the elements n in @ satisfy the condition (1.1) with

P replaced by Q. If, in addition, every integer n € Z possesses a unique
factorization of the form

1.2) n=ab, aecP,be@,

then each of the sets P and @ will be called a direct factor set of Z,
while P and @ together will be said to form a conjugate pair. In the
rest of this paper P will denote such a direct factor set with conjugate
set . It is clear that 1 is the only integer common to both P and Q.
A simple example of a conjugate pair P, @ is the set P consisting of
1 alone and the get Q@ = Z.

Let 7 be a positive integer. In this paper we shall generalize the
notion of a reduced residue system (mod 7). If P is a given direct
factor set, then the elements a of a complete residue system (mod )
such that (a,r) € P will be called a P-reduced residue system (mod )
or simply a P-system (mod 7). Any two P-system (mod r) are equivalent
in the sense that they are determined by the residue classes of the in-
tegers (mod 7). A P-system chosen from the numbers 1 <a <r will
be called a minimal P-system (mod 7). The number of elements in
a P-system (mod ) will be denoted by ¢,(r) and called the P-totient of
r. Clearly, if P =1, ¢,(r) reduces to the ordinary Kulerian totient
$.(r) = $(r), while () = 7.

We summarize here the central points of the paper. Analogous to
the generalization ¢,(r) of ¢(r), we define in §2 a function p,(r) ex-
tending the Mobius function u(r) to arbitrary direct factor sets P. On
the basis of this definition we prove in Theorem 3 an analogue of the
Mobius inversion formula. This result is then applied in §3 to yield
an evaluation of ¢r(r). In §4 a generalization cp(n, ) of Ramanujan’s
trigonometric sum c¢(n, r) is defined and evaluated for arbitrary direct
factor sets.

Received August 26, 1958.

13



14 E. COHEN

In §5 applications to two relative partition problems (mod 7») are
considered. In particular, in Theorem 12 we obtain a formula for the
number of solutions (mod #) of the congruence

1.3) n=,+ -+ 2 (mod r),

such that (x,,7)e P,(i =1, .-, s). In Theorem 13 a formula is deduced
for the number 0.(n, ) of integers a (mod 7) such that (a,r)=1 and
(n — a,r)e P. These two theorems are wide generalizations of results
proved by the author in [1], [2], and [3]. We remark that the method
in §5 and the latter part of §4 is based on the theory of even funec-
tions (mod 7) developed in the three papers cited above.

In §6 the results of the preceding sections are specialized to the
conjugate pair P, @, where P consists of the k-free integers and Q is
the set of kth powers. Precise criteria for the vanishing of 0:(n, r)
and #,(n,r) in these cases will be found in Theorem 14.

Regarding the theoretical foundations of arithmetical inversion, we
mention an investigation of Holder [6]. Additional references to the
literature appear in Holder’s paper.

REMARK. It is noted that several of the results proved in this paper
are valid for arbitrary sets P, as distinguished from direct factor sets
(for example, Theorems 6, 8, 9, and 13). In the general case, however,
the unifying method of arithmetical inversion is no longer applicable.
The broader topic of arthmetical functions in relation to arbitrary sets
P will be treated in ancther paper.

2. The inversion function z.(r). We recall the following funda-
mental property of u(r).

) — () — (1 (r=1)
2.1) %;(@—W%{O (r>1).

The p-function may be generalized to arbitrary direct factor sets by
writing

— ("
(2.2) ZOEDTIESP
aepP
where the summation is over the divisors d or » contained in P. It will
be observed that p(r) = p(r) and p,(r) = p(r).

By (2.2), (1.1), and the factorability of p(r), it follows that p.(r)is
a factorable function of 7:

THREOREM 1. If rie J,r.e J,(r, r,) =1, then
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(23) /IP(T) = /IP(7'1)/1P(7'2) ' (7‘ = 7"17'2) .

We next prove that the property (2.1) of x(r) can be extended to
the function pp(r).

THEOREM 2.

(2.4) ﬁ’@) = p(r) .

Proof. On the basis of (2.1), (2.2) and the uniqueness of the factori-
zation (1.2) one obtains

S D)= 5 5 M)

d!? ac=r e=8D

aeQ ser
=>pD) > 1=3 pD)=np(r).
D|r 8ad=7r/D Dlr
SEP,AEQ

This completes the proof.

By means of Theorem 2 we generalize the Mébius inversion formula
to arbitrary direct factor sets.

