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B. Sz.-Nagy [4] has proved the following theorem:

THEOREM A. Let [Tt; t Ξ> 0] be a strongly continuous semi-group of
contraction operators on a Hilbert space H. Then there exists a group of
unitary operators [U£, — ^ <t < ^] on a larger Hilbert space H such that

( 1 ) Tty = PVtyf yeH,t^0;

here P is the projection operator with range H. Then space H can be
chosen in a minimal fashion so that [UtH — oo < t < oo] spans H. In
this case [U8] is strongly continuous and the structure {H, U{, H] is de-
termined to within an isomorphism.1

The infinitesimal generator L of the semi-group [Tt] is defined by

( 2 ) lim d'\T,y -y] = Ly
8^0 +

for all yeH for which this limit exists. The operator L is linear and
closed with dense domain, ®(L) (see [1]). It is shown in [2] that L is
maximal dissipative in the sense that

( 3 ) (

and L being maximal with respect to this property. Since [U«] is a
semi-group as well as a group of operators, the infinitesimal generator
L of [Uf] also shares these properties; however in the case of a group
of unitary operators ΐL is in addition self-ad joint.

The purpose of this note is to study the relation between L and
L. It turns out that L is a restriction of L only when L is maximal
symmetric. In general L is neither a restriction nor a projection of L;
in fact ®(L) Π H may contain only the zero element. Nevertheless we
shall obtain H, L, and [Ut] directly from L, our principal tool being the
discrete analogue of the above theorem, which is also due to Sz.-Nagy
[4], namely

THEOREM B. Let J be a contraction operator on a Hilbert space H.
Then there exists a unitary operator J on a larger Hilbert space H such
that

( 4 ) Jny = PJ"y, yeH,n^0;

here P is the projection operator with range H. The space H can be
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National Science Foundation, contract NSF G-4231.

1 Two structures {H, Uj, Hj and {Hr, U£, H} are isomorphic if there is a unitary map
V of H onto IF which is the identity on H and is such that ΎVty = U V̂?/ for all 2/6H.

169



170 R. S. PHILLIPS

chosen in a minimal fashion in the sense that [JnH; — oo <n< oo] spans
H. In this case the structure (H, J, H] is determined to within an iso-
morphism.

For a maximal dissipative operator L with dense domain, it is shown
in [2, §1.1] that (I — L) is one-to-one with range ΪR(I — L) — H and that

(5) J = (I + L)(/-L)- 1

is a contraction operator with ®(J) = H and such that (/ + J) is one-to-
one. Applying Theorem B we obtain the unitary operator J on the
enlarged space H spanned by [Jwff; — oo <%< oo] with J satisfying the
property (4).

LEMMA 1. The operator (I + J) is one-to-one.

Proof. Let S be a contraction operator, set $(S) = [#; Sy + y = θ],
and denote the projection operator with range $(S) by Ps. Then the
ergodic theorem (see [3, pp. 400-406]) asserts that

st. lim (n + l ) " 1 ^ (~Sf = P*

and that SP^ — PSS — ~PS. We apply this result first to J and then to
J. Making use of (4) we see that

PP j2/ = PJ?/, ye H.

As noted above P3 = Θ, so that PPjP = Θ. Actually PjP = Θ; for
otherwise there would exist a yeH with P^y Φ θ so that

which is impossible. Thus PjP = Θ and hence Q(J) is orthogonal to H.
But this means that

P3J
nH - JnPjH = θ ,

and we infer that JnH is orthogonal to ,3(J) for all n. The minimal
property of H therefore requires that $(J) — θ.

REMARK. Associated with J is the resolution of the identity [E(α-);
—π < σ ^ 7r] and the integral representation

Jn = f * exp (wσ)ffl(σ) .

Setting the restriction of PE(σ-) to H equal to F(σ) we see by (4) that

Jn = f ̂  exp (mσ)ίLF(σ-) .

The argument used in Lemma 1 applied to S = exp (iμ)J shows that if
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J has no eigenvalues of absolute value one, then neither does J and
hence that both E(σ) and F(σ) are strongly continuous in σ-. Converse-
ly, F((τ) is strongly continuous then as is readily verified

(n + 1)-'Σ

= [* Kn(σ + μ)dF(σ)y -* 0 , yQH)
J-it

here

Kn(σ) = (n+ I)-1 exp (»/2) sin [n + 1

 σ T s i n . ^ T 1 .

