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1. Introduction. It has been noted by several people that in order
to define the integral of some differential 1-form « along a curve C, the
latter need not be of bounded variation. For example, in the extreme
(and trivial) case where o is the differential of some function f, the
integral can be defined as the difference of the values assumed by f
at the end-points of C. No condition on C is necessary. H. Whithney
[4], with J. H. Wolfe, by the introduction of certain norms, has found
general abstract spaces of curves along which the integral of 1-forms
satisfying certain conditions can be defined. In fact, H. Whitney con-
siders integration of p-forms with » > 1. In a previous paper [2], we
obtained rather awkward conditions for a decent integral to exist that
depended on the number of higher derivatives of w on C.

In this paper, we consider 1-forms o possessing ‘ higher derivatives’
on C in a sense somewhat different from that due to H. Whitney [3]
which we used previously. A Lipschitz type condition on the remainders
of the Taylor expansion is imposed (see 4.1.). We define the a-variation
of a curve as the supremum of sums of ath powers of chords (see 2.7)
and show that the integral of w along C exists if the a-variation of C
is bounded, where « is related to the number of ‘higher derivatives’
of w on C. Under somewhat stronger hypotheses on C, we show that
this integral is an anti-derivative of » on C.

2. Notation and basic definitions. Throughout this paper, N is a
positive integer and we use the following notation.

2.1. FE denotes Euclidean (N + 1)-space.
N 1/2

2.2, |lz]|l= (Z wi) for o e E.
i=0

2.3. diam U =sup{d:d = ||[# — y|| for some x e U and y e U}
2.4. ¢ is a continuous function on the closed unit enterval to E and
C = range ¢.

2.5. 97 is the set of all subdivisions of the unit interval, i.e. functions
T on {0,1, ---, k} for some positive integer % such that :
TO)=0, T(k)y=1, TG—-—1) <T@ fori=1,---,k

2.6. [T/a,b]={1:a <T@ — 1) <T@ < b}

2.7. Via,0)=sup >, |le(T(— 1) — ¢(T())||*

Teyie[T/a,b]
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3. Properties of V.

3.1. LEMMA. If0<a<b<e<L1, then
Va, b) + Vb, ¢) < a(a, ¢) < Va, b) + Vb, ¢) + (diam C)*

3.2. LEMMA. If a < f and Vi(a, b) < o, then Vi(a,b) > co.

Proof. Since V,(a,b) < o, there is an integer n such that there
are at most n elements ¢ e [T/a, b] with || ¢(T(¢ — 1)) — ¢(T(3))|| > 1 for
any T e .. For any other ¢ e [T/a, b] we have

(TG — 1)) — o(TE) |IF < [l (T — 1)) — ¢(T(@) ||* .
Hence,

Vi(a, b) < Va,b) + n(diam C)® < oo .

4, Integration of 1-forms. In this section, we first define the kind
of differential form we shall be dealing with. Our definition is a variant
of Whitney’s definition of a function m times differentiable on a closed
set [3]. Next, we choose a special sequence of subdivisions and proceed
to define the integral of the form over the curve C by taking sums of
polynomials of degree m and then passing to the limit. Under condi-
tions involving the generalized variation V,, we show that the integral
exists and possesses, in particular, the properties of linearity and ¢ anti-
derivative ’.

Throughout this section, m is a positive integer, 7 > 0, K > 0.

4.1. The Differential Form. Let
ok = S\, for any (N + 1)-tuple % .

A differential 1-form « on C is a function on the set of all (V + 1)-
tuples %, for which %, is a non-negative integer for ¢=20, ..., N and
1 < ok < m, to the set of real-valued functions on C such that

RERRE S

wk(y) :m"z‘ﬂ“ ‘%H(w) '(yq‘"_':g;[));’,o". ".'.—(Q{N"‘*x}v)ili + Rk(iE; y)
oj=0 .7
where
|Ry(x, )| < K|z — yl|™*"* for v e C and ye C.

It is important to note that, in case m =1 and » > 0, » is a dif-
ferential form on C satisfying a Holder condition. If however m > 1,
then o is also a closed differential form on C, that is, dw =0 on C.
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By taking m =1 and 7 =1, we get the sharp forms considered by
Whitney. The conditions we impose on C, however, are quite different
and, we feel, in practice easier to check than those obtained in [4].

