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1. Introduction. We shall determine the radius of univalence p, of
the funection

(1.1) E(z) = ezzve-ﬂdt .

W0
We shall write E(z) = w = u(x, y) + (z, ¥). On the imaginary axis we
have # = 0 and v, regarded as a function of y, has a single maximum
at the solution y = p of

29v(0, ) =1.

The value of p to eight decimal places has been determined by Lash
Miller and Gordon [1] and is

(1.2) p = 0.92413887 .

It is evident that p, < p. We shall prove the following theorem.

THEOREM. The number p is the radius of univalence of E(z).
Recently, the radius of univalence of the error function

erf(z) = Sze—ﬂdt

was determined [2]. It is interesting to note that when proceeding from
erf(z) to E(2) we meet an entirely different situation. In the case of
erf(z), points z, 2z, closest to the origin and such that erf(z)=erf(z,) are
conjugate complex and lie far apart from each other. In the case of
E(z) points of that nature can be found in an arbitrarily small neigbor-
hood of the point z = Jp.

The actual situation is made clear by the diagram and tables given
below. In Fig. 1 we show the curves R =|FE| = constant and y =
arg E = constant in the square 0 <2 <1.5,0 <y < 1.5 of the z-plane. The
table shows the values of E for z on the curve C (defined below). The
values given were obtained by summing an adequate number of terms
of the power series on the Datatron 205 at the California Institute of
Technology ; some were checked by comparison with the tables of Karpov
{4, 5] from which values of E(z) can be obtained.
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2. Idea of proof. Since

o 2n .
2.1 E(z) = : . gml
(2.1) @ =2 a5 @t n? [zl < e

05

0
15

—_—
X

Fig. 1. Curves R = | E | = const. and y = arg E = const. in the z-plane.

I E() b E(peib) ‘ ‘ vy | Ey)
oo , 0° | 1.6837 o0 o

0.1 0007 | 10° | 1.4957+.0.6121i \ 0.1 | 0.0993i
0.2 02054 | | 20° | 1.0573+0.9759i L 0.2 | 0.1948i
0.3 0.3187 | | 30° | 0.6079+1.0473i 0.3 } 0.2826i
0.4 0.4455 | | 40° | 0.2919-+0.9463i 0.4 | 0.359i
0.5 | 0.5923 | 50° | 0.1189+0.8024i | | 0.5 I 0.4244i
0.6 | 0.7671 | | 60° | 0.0401+0.6817i | 0.6 0.4748i
0.7 | 0.9805 | 700 | 0.0099+0.6003i 0.7 | 0.5105i
0.8 1.2473 | 80° | 0.001140.5553i | 0.8 | 0.532l
0.9 | 15876 | 90° | 0.5410i | 0.9 | 0.5407i

we have E(Z) = E(z) and E(—z) = — E(z) and may restrict our considera-

tion to the first quadrant « = 0,y = 0 in the z-plane.
In the subsequent section we shall prove the following lemma.

LEMMA.
(2.2) E(2) + E(z)

for any two points on the boundary C of the open sector S of the circular disk
(2| < o0 in the first quadrant.
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From this it follows, since E(z) is entire and thus regular in SuC
that E(z) maps S conformally and one-to-one onto the interior of the
simple closed curve C* corresponding to C in the w-plane [3, p.121].
This establishes our theorem.

3. Proof of the lemma. Let z = r¢*. The curve C consists of

the segment S, : y=0, 0<zx<p,
the circular arc K: |z]=p, 0< ¢ <n/2,
the segment S, : x=0, 0<y<p.

and the three common end points of these three ares.

(A) On S, E(2) is real and increases steadily with «.
(B) On S,, E(2) is imaginary, and v increases steadily with .
(C) v+0 on K.
(D) On K, |E(z)| decreases steadily with increasing ¢.
(A) is obvious from (2.1), and (B) follows from the definition of p.
Proof of (C). Integrating along segments parallel to the coordinate
axes we have

w(x, y) = e~"*[cos 2xygy672 cos 2xrdr
0
+ sin ny{e’”zgxe“zdt + Syefzsin 2xrdr” .
0 0
In {# >0,y >0}n{lz] <p} we have cos2xy > 0, sin2zy > 0. There-
fore v > 0 on K.

Proof of (D). Integrating along a radius ¢ = constant from 0 to p
we have

E(z) = @i"’gpe"(”“’)dr
where
I(r, ) = a(r, ¢p) + b(r, ),
a(r, d) = (p* — r*) cos 2¢, b(r, p) = (p* — r*) sin 2¢ .
Therefore

|E|* = SD e"dr SP edr .
0 0
Differentiating with respect to ¢ and setting

B* = a* 4 ib*, a* = a(r¥, $), b* = b(r*, ¢),
f = cos (b* — b) — 4 sin(b* — b)

we obtain
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P P P . LA (P —=
([ E ll)d) — S ehhd,d/r S eh d/r—F ___I__ S elb dr*S @hhd)d/r
0 0 .0 0

- SP SP @u,+a* {fhd, + f_h(,,}drdr* .
0,0

Now
g = —2(0* — r?)sin 2¢, by = 2(0* — 1’) cos 2¢
and therefore

Fhy + Fhy = 2Rfhy = 2[cos(b* — bla, + sin(v* — b)b,]
= —4(p* — *) sin(a($))

where
ap) =2+ b —b* = (" — r’)sin2¢ + 2¢ .
This yields

(3.1) (E|?), = —4S:SSQ“+“*(p2 — %) sin (alp))drdr* .

Since from (1.2) we have |r* — r*| < 1, we obtain
a(p) =2+ 2(r** — r*)cos2p > 0.

Hence «(¢),0 < ¢ < x/2, has its maximum at ¢ = z/2. Therefore
0 =< a(¢p) < = when 0 < ¢ < 7/2 and sin{a(¢)) > 0 when 0 < ¢ < #/2. This
means that the integrand in (3.1) is positive in the region 0 < r = p,
0 < r* < p for all ¢ in the interval 0 < ¢ < z/2. Thus (| E|*);, < 0 when
0 < ¢ < =/2. This proves (D).

We note that (D) remains true if K is replaced by quadrants of circles
of radii somewhat larger than p; this, however, is of no interest here.

For 2, € K, %, € S, or 2, € K,2, € K, equation (2.2) holds, as follows
from (D). For 2z, e K,z, € S, the same is true because of (C). In the
other cases, z, € S, 2, € S,, ete., the validity of (2.2) is obvious. This
proves the lemma.
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