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1. Introduction. A DBoolean algebra B is called atomic if every
non-zero element of B contains an atom. A variant of this definition is
the equivalence: B is atomic if and only if B contains a dense (i.e.,
coinitial in B — {0}) subset which is totally unordered. In this paper,
we will investigate the properties of Boolean algebras which contain
dense subsets of somewhat more general order type than the totally
unordered sets.

DEFINITION 1.1. Let a be an infinite cardinal number. A partially
ordered set P will be called a-compact if P is closed under finite meets,
contains a zero element and satisfies the condition that if M & P has
cardinality < « and no finite subset of M has zero meet, then M has
a non-zero lower bound in P.

The use of the term ‘‘compact’ is of course motivated by the
topological analogy.

DEFINITION 1.2. A Boolean algebra B will be called «-atomic if B
contains a dense subset which is a-compact.

Since a totally unordered set becomes a-compact (for all «) if a zero
element is adjoined to it, an atomic Boolean algebra is «-atomic for all
cardinals «.

The organization of the paper is as follows. Section two is devoted
to the construction of examples of a-atomic Boolean algebras. In section
three, some properties of «-atomic Boolean algebras are proved. Section
four presents a representation theorem for «-atomic algebras.

Throughout the paper, a will denote a fixed infinite cardinal
number. The abbreviation «-B.A. will be used for «-complete Boolean
algebra. The terms «-subalgebra, «-ideal, «-homorphism, «-field, etc.
have their usual meanings. Thus, an «a-homorphism of an «-B.A. is a
homomorphism preserving «-joins; an «-subalgebra of an «-B.A. is a
subalgebra closed under formation of «-joins in the enveloping algebra.
It is sometimes convenient to use the symbol o in place of a with the
meaning that the corresponding property is to hold for all cardinals.

The lattice operations of join, meet and complement are designated
by v, A, and (') respectively. The symbols 0 and « denote the zero and
unit in a Boolean algebra. Set operations are indicated by rounded
symbols: N, U and & stand for intersection, union and inclusion
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respectively. The empty set is denoted by §. The symbol |A| repre-
sents the cardinality of the set A. For any cardinal number «, the
smallest cardinal greater than « is denoted «*.

2. Examples. We have already observed that any atomic Boolean
algebra is co-atomic. The converse is also true.

THEOREM 2.1. A Boolean algebra is oo-atomic if and only f it is
atomic.

Proof. Let B be w-atomic. If |B| = «, it is possible to find a dense
subset D in B which is a-complete. Let M be a maximal dual ideal in
D. Then M has the finite meet property and |M| < «. Hence, M has
a non-zero lower bound ¢ in D. By the maximality of M, it is clear
that ¢ is an atom of B. Since, by Zorn’s lemma, every non-zero
element of D is contained in a maximal dual ideal of D, it follows that
every element of D contains an atom. But D is dense in B so every
element of B contains an atom. Thus B is atomic.

In order to construct an a-atomic B.A., it is enough to exhibit an
a-compact partially ordered set P which is disjunctive, that is, satisfies
the condition that for any @ X b, there exists ¢ e P such that 0 ¢ =< «a
and ¢Ab = 0. Indeed, any disjunctive partially ordered set can be im-
bedded as a dense subset in a complete Boolean algebra (see [1]), and
if the partially ordered set is a-compact, then the B.A. will necessarily
be a-atomic. This complete B.A. is determined up to isomorphism by

the disjunctive partially ordered set. In fact, a more precise statement
is true.

LEMMA 2.2, Let B, and B, be complete Boolean algebras. Let P, and
P, be dense subsets of B, and B, which are closed under meects. Suppose
¢ is an isomorphism of P, on P,. Then ¢ has a unique extension to an
wsomorphism of B, on B,.

This result is proved in [1] for example.

We describe a fairly general method of constructing partially
ordered sets which are disjunctive and «a-compact.