4.2. The sequence of subdivisions. We define first, for each (n + 1)-
tuple of non-negative integers (s,, -, s,), @ point (s, - -+ , 8,) by recur-
sion on » and on s,. These will be the end-points of the nth subdivision
of the unit interval.

4.2.1. DEFINITION. £(0) =0, t(1)=1,
t(So, tee ,Sn,O) = t(SO’ e 9Sn) ’
t(so, M ysn,j+ 1) = sup {u:t(scy cee ,smj) <u< t(sm cee, 8, F 1)

and || o) — ¢(t(s, -+, s | < Sl for U -+, 8,00) S0 S )

for any non-negative integers » and j.
We shall denote by T the sequence of subdivisions of the unit
interval such that: .

range T, = {u:u = t(sy -++ , 8,) for some n-tuple (sy, -+, 8,)} -

4.2.2. LEMMA. For any non-negative integers n and j, we have

t(sm cee ,Sn)ét(so, cce )smj)ét(soy e ’sn+1)'

4.2.3. LEMMA. For any positive integer n, v € [T,/0,1], j€[T,-,/0, 1]
we have: T,., is a refinement of T,, i.e. range T, C range T, ;

i T.(i—1)<u<T,\ ),
then
(@6 = 1) = eIl < 5 5
if
T — 1) < Toli — 1) < To(i) < Tosi)
then

(T — 1)) — (T.(@) || = El_ ,

4.2.4 LEMMA. If F(a,y) is a real number whenever 0 <z <y <1,
a € rangeT,, b e rangeT,, and a < b, then

F(Tn+1(7: - 1), Tn+1(7:)) = Z Z F(Tn+1(7: - 1)’ Tn+1(7;)) .

i€lT, ,,/a,b] JELT,Ja,b] 1€lT, /T p(J~1),T (5]
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4.3. The integral of o. First, we define Sawd(p as the limit of
b

certain sums of polynomials.

4.3.1. Definitions.

P'(x, y) — in: wk(x)f(y" — xo)ko'. . (yN_:__pr)kN ’
ok=1 kyloeooky!

Bla, b) = P'(g(a), ¢()),
Su(a,0) = 3, (P — 1), Tu0)

ie[Tn/a,,b

Sbwdgo — lim S,(a, ) .

b
Next, in order to prove the existence of S wdy and some of its

properties under conditions involving V,(a, b) for some a < m + 7, we
introduce the following.

4.3.2. Definitions.
R(z, y, 2) = P'(x,y) + P'(y, 2) — P'(x, 2) .

o 1 _
M=K o

B=m+7.

4.3.3. LEMMA. If x,y,2zeC,|lx —yl|| <0 and ||y — z|| < 6, then
| R(z, y, 2) | < Mo? .

Proof. Let h(v) = P'(x,v) for ve E. Then, % is a polynomial of
degree m. Let O, = {k:k is an (N + 1)-tuple of non-negative integers
and 1 <ok <7}.

For ke O, and pe O,, let p > k iff p, >k, for 4=0, .-, N, and let

_ 07" h(v)
Diht) = 5 O7HO) K e

then

— cu (V9 — @)% — %o oo s (Vy — Xy)?N*N
Do) = B @) T e — )1

P2k

Hence, by Taylor’s formula

We) = hy) + 3 Dibly) Co =W 1ot o U g
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4 2[5, eflemre s Wama]

P2k

) (#y — yN)kN} .
ko leeeky!

On the other hand from 4.8.1 and 4.1 we have
Vg e — )
P2 = 3 {{oi@) £ S o fa) 0= 8 Ur =00 4 g,y

€o,, Ok .70!'°°.7N'

. (B — ). - (2y — yn)'> }

kgl eeeky!
= (Y — @) — o e ee (yy — @y)?v "y
B k%ﬂz{[kag‘:én G (s — I) ! - ( S — k)] + By, y)]
. (z (U @0)76_ (zzv __ yN)kN
e )
— (0— U)ku... v — N)kN
B h(Z) a h(y) + k€O, Rk(w, y) : yko l.. o(lzCN ! y__

m

Making use of the condition on R,(z, y) stated in 4.1, we get

[P )+ P2~ P2l < 3 - Klly —kx‘ll8 ‘”‘Zilz —yllI™ e .

