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1. Introduction. The van Kampen theorem provides a defining set
of generators and relations for the fundamental group of the union of
two topological spaces X and Y where the fundamental groups of X,
Y, and their intersection are given by defining sets of generators and
relations. An intrinsie, purely group-theoretic formulation has been
given by Fox using his direct limits of systems of groups [4]; however,
the corresponding abstract proof had not been worked out. The present
paper supplies such a proof (distilled from an earlier proof by Fox of
the van Kampen theorem) to a natural generalization of the van Kampen
theorem, which includes for example, in addition to the original theorem,
the determination of the fundamental group of the union of an increas-
ing nest of open sets each of whose groups is known [2].

In proving the principal result, Theorem (3.1), we depart from the
usual development of the fundamental group in that paths and loops
are not required to have the fixed unit interval as domains. In
particular, a path a is a continuous mapping of the interval [0, ||a|]]
into the space in question for some ||a|| > 0. For paths a: [0, ||al]] > X
and b: [0, || b]]] > X which satisfy a (||a]|) = b(0), we define the product
path a-b by

a-b(t) = {a(t) for 0 <t < |lall
bt — llal]) for lall <t <|lall + |lbll.

Thus, path multiplication is associative. Paths @ and b, having the
same initial and terminal points, are equivalent, denoted by a ~b, iff
there exists a collection of paths %, [0, || A,]]] = X, 0 < s <1, such that

hy = a and A, = b,

h(0) = a(0) = b(0),

hy(ll ks |1y = alla ll) = b(l} b)),

Il s}l is a continuous function of s,

hy(t) is simultaneously continuous in s and ¢.

We note that, for any path ¢ and positive number ¢, there is a path
b equivalent to a with ||b}] =¢t. Furthermore, ||%,|] can always be
taken as a linear function of s and thus, in view of the preceding
sentence, may be arranged to be constant. The induced multiplication
of equivalence classes of paths and the definitions of the fundamental
groupoid and group of X are made in the usual way.
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2. Systems of groups and direct limits (c¢f. [4]). A system is any
collection & of groups and homomorphisms such that if 6;G,— Gs is
in &, then G, and G; are in &. A homomorphism ®; & —>G of «
system & into a group G is a function which assigns to each group G,
in & a homomorphism ¢, : G, — G such that, for every 0: G, — G, in
&, we have ¢, = ¢g0. The image of ® is the smallest subgroup of G
which contains the image of every homomorphism ¢, in &, and @ is
onto iff its image is G itself.

A homomorphism ®: & — G is a direct limit iff (i) ® is onto and
(ii) for any group H and homomorphism ¥ : & — H, there exists a
homomorphism 1:G — H such that ¥ = 1@, thatis, for every group G,
in &, ¢, = 2¢,.

(2.1) THEOREM Any system & has a direct limit unique to within
isomorphism.

The proof is straightforward and is given in [4]. As a result of
(2.1), one may relax the above terminology and speak simply of the
group G as the direct limit of the system &.

A given system & may always be enlarged to a system & by
adjoining all, or any number of, identity homomorphisms and finite
compositions of homomorphisms of &. It is obvious that any homomor-
phism of & is also a homomorphism of &, and conversely. Thus,

(2.2) Any direct limit @ : & — G is a direct limit @ :& — G, and
conversely.

3. The generalized van Kampen theorem. Consider a collection of
pathwise-connected, open subsets X, of a topological space X closed
under finite intersections and such that

X=UX.

p € () X,, for some point p
The set & of fundamental groups G, = =n(X,, ») and all homomorphisms
# : G, — Gs induced by inclusion is a system, and the homomorphisms

¢y : G, — G = n(X, p) induced by inclusion constitute a homomorphism
?:8—-G.

(83.1) VAN KAMPEN THEOREM. @ :©& — G is a direct limit.
Proof. There are two propositions to verify :
I. @ s onto. Consider an arbitrary non-trivial element A € G and

a loop a representing A. Since A # 1, we know that |lal]] > 0. We
construct a subdivision.
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0:t0<t1<"°<tn:“a1l

such that each ¢, — ¢;_, is less than the Lebesgue number of the open
covering of [0, ||a||] consisting of all inverse images a-'X,. We then
choose Xwi,@' =1, -.-, n, such that

alt;_, ;] C Xwi 1=1, e, n.
For each point ¢,,72 =0, ---, n, of the subdivision, we select a path b,
in X subject to the conditions :
(i) 040)=p and by(l||b;|}) = a(t,)
(ii) If a(t,) = p, then b, =p
(i) b0(t)e X,,N X.,, , 0<t<lib;lland e=1, -+, m— 1.