Let I be a non-empty index set. Let {X;|¢e I} be a collection of
sets, each containing at least two elements. Put X = [].e.X;. Suppose
M is a given non-empty collection of subsets of I with the properties

(a) M is closed under finite unions,

(b) M is «a-directed: any subcollection of M with cardinality < «

has an upper bound in IN.

Let M e M and ¢ e [l;exX;, that is, ¢ is a function on M such that
¢(v) € X, for all 7€ M. Denote
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Ay o ={reXlxlu=9¢}.

Finally, let 2 = (I, X;, M) be the collection of all A, ,, together with
the empty set.

LeMMA 2.3. The set 2, ordered by inclusion, is an a-compact, dis-
Junctive partially ordered set.

Proof. Observe that 4, , € Ay, , if and only if M 2 Nand ¢|y = ¢.
On the other hand, 4, , N Ay , = Qif and only if there exists s e M N N
such that ¢(¢) = ¢(¢). The fact that £ is meet closed and disjunctive
is a routine consequence of these observations and property (a) of M.
The fact that Q is «a-directed follows from property (b) of Wt.

A special case of this contruction is particularly interesting. If I
is arbitrary, each X, is a two element set and I consists of all sub-
sets A of I with |A| < «, then the conditions for the application of
Lemma 2.3 are fulfilled. The a-compact partially ordered set @ in this
case is completely determined by the cardinal numbers « and f = |I|.
Thus we can designate this Q simply as @.,. Let B be a complete
Boolean algebra containing @,, as a dense subset and define F.; to be
the smallest a-subalgebra of B containing @, It is clear from 2.2 that
F,; is determined up to isomorphism by @,p.

THEOREM 2.4. The Boolean algebra F.g is isomorphic to the a-field
of subsets of X generated by @.; and is o free a-representable algebra
with B generators.

REMARK. A Boolean algebra is called a-representable if it is the
a-homomorphic image of an «-field (see [2]). The fact that the class of
all such algebras is equationally definable and therefore admits free
algebras has been investigated in [5]. Indeed, Sikorski proves in [7]
that the a-field generated by @, is a free a-representable algebra with
53 generators. Thus it is only necessary to prove the first assertion of
2.4.

Proof. Let B, be the a-field (in X) generated by @,,. Note that
@, is closed under a-intersections and that the complement of any set
of @.; is a union of sets of @,;. Hence, by Lemma 5.2 of [4] (quoted
in (4.3) below), @, is dense in B,. It follows from 2.2 that B, is
isomorphic to Fl,.

COROLLARY 2.5. FEwery a-representable Boolean algebra is an
a-homomorph of an a-atomic, a-field.
It is easy to see that if 3 < «, then ., is atomic and hence so is
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any Boolean algebra containing ., as a dense subset. However, if
B8 > a, then a Boolean algebra B containing @., as a dense subset is not
even a*-atomic. This is a consequence (by (3.3) below) of the stronger
result that B is not a*-distributive (see [9]).

THEOREM 2.6. Let B be a Boolean algebra containing Q.. as o dense
subset. Suppose also that f > «. Then B is not at-distributive.

Proof. Let J & I have cardinality a*. For ¢¢ I, denote a; =
{y € X|x(@) = zy} (k=1,2), where X;= {z;,«,}. Then a,va,=u
(since no element of @, is disjoint from both a; and a;,). But if M e IR,
then J & M, so there exists j € J — M. For this index, MNiex®: o) & P
(k=1,2) for all ¢ ¢ 2%, Thus

Nies(@iVa,) =u>0= pr(AieJa’i,(p(i)) ’
so B is not a*-distributive.

REMARK. The referee has pointed out that 2.6 is related to the
results in Scott’s paper [6]. Scott constructs a Boolean algebra B, (for
each regular cardinal «) which, when « = £*, is equivalent to the com-
pletion of Fygg+.

3. Properties of a-atomic algebras. The term ‘covering’’ will be
used to designate a subset of a Boolean algebra whose least upper bound
is the unit element.