THEOREM 3. If f(r) and g(r) are arithmetical functions, then

(2.5) 1) = % ( D)2 o) = S r@ (%) -

Proof. Let f(r) be defined as on the left of (2.5). By (2.4) one
obtaing

d);gf(d)/lz{ 2 > = %;‘ <ge§= g(e))p <d>
= 2000 2 ) = R0, Z @)
= S o@n(L) = otr).

Conversely, let g(r) be defined as on the right of (2.5). Then again
by (2.4)

J0) 2% pp(0") = 2170 ) 24  1e()

= §r dae=r S
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—_— 7. —_—
= S f0p(L) = £

The proof is complete.
It is evident that if P =1, Q = Z, Theorem 3 becomes the inversion
formula of elementary number theory.

3. The totient function ¢,(r). The following principle is basic in
considering P-totients.

THEOREM 4. Let d range over the divisiors of r contained in @,
and for each such d let X range over the elements of a P-system (mod
rid). Then the set d X forms a complete residue system (mod r).

Proof. In the proof we suppose n to range over the positive in-
tegers < r. For a fixed divisor d of r,d € @, let C, represent the set
of those n for which (n, r) is of the form (n,r) =de,e e P. By the
uniqueness of the factorization (1.2), a given » lies in exactly one class
C,.; hence the set of elements in the classes C, consists precisely of the
integers 1, ---, r. Moreover, for a fixed divisor d of » such that d € Q,
the elements n = dx comprise C, if and only if (x,r/d) e P,1 <z < r/d,
that is, if and only if the elements x form a minimal P-system (mod
r/d). Replacing the particular P-system z (mod »/d), by an arbitrary
P-system X (mod r/d) the theorem results.

Theorem 4 leads immediately to

THEOREM 5.

(3.1) Y %({l) =r.

alr
aeQ

The evaluation of ¢.(r) follows from (3.1) on applying the inversion
formula of Theorem 3:

THEOREM 6.
. r
(3.2) be(r) = S 7).

In case P =1, Theorem 6 becomes the well-known evaluation formula
for ¢(r).

Since p,(r) is factorable (Theorem 1) the same is true of ¢ (r), by
(3.2):

THEOREM 7. If (ry, 7)) =1, then
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(33) ¢P(’r) = ¢P(’r1)¢P(T2) ’ (')” = 7'17'2) .

Next we show how ¢,(r) may be expressed in terms of the ordinary
¢-function.

THEOREM 8.

(3.4) pair) = S 9 (7).

Proof. By (2.2) and (8.2) it follews that

wir) = 2o 2 () = 22T

§7 dms' \ d 0
derP
and (3.4) results by (3.2) with P = 1.

4. The exponential sum c,(n, r). We define

(41) GP(’)’L, 7‘) = Z‘ e(mn, 7') , e(a’ /}") — 6‘21:1,@[1*’
P

(z,7)€

where the summation is over a P-system (mod #). In case P =1, ¢p(n, r)
reduces to the Ramanujan sum, ¢(n ). The next theorem generalizes
the familiar evaluation of ¢(n, 7).

THEOREM 9.

- r
4.2) cp(n, r) = dl%ﬂd/@( d> .

Proof. Placing 7(n, r) = c,(n,r), we have

_ _ [r (rin)
(4.3) 7, 7) —z(r% r)e(xn’ = {O (r +mn).
Furthermore, by Theorem 4,
r
(4.4) pnr) =3 3 edon, )= Seon, 7).

alr (z,r/A)EP
aeQ aeqQ

Therefore, by the inversion theorem (§ 2),

eotn, 1) = Sy, el 1)

and the theorem follows on the basis of (4.3).
The function c,(n, r) is a generalization of both ¢.(r) and pp(r):



18 E. COHEN

COROLLARY 9.1. If m =0 (mod 7), then
(4.5) cp(n, 1) = ¢p(T) .
COROLLARY 9.2 If (n,r) =1, then
(4.6) cp(n, 1) = pp(r) .
By (4.2) and (2.3) we have, in addition,
THEOREM 10. The function cp(n, r) is a factorable function of r;
that s, if (v, 1) = 1, then
(4.7) cp(n, 1) = cp(n, 1i)ep(n, 15) ' (r=mrmr).

In the proof of the next theorem we assume the results on even
functions (mod 7) proved in [1]. We first state a lemma which results
on applying the Mobius-inversion formula to (2.2).

LEMMA 1.
- _ _ {1 (repP)
(4.8) Seld) = 0 = {5 (16 B).