Note that (iii) uses the fact that the collection of subsets X, is closed
under finite intersections. Next, consider paths a; :[0,¢, — ;] > X, ¢ =
1, «++, n, defined by a,(t) = a(t + ¢;,_.).

Clearly,

and
o&:ﬁbi_1 -a, - bt
i=1
Each path b,_, - @, - b;! is a p-based loop whose image lies entirely in

X,, and which, therefore, is a representative loop of ¢s, A, for some
A, e Gwi - Thus,

A= _1;[1 5DwiAi
and the proof of I is complete.
II. For any group H and homomorphism ¥ : &S — H, there exists a
homomorphism A : G — H such that ¥ = 10.
Proving II obviously amounts to proving that, for any A, e Gwi,'é:
1’ cee H /r’
1T ¢u, A = 1 implies T1 0 4y = 1.
i=1 i=1
We select representative loops a,€ 4;,7 =1, ---,r. Then the product
a =11 ¢u, a;
i=1

is contractible (We denote an inclusion mapping and its induced homo-
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morphism of the fundamental groups by the same symbol), and there
exists a homotopy A : R — X, where R = [0, ||a]|] x [0, 1], which satisfies
(¢, 0) = a(t)
k0, s) = A(¢, 1) = M|lall, s) = p
The vertical lines ¢ = i lla.ll, =1, ---,r, provide a decomposition
of B, and we consider a refinement
O0=t<t < - <tn:”a'”
0:30<31< ces <Sm:1
into rectangles

R, = {¢s)|ti-is <t <t and s;-, < s < sy}

the maximum of whose diameters is less than the Lebesgue number of
the open covering of R consisting of all inverse images 2~'X,. Con-
sequently, there exists a function «(s, 7) such that

(Ry;) © Xua,p t=1---,mand =1, ---, m.

For each lattice point (¢, s;), we select a path ¢, in X subject to the
following conditions.

(iv) The initial and terminal points of e¢;; are p and A(¢, s,),
respectively.

(v) If A, s;) = p, then e, = p.

(vi) The image of ¢;, is contained in
-Xa;(i,j) N Xw(iﬂ,;) N Xw(i,j-i-l) N Xw(i+1,j+1) .
(Assume X, np=Xif 1=0,n+1or if 7 =0,m + 1).

(vii) If S ell <t <8 < S ]| |l, then the image of e;,
contained in X, )

Next, cf. Fig. 1, consider paths

cy(t) = Mt + Ty, 8)) 0<t<t, —t,,
di)(8) = hlti, s + 8;5-1) 0<s<s; — 85
and set
Uiy = €1,y * Ciy * €5 t=1---,nand j=0, .-+, m
biy = €5-1* diy -+ €' t=20,---,mand =1, ---,m
Cij
_ . — N s,
di—l,] Rij d“
- o L
Ce,5-1
(79 t;
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The image points of the loops a,j, b;j, @; ;-1, and b;,-,, all lie in X,q 5,
Consequently, they define group elements A4,;, B;;, 4;,, and f;, respectively.
Gu,pp. The product @, ,_, - by, - a3 - b7l ; is obviously contractible in X
moreover, since the image of R;, as well as the images of the four
paths lies in X, 5, the product is also contractible in X, ;. We may
conclude that

(1) AyBAG(B ) = 1.

The central idea in the proof of II is the fact that if group elements
AeG, and Be G possess o common representative loop, then ¢, A =

¢s B.

The proof is easy: By assumption the system & contains the
fundamental group G, of the intersection X, = X, N Xz and the homo-
morphisms

0, 0,
Gw D G)’ - GB

induced by inclusion. The assertion that 4 and B possess a common
representative loop states that there exists a p-based loop ¢ in X, such
that 0.ce A and 0,c € B. Thus, if ¢ defines C e G,, we have

0,C=A4 and 0,C =R
Since ¥ is consistent with the mappings @,
$ud = ¢.0,C = $,C = ¢30,C = ¢uB .
Applying the central assertion, we obtain
(2) Pati, pAis = Yacigendija
ucipBiy = Paisr, pBisa,s

Equation (1) says that the result of reading around each R, under the
homorphism ¢, ,, is the identity. Equations (2) show that edges of
adjacent rectangles will cancel. It follows (by induction) that the result
of reading around the circumference of the large rectangle R is the
identity. Furthermore, only the elements along the bottom edge, s = 0,
are non-trivial. We conclude, therefore, that

g ¢w(i,0)Aij =1.

Since each of the numbers >/_.lla:ll,7=1,--«,r, is a member of
{t;, ++-, t,}, there exists an index function #(y) such that ¢(0) =0, and

iy = Sl el j=1, e 7.
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Then,

o) .