LemMmA 3.1. Let B be an a-complete, a-atomic Boolean algebra. Then
B has the following property:

(*) if {A;lo e S} is a family of coverings of B such that |S| = at
and if b+ 0 in B, then there is a choice function ¢ on S such that
o(c) € A, with the property that of T < S and |T| < «, then

bA Acerp(o) # 0 .

Proof. Let T < B be dense and a-compact. Denote by 2 the least
ordinal of cardinality a*. We can assume that S consists of the ordinals
o < A. By transfinite induction, define functions f:S— T and ¢ on S
with ¢(c) € A, having properties

(i) o <t implies 0 < f(r) < flo) £ b,
(i) flo) = (o).
These are constructed in the following way. Assume f(o) has been de-

fined for all & < z, where r < 1. By a-compactness, ¢ = A.,,f(o) # 0.
If =1, then¢ = u. Let ¢(1) ¢ A, satisfy ¢(1) Ad # 0. Such an element
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exists, since b=bAu=0AVA =V{bralaec A}. Let f(1)eT be
chosen arbitrarily, satisfying 0 # f(1) < ¢(1)ab. If = > 1, then ¢ < b.
Choose ¢(z) € A, so that ¢(c)nc # 0. As before, some element of 4, will
satisfy this requirement. Using the fact that 7 is dense, it is possible
to find f(z) € T such that 0 < f(r) = ¢(r) Ac. With this construction, it
is clear that (¢) and (4¢) are fulfilled.

Now if TS S and |T| < «, then since 2 is regular, there exists
7 < A such that - < » for all r € T'. Hence,

b AN Ao’GT(p(O—) z b/\ A7<V)¢(T) 2 b AN AT<7I (‘Z') zf@) > O .
This is the required conclusion.

COROLLARY 3.2. Any a*-complete, a-atomic B.A. is a*-representable.

Proof. It is easy to see that the condition (*) of (3.2) implies
Smith’s property (P..) (see [8]). Hence, (8.2) follows from Theorem 4.1
of [8].

COROLLARY 3.3. Any a-complete, a-atomic B.A. is (a, oo )-distributive.

For the definition of («, oo)-distributivity, the reader is referred to
[9] or [4]. The property (*), together with (2.3) of [4] implies (3.3).

If B is a complete B.A. containing &,; as a dense subset, then B is
a*-representable by (3.2). If > «, then B is («, «)-distributive, but
not a*-distributive by (2.6). Hence, B is not 2**-representable. If we
admit the generalized continuum hypothesis, this means that B is not
r-representable for any 7 > «a*, which partially answers a question
raised by Chang [2; p. 213].

In [3], the author conjectures that any a-distributive 2%-complete
B.A. is 2*representable. This conjecture now appears rather unlikely
in view of Theorem 3.4 of [8], since its validity, together with the
generalized continuum hypothesis, would imply a positive answer to
Souslin’s problem. However, for an o«-subalgebra B of an o-atomic
Boolean algebra B, it is true that 2°-completeness implies o*-representa-
bility. For B is also an «-subalgebra of B, the normal completion of
B. But B is a*-representable and a-distributive by (3.2) and (3.3).
Therefore, to see that B’ is a--representable, we have only to notice
that it must actually be an a+-subalgebra of B.

THEOREM 3.4. Let B be an a-distributive, 2%-complete Boolean algebra.
Suppose B is an a-subalgebra of B which is 2%-complete. Then B is a
2*-subalgebra of B.

REMARK. This theorem is well known for fields of sets. (See [9],
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Theorem 3.10 and the references given there.) We will give a proof,
since the result seems to have been overlooked in [3] and [9].

Proof. Let QB and |Q]<£2% Letb=1lub. @ in B and b=
lLub. Q in B. Then b=5b. Assume b >b and set ¢ =bab'. Let B
be the a-distributive Boolean algebra: {d ¢ B|d < ¢}. Denote by % the
mapping B-— B, given by @) =anac¢. Evidently % is a complete
homorphism of B and hence the restriction % of %z to B is an «a-homo-
morphism. The image 4(B) is an a-subalgebra of B, and therefore is
a-distributive. By Theorem 8.6 of [9] or (6.5) of [3], A~ is a 2*-homo-
morphism. But obviously @ is contained in the kernel of ~. Thus,
k) = Lub.{Ma)lae Q =0. But ¢ <b,80¢ =unc=hu)=nbvc)=
hd)v ') =hbd)v(c ac) =0, a contradiction. Thus, b =05, which is
the desired conclusion.

