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In this paper we shall prove the following :

THEOREM. Let 2 =z2(w) (z=2x+ iy, w=1u -+ w) be a oneto-one
harmonic mapping of the disc |w| <1 onto the disc |z| <1 such that
2(0) = 0. Then we have for \w| < 1 the estimate

(1) 2+ |2l = 2

7_[2
As an improvement of an earlier result established in [1] J. C. C.
Nitsche [4] showed that under the above conditions the inequality

(2) ﬂav+wmn%z§-

is satisfied'. In contrast to (2) the estimate (1) holds throughout the
unit dise |w| < 1, but the constant involved is smaller than that of
Nitsche.

In order to establish (1) we shall make use of a known result on
harmonic functions (the analogue of the Schwarz Lemma)’. For the
sake of completeness the proof of it will be given here.

LEMMA. Let z = 2(w) = x(w) + y(w) be a complex-valued harmonic
Sunction in the disc |w| < 1. Furthermore, let 2(0) =0 and |2(w)| <1
Jor lwl < 1. Then we have the inequality

(3) |z(w)l§—4—arctanlw| lw| < 1.

Proof. Let 6 be an arbitrary real number, and f(w) be the func-
tion, which is regular-analytic in the disc |w] < 1 and satisfies the rela-
tions f(0) = 0 and

(4) RN fw) = x(w)cos § + y(w)sin § .

On account of our hypotheses we have

(5) IR fw)| <1 lw| <1,
hence,

T For further references see [2].
2 See Polya-Szego [5], p. 140.

" Received October 13, 1958.
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(6) R (eXp [ Zif(w)}) >0 lw| < 1.

Consequently the function

(7) gw) = SR SR

satisfies the inequality

(8) lg(w)| <1 lw] <1,

and we have ¢(0) =0. Applying now the Schwarz Lemma and the
elementary inequality

4 —1

(9) el§+i-‘>tan—tma Rel <2
we obtain the estimate

(10) tan%lmf(w)l = lg(w)| = |w],

hence, by (4)

(11) |#(w) cos 0 + y(w) sin 0] = % arc tan |w|

for |w| < 1.
Since this holds for every real value of 0 the inequality (3) follows,
which proves the lemma.

Proof of the theorem. (I) We first prove (1) under the additional
hypothesis that the function z(w) and its first derivatives are continuous
in the closed disc jw| < 1. Since the mapping w — z(w) is one-to-one
and harmonice, its Jacobian |z, [|* — Izwlz cannot vanish, in virtue of a
theorem of H. Lewy [3]. Furthermore, since hypothesis and conclusion
of our theorem remain unchanged, if z(w) is replaced by z(w), we may
assume without loss of generality that

(12) |2,* — 2512 > 0 |lw| < 1.

Consequently, the function z, does not vanish in the dise |w] < 1.
Furthermore, because of z,- = 0, it is regular-analytic. From these
facts it follows that for |w| < 1 the inequality

3 Here and in the following considerations *—%:—; (—a —¢L> and

0 1/ @ 0
— i derivatives.
o 2( ou +1- o ) are the complex derivatives
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(13) |20 | = Imiig 12, |

holds.

We shall now estimate the right-hand side of (13) from below by
using our lemma. Let ¢ and » be two real numbers and 0 < » < 1.
Since by hypothesis the equation |z(w)| = 1 holds for |w| =1 we have

(14) #e'") — 2(re'?) > 1 — [z(re') > 1 — 4/rarctanr
1—7r 1—7 1—7r
If we let » tend to 1, we obtain
(15) (!M) >2 0<¢ < 2n.
or r=1 T

Furthermore, on account of (12) we have
A
16) | U=z e + aalreentt] < L2l + L2l < 21zl
r

for 0 < r £ 1. Combining this with (15) we infer that for |w| =1 the
estimate

17 2, = L
w
holds.
Hence, by (13) we obtain for |w| < 1 the inequality
(18) Lzl = L la—inl S 27l + la,
e

which yields (1).

(II) Now let the mapping z = z(w) merely satisfy the hypotheses of
our theorem. Obviously there exists a sequence of numbers {R,} (n=2)
such that the following conditions are satisfied :

(i) We have 0 < R, <1 for all » = 2, and
19) limR,=1.

n—oo

(ii) The disc |z| < R, is mapped by the inverse transformation
z — w onto a simply-connected domain D, such that

(20) {lwl=1-Llcp,c (uwi<1y.

Since the mapping z — w is analytic in z and v, it follows that D,
is bounded by an analytic Jordan curve. By the Riemann mapping
theorem there exists a uniquely determined function w = @,(¢), which
maps the dise {¢| <1 ({=&+14n) conformally onto D, such that @,(0)=0
and @,(0) > 0. Furthermore, @,(¢) is analytic for |¢| < 1. Consequently,

the function
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21 ey = A2(8)
(21) (©) 2

is harmonie for |£]| < 1 4+ 6, where ¢ is a positive number, and satisfies
all the hypotheses of the above theorem. From the facts established
in (I) we conclude

(22) L (ot + 1) = 14E + 12,0 2 2

Hence we have for w = @,(&) (|¢]| < 1) the inequality

; ) R 2
23 Jrlalz B2
=) SR ST

Furthermore, on account of (20) the estimates
(24 (1-DHici =il
n

hold for » = 2 and |¢| < 1. Applying the Schwarz Lemma it follows
from (24) that there exists a sequence of integers {n,} such that the
relations

(25) 2, () —~1 (k — <o)

hold uniformly in every closed disc |£]| =< p < 1.
Now let w* be a fixed complex number with |w*| <1 and let us
determine two positive numbers %, and p such that the inequalities

) 0l e

1— 1

Ny
are satisfied for k£ = k,. On account of (20) the point w* belongs to D,,
for k = k,. Hence there exists a sequence of complex numbers {.}
with |¢,] < 1 such that the equations

@7) w* = 0, (&)
hold for k£ = k,. By (24) we have

(28) el = <<
11
My

for k = k,. Applying now (23) and (25) we conclude

2%

(29) (ol + |z e 22

RO

for ¥ — . Since w* is an arbitrary point in the disc |w| < 1, our
theorem is established.
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