Ay = Po A g=1,.--, 7
t=i(I—1) +1 J
However, by virtue of (vii), we may assume that the equivalence is in
ij. Thus, each loop ay, 7 =14 — 1)+ 1, ---,4(j), determines a group
element A4; e G, ; and

o) )
Ai == Aj .
t=1(j=1)+1
Since A4,, and A; possess a common representative loop a,, it follows
from our central assertion that

Sbw(i,D)Atj = ¢w_’A; 1= 7’(.7 - 1) + 17 R 7’(.7) ’
Finally, therefore,

” iy ” i

1= H H $[’w(z,o)Azu = H 5!’ A,i

@
Jm1 imti(io1)+1 J=1 t=i(f-D+1 I
”
= 1__[ S[}wj AJ
J=1
and the proof of the generalized van Kampen theorem is complete.

4. Generators and relations. Since generators and relations describe
a group only to within isomorphism, we shall speak of the image group
of any direct limit of a system as the direct limit of the system. To
obtain a presentation of the direct limit of a system of groups which
are given by generators and relations is a simple matter of setting up
the proper homomorphisms and chasing around a batch of consistent
diagrams. Consider a system &, each group G, of which has a pre-
sentation (cf [3])

Gw:(w}uw?x; "':’)‘le,’l';‘;, "')'

Each mapping 6 : G, — Gs in & is described by giving the assignment
0zl e Gg,%2=1,2, ---. Then, the direct limit of & has the presentation

(1) G = ({aa} : {ra}, {20 «%)™'})

i.e., all generators a7, all relators 7%, and all elements zi(0z%)* (a proof is
given in [4]). The presentation (1) can be simplified in that, for each
homomorphism 6 : G, — G, the relators ri,7 =1, 2, ---, may be dropped.
The reason is that, in the free group F generated by all the generators
in (1) and of which G is the homomorphic image, the relators #) are a
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consequence of the relators »} and the elements «’(f2%)~'. To prove this
assertion consider the diagram

0

Gw — Gg

o] s

0

Fm B E%

inclusion——,/——inclusion
F
F, is the free group generated by 2%, ¢=1,2, ---, and ¢, is the con-

onical homomorphism whose kernel is the consequence of #i,4 =1,2,+.-.

The mapping 6, which strictly speaking should be used in (1), is simply
0 lifted to the free groups. Consider an arbitrary homomorphism 7 of
F' which maps »%, zi(021)"',7=1,2, ---, onto 1. Then, for any u € F,,

nu=n0u.

Since
CBET; = 0Caa/r3v = 1 ’

each 01, is a consequence of the elements r5. Hence,

nOr,=7nr,=1
and the assertion is proved.

Consider a topogical space X which is the union of two pathwise-
connected open subsets X, and X, whose intersection X, = X, N X, is
also pathwise-connected and contains a point ». Suppose we are given
presentations of the fundamental groups G, = =(X;, p),+ =0, 1, 2,

G1 = (xl;wzy e T, Ty "')

Gz - (yl}y‘zy cc :Slyszy “.)

GO = (zly ZZ! e :tly tz; ”')
and the mapping 6,: G, — G, ¢+ = 1, 2, induced by inclusion are described
by assignments 0,z,¢ G;,+=1,2,5=1,2, --.. By our principal Theorem
(3.1) and the results of the preceding paragraph, the fundamental group
G = n(X, p) has the presentation

G = ({z;}, {y;}, {2} 2 {ry}, {85}, {=(0i29)7M})

This presentation is equivalent to (cf. [3])

G = ({z;}, {ys} : {rs}, {55}, {0.2,(6.2)7"})
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which is the assertion of the wusnal formulation of the van Kampen
theorem.
Consider a system & of groups and mappings

6, 0, 0,
G, G, G, ... with presentations
(2) Gy = (@, @y~ 1y, 1dy o00)
such that
(3) 0, 2] = /., and 0,r] = r,,

(G;+, may have more generators and relators than G;,). We may define
a group

(4) G:(yby‘z"":slrsw"')
and a homomorphism @ : & — G such that
] = y; and ¢! =s; .

It is easy to check that G (more precisely, @:& — G) is the direct
limit of &.

Finally, we consider an ascending chain of non-empty, open subsets
X, c X,C --- of some topological space. We have by (3.1) and (2.2)
that the fundamental group G of the union is the direct limit of the
system

6, 0,

G — G, —— e,

where G; = n(X,, p) is the fundamental group and ¢, is induced by
inclusion. Using the results of the preceding paragraph, we obtain a
presentation (4) for G, if presentations (2) satisfying conditions (3), are
given. This procedure is used in [1] to obtain (among other examples)
a presentation of the group of the exterior of the Alexander Horned
Sphere.
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