It is noted that p(r) = p(r) .
THEOREM 11.

(4.9) csln, 1) = 3, pP<-£ )c(n, =S¢ <n g) .

alr
aepP
Proof. By (4.2), cy(n, r) = cpx((n, r), r), so that cy(n, r) is an even
function of n(mod 7). Hence by Theorem 9 and [1, Theorem 4], ¢(n, 7)
has a Fourier expansion,

cp(n, r) = Zl a(d, re(n, d) ,
where
ad, 7) = 3, 1ale)

and the theorem follows by (4.8).
We note that (4.9) reduces to (3.4) in case n = 0, thereby providing
a new proof of Theorem 8, while in case n = 1, (4.9) becomes (2.2).

5. Relative partitions (mod 7). In this section we assume the results
of [2] and [3]. Let A{(n, r) denote the number of solutions (mod 7) of
(1.8), such that for each z,, (1 < 1 < s), («;, ) is contained in a P-system
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(mod 7). We deduce the following expansion for A(n, r).

THEOREM 12. For arbitrary positive integral s,

(5.1) A9, r) = L s, <c£, (; fr>>sc(n, d) .

Y a

Proof. We prove (5.1) inductively on s. Obviously AP(n, r) =
ps((n, r)). Hence applying [2, Theorem 3] to (4.9), one obtains

(5.2) A®(n, ) = % Se, (2 , 7~> e(n, d) .

ajr

This proves the theorem in case s =1. We assume the theorem for
s =1t >1. Then by [3, Theorem 1]

A¢ 0 (n, r) = > AP (a, r)AS(Db, )

n=q+b (nod 7)

=1 by (c,, (7’ , 7'>>ch(n, d).

r ar d

This completes the induction.

Next we derive an arithmetical formula for the function 60,(n, r)
defined in the Introduction. Equivalently 6,(n, r) may be defined as the
number of solutions, x,y (mod r) of

(5.3) n=x-+y (mod r), (@, V=1, (y,r)eP.

The proof will depend on the following lemma.

LEMMA 2. Let e be a positive integer. Then

Sl

(5.4) Se (5, e>,u(d) _ {/{%)?" i rle,

" 0 otherwise.

Proof. By the evaluation formula for ¢(n, 7),

Se(foe)ud) = Sm@) | 5 De()

arr Dpl(ria,e) D

- D](Ze‘,r)/l<_eD>D d%;D'U(d) ’

and (5.4) follows on applying (2.1) to the inner sum of the last expres-
sion.
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THEOREM 13.

N /"P(d)
(5.5) 0p(n, r) = P(r )(5:1 o)

where the summation is over the divisors of r prime to n.

Proof. Using (5.2) we apply [2 Theorem 6] to @0,(n, r) with
S, r) = A (n, r), obtaining on the basis of Theorem 11 and Lemma 2,

. 1 o« d o,
) = % o (3, o0 )
. 1 d o ’
71" Z (d) eez:; (882 0(5 6)#(5))
1
= > E
<>T #(d) :@i 1= (d% : ¢(d> P

and the theorem follows by definition (7).

6. Special cases. For a fixed non-negative integer k, let P be the
set of all k-free numbers and let @ be the set of all kth powers. Clearly
Pand @ form a conjugate pair of direct factor sets. We introduce the
following notation for the functions corresponding to these sets:

(1) = bp(7), (1) = (1), Gu(n, 7) = cp(n, 1), and Fy(r) = do(7), (1) =
2o(7), by, ) = ¢co(n, v). If (a,d), is defined to be the greatest kth
power divisor of a and b, then @,(r) denotes the number of integers a
(mod 7) such that (a,r), =1, while Z,(r) denotes the number of a
(mod 7) such that (a, 7) is a kth power, that is, (@, 7), = (a, 7).

It is observed that, in case k =1, @,(7), #(7), and g,(n, r) reduce
to ¢(r), p(r), and c(n, r), respectively. We also note that 2,(r) = A(r),
where A(r) represents the Liouville function. The conjugate totient
functions @,(r), and ¥ (r) were introduced by Rogel [9]. Regarding the
special case &k =2 of these two functions, @,(r) was evaluated by
Haviland [5] using a definition equivalent to that given here, while Z,(r)
was evaluated by the author in [2, Corollary 4.2]. For a further discus-
sion of the function @,(r) we refer to McCarthy [7].

The following evaluation arise as corollaries of the results proved
in §§3 and 4.