COROLLARY 3.5. Let B be weakly attainable from the infinite cardinal
a. Suppose B is a P-distributive, 28-complete B.A. and B is an a-sub-
algebra of B which is 2P-complete. Then B is a 2°-subalgebra of B.

Proof. Clearly, if € is a singular cardinal and B is an 7-subalgebra

of B for all 7 < & then Bis a &-subalgebra. Using this fact, 3.5 follows
from 3.4 by transfinite induction.

4. The representation theorems. Not every «-atomic B.A. is an
«-field, since the normal completion of an atomless a-field will not, in
general, be an «a-field (a¢ being infinite). However, we will prove that
every a-atomic algebra is a dense subalgebra of the normal completion
of an a-field. Of course, since any B.A. is a dense subalgebra of its
normal completion, it suffices to prove that any complete, a-atomic B.A.
contains a dense subalgebra B, which is isomorphic to an «a-field.

LEMMA 4.1. Let be an a-complete, a-atomic B.A. Then B contains o
dense, a-compact subset which s closed under o-meets.

Proof. By Definition 1.2, B contains a dense a-compact subset 7.
The set of all a-meets of elements of 7 will clearly be a dense,
a-compact subset of B which is closed under a-meets.

LeMMA 4.2, Let F be a disjunctive, a-compact partially ordered set
which is closed under a-meets. Let X be the set of all proper maximal
dual ideals of F. For ae F, let ¢(a) = {Pec X|ae P}. Then ¢ is an
a-meet preserving, order isomorphism of F into the Boolean algebra of
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all subsets of X. The vmage | of ¢ has the property that the complement
of any set of T 48 a union of sets of f.

Proof. Since F' is «a-compact and closed under «-meets, every
maximal dual ideal of F'is also closed under a-meets. Hence, ¢ preserves
a-meets by the usual argument.

If ¢ +#0 in F, then ¢(c) = O, since every non-zero element is con-
tained in a proper maximal dual ideal. Since F'is disjunctive, a L b
implies the existence of ce F' with 0 #¢<a and bac=0. Hence,
O ¢(c) S ¢(a) and ¢(b) N ¢(c) = 0. Therefore, ¢(a) Z ¢(b).

If Pe X — ¢(a), then a ¢ P. By the maximality of P, there exists
be P such that anb=0. Then Pe ¢b) < (¢(a))°. This shows that
(¢(a))° is a union of sets of f.

For the proof of the main theorem of this section, we need a known
result.

LEMMA 4.3. Let T be o family of subsets of a set X with the pro-
perties that § is closed under a-intersections and the complement of any

set of T is a union of sets of §. Let L be the a-field generated by §. Then
f is dense in L.

The proof of this fact can be found in [4].

THEOREM 4.5. Let B be an «a-atomic Boolean algebra. Then B s

wsomorphic to a dense subalgebra of the normal completion of an a-atomic
a-fleld of sets.

Proof. Let B be the normal completion of B. Then B is a-atomic.

By (4.1), B contains a dense, a-compact subset F which is closed under
a-meets. Since F'is dense in the Boolean algebra B, F' is disjunctive.
By (4.2), there is an a-isomorphism ¢ of F' onto a family f of subsets
of a set X with the two properties of (4.3). Let 2 be the a-field
generated by f and let ¥, be the normal completion of & By (4.3), { is
dense in & and hence in &, Consequently, by (2.2), ¢ extends unique-
ly to an isomorphism of B on ¥, The restriction of this extension is
an isomorphism of B onto a dense sub-algebra of the normal completion
of the a-atomic a-field L.

COROLLARY 4.6. Any complete, a-atomic Boolean algebra is tsomorphic
to the normal completion of an a-atomic «-field.
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