It then follows from the ergodic theorem that g{ — exp(iju)J] = θ and
hence that J has no eigenvalues of absolute value one.

THEOREM. Set

(6) L = (J-I ) (J + I ) - 1 .

Then L generates a strongly continuous group of unitary operators
[Ut — oo < t < oo] such that

(7) y , ^ 0

and [\JtH; — oo < t < oo] spans H.

Proof. It follows from the above lemma that (I + J) is one-to-one
and hence that L is well-defined. Morever ®(L) = 31(1 + J) is neces-
sarily dense in H since otherwise (I + J*) would nullify some non-zero
vector and since J ' 1 = J* the same would be true of (I + J). Further
it is clear that iL is the Cayley tranform of iJ and hence L generates
a strongly continuous group of unitary operators which we shall denote
by [UJ. In order to verify (7) we proceed to represent the resolvent
R(λ, L) = (λl - L)-1 in terms of J for λ > 0. We see from (5) that

( 8 ) y = 2-\Ju + u) and Ly = 2~\Ju -u), ueH .

Suppose next that λy — Ly = / . Replacing y by u as in (8) we obtain

2~λλ{Ju + u)- 2~\Ju -u) = /

so that

u = 2(1 + λ)^± [(l - λχi + λ)-γj»f, λ>o.

Again making use of (8) we get

where
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a£λ) = (1 + λ)~ι and an{λ) = 2(1 - λ)u-\l + ;)—» for n > 0 .

Thus R(λ, L) can be represented by an absolutely convergent series in
powers of J for λ > 0. Taking powers of R{λ, L) we see that

where again the series is absolutely convergent. Similarly

and it follows from (4) that

( 9 ) [R(λ, L)fy = P[R(Λ, L)fyf y e H, k ^ 0, λ > 0 .

According to Yosdia's proof of the Hille-Yosida theorem (see [1|),

(10) Tt = st.lim exp (tBλ) and Ut = st.lim exp (ίBλ), f ^ 0 ,

where

5 λ = λ*B(λ, L) - λl and Bλ = λ*B(λ, L) - λ\ .

Thus for 2/ e ί ί the relation (9) implies

exp (tBλ)y = P exp (ίBλ)?/, yeH, λ>0 ,

and this together with (10) gives (7).
It remains to prove that H is the same as

Ho = closed linear extension of [UtH; — oo < t < oo] .

Let Po be the projection of H onto Ho. Then clearly U^HoCHo for all
real t, and since U t* = U_c the same is true of the orthogonal comple-
ment to Ho. As a consequence P0Uf = Û Po for all real t. Hence for

PQhy - lim δ-φoVty - Fffl) = lim d-\\J,PQy - Poy) = LPoy .
δ->o+ δ->o+

Thus Po commutes with L and hence with J. But since H is obviously
contained in Ho we have

JnH = JnPQH - P 0 J w i ϊcH 0 .

The minimal property of H asserted in Theorem B therefore implies that
H = Ho. This concludes the proof of the theorem.

It should be noted that since ih is self-adjoint, the largest restric-
tion to H of %L will be symmetric. On the other hand if iL is sym-
metric then it is easily verified that J is an isometry and hence that J
is an extension of J ; in this case then L will be an extension of L.
However in general if u e H and y — Ju+u, then z = Py = Ju+u e
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and LPy = PL?/; each ze S(L) can be so represented. A simple example
shows that ®(L) Π H may contain only the zero element.2
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2 Suppose H is one-dimensional and Tt = exp (~t). The Sz.-Nagy construction for H in
Theorem B then results in H = l2f the space of complex-valued sequences y = {yjn

— oo < n < oo} with

^J = ton-J* a n d F^J = WJ Wo = V K = ° f o r n φ 0)< T h e n r e l a t i o n

to J and L asserts that for each {τjn}e^(L) there is a {μJeH such that

If we also require that {y/n}eH, then μn_τ + μn = 0 for all n Φ 0 and this together with
the condition Yi\μ |2 < oo implies that μ = 0 for all %. It follows that ®(L)ΠH= 0.
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