(6.2) Tr) = 5 dx,( &) 5 qs(a;) :

dlr
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(6.4) hy(n, ) = d[%)dzk(fg,) =5 c<n, »2 k) .

By (2.2) the functions g,(7) and 1.(r) may be written

(6.5) pn = = W 2) = e %),

7) =1 zl"[)

In view of the factorability of g#(r) and A(r) it is sufficient to evaluate
these functions for prime-power values of », » = p™ (p prime, m > 0).
In particular, it is easily deduced from (6.5) that

(6.6) ORI Wi 0

while for k& > 2,

1 (m =0 (mod k))
(6.7) 2(p™) = {— 1 (m=1(mod k))
0 (otherwise) .

The functions g#(n) and 2,(n) were introduced by Gegenbauer [4];
for a further discussion we mention Holder [6, §§6-7]. Note that
(1) = pr) = p(r), 2(r) = p(r).

The corresponding inversion formulas are contained in the following
relations (Theorem 3):

(6.8) 5 = 3 o) 2 o) = sl )
(6.9) =5 o(7)2om = r@u(7).

The case k =1 in (6.8) is the ordinary inversion theorem, while the case
k=2 in (6.9) yields the formula,

(6.92) fr) = 3 g(fi) 29 =%7 (dM( 2) ’

d
(1(@)70)

the summation on the left ranging over the primitive (square-free)
divisors of 7.

We now specialize the additive results of §5 to the particular
sets P, @ of this section. Placing R, (n, r) = AD(n, ), S; (%, 1) =
AP(n, r), we observe that R, (n, r) represents the number of solutions
of (1.3) such that (z,, ), = 1, while S, (n, r) represents the number of
solutions of (1.3) such that (x,,r) is a kth power (¢ =1,:--,s5). In
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particular, one obtains from Theorem 12,

(6.10) R, (n,7) = 7{ by (gk (% fr>>sc(n, ),
(6.11) S, (n, 1) = ;1” py (h,c(g_, 1ﬂ>>sc(n, d).

The case k =1 in (6.10) is Theorem 6 of [1], (also cf. [2, §2]), while
the case &k = 2 in (6.11) is Theorem 3 of [3] in an equivalent form.

If one places 0,(n, r) = 0,(n, ) and G,(n, r) = e (n, r), then G,(n, r)
denote the number of integers ¢ (mod 7) such that (a,r) =1 and
(n — a, ), = 1, while ¢,(n, ) denotes the number of a (mod 7) such
that (a,7) =1 and (n —a,r) is a kth power. We deduce then from
Theorem 13,

(6.12) 0,6(/”/’ 7/-) o= ¢(’Y') ((l’dgl)r:l . (,7), ,
_ 2 lk(d)<
(613) Ek(n’ 1 ) - (f)(] ) ((1]31)7‘_1 77¢7 (dj '

The case k = 1 in (6.12) is [2, Corollary 21] while the case k=2 in
(6.13) is [3, Corollary 38].

Finally, we investigate the conditions under which 6.(n, r) and
g(n, r) vanish. It is sufficient to consider these functions when 7 and
n are powers of the same prime p,r=p,n=p2,t>0,t>b>0.
A simple computation yields the following results. If & > 1, then

N (PHD = = 1) b =02k,
0:(p°, ) = {pt-l(p —1) otherwise .

Suppose ak < t < (a + 1)k where o is a (uniquely defined) non-negative
integer. Then, if k < 2,

P i(p — D(®* — 1),
(,pk, - l)ek(pb’ pc) — pt—k(a+l)(pk—1 . 1) _l_ pk+t—l(p . 2) _+_ pt—l
pt+k,—1(p _— 2) _I_ pt—-ak—l(pak . p _I_ 1) s

according as (i) b > 0, (ii) b = 0,¢ = (a + 1)k, or (ili) b=0, t < (a + 1)k.
From these results it is easy to deduce that 6,(p° p') = 0 if and
only if p =2,k =1,0=0 and that e,(p® ») =0 if and only if p =
2,t <k, b=0. We are therefore led, on the basis of factorability
considerations, to the following criterion in the general case.

THEOREM 14. If k> 1, then O(n,r) =0 tf and only if k=1, r
18 even, and n 1s odd.

If k> 2, then e,(n,r) =0 of and only +f » is of the form 2'R
where R 1s odd, 0 <t < k, and n 1s odd.
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The above result for ,(n, r) in case £k =1 is due to Ramanathan
{8, p. 68]. The result for e n,r) in case k =2 was proved in [3,
Corollary 38.1].
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