4.3.4 LEMMA. Suppose {|2(0) — x(7)|| < A and {|z(z — 1) — 2(2) || <
Afori=1,---,p, whereas ||a(t — 1) — a()|| = Afr fori =1, +-+ ,p—1,
where all x(7) e C. Then

|5 Pati = 1),29) — P0(0), 2(0)| < Mredr=e 5 [l — 1) — 2 I

Proof. | S P'(ali = 1), 2(i)) — P'@(0), a(0)|
< S 1P(0), a(i — 1) + Pe — 1), a()) — P'((0), 26) |
= S 1B@0), a(i—1), 2(0) | < (p—~1)MA? = (p— ) Ar-+(2 )

=2

= Mrar= S lal—1)—a(i) I < Mr*Ae== 31| a(i—1) —a(i) I

4.3.5 LEMMA. Let n > 1, a € rangeT,, be rangeT,, a < b,
[T,-:|a,b] =0 . Then
I Sn(a’: b) - P(a” b) l < M53Vp(a" b) .

Proof. Let
o =sup{u:uerangeT,, and u < a}

0 = sup{w:u e rangeT,_, and u < b} .
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First, suppose a < b’ <b. Then ¢ < a and, by 4.2.3

llg) — @)l < b, for @ <u <

let) — ¢@) NI < 5y for ¥ <u<b.
Hence

le(T@) = ¢@II < o2 for ie[T,/a,b],

7n—1

I, @) = @< o7 for i e [0, 81,
I(Tus = 1) = (T @) = o for & & [Tofa, b, T(0) # ¥, Tu(d) # b

Replacing @ by B in 4.3.4 and using 4.3.3 and 3.1, we see that
| Su(@, b) — P(a, b)| = | Si(a, b) + S,(', b) — P(a, b) |
< |Su(a, b') — Pla, b') | -+ | Sa(b', b) — P, b)| + | P(a, V') + P(¥', b) — P(a, b)|
< M4A*V(a, b') + M2 Vb, b) + MVy(a, b) < M5°Ve(a, d) .
Next suppose b’ < . Then, for ¢ e [T,/a, b],

IA(T.0) = e@ll < 2

[P EVERIOTEES
Hence, by 4.3.4,
[ Su(a, b) — P(a, b) | < M4PVi(a, b) .
4.3.6 LeEMMA. Let @ € rangeT,, b e rangeT,, a <b. Then,

[ Suesas ) = S0, 0| < M2V, (2, )

Proof. Using 4.2.4, 4.2.3 and 4.3.4, we see that
| Spsi(a, b) — Si(a, b)|

P(Tur = 1), Tan(®) = PTG — 1, Ta0) |

JEIT |a,b] [z‘etrnﬂ/rnu—l),rn(n]

@ 1 pra . . N @
< je[Tg}a,b] I:Mz (j??”) te[Tn+llT§]—1),Tn(j)] ” SD(Tn+1(?’ )) SD(TWH(/I,)) ” :]

= u2( L) S e(Tanli— 1)~ Tan@) < M2V D) )

ie[r,, . /a,0]

4.8.)7. THEOREM. If 0<a<b<1, a<p, Ve, bd) < w, then
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Sbwd§0|< © .

Proof. Let

a, = inf{u :u € range T, and a < u},
b, = sup{u:u e range T, and u < b} .

If @ = b, the theorem is trivial. If a < b, for n sufficiently large,
we have

&L Oy <0 <0, <0 <D,
[T,]a,a,] =0 and [T,/b,,b] =0,

uso<a;+1)<,o—(a;)ns-2-2; and || o) — @bl I <

Hence

| Spsr(@, b) — Su(a, b) | = | Sper(@hs1, Ohir) — Salan, b7) |
= | Spss(@ns1, @) + Spii(@h, 0,) + Spss(Bhy B)ss) — Sp(an, b7) |
< Snei(@hsry @) — P(@hs, @) | + [ Sper@l, 87) — Su(an, 07) |
+ 18010y Vrar) | — P(B2, Us1) | + | (@1, @) | + LP(BL, bsi | < (by 4.3.5, 4.3.6)

< MB Vi, 04) + M2V, B 1) o+ ME Vil b+ M2 M
where

M = sup | wy() | 2

1sm<m k= lk ' kN! .
Therefore, for any positive integer p we have
»-1
[Sn+p(a’: b) - Sn(ar b)l é Z lSn+q+1(a’ b) - Sn+q(av b)l
n+q
< M5 S Vi @rrgons Gose) + VilBhons Brrnoae)] + M2Vola,8) 5 (1)

1

v L <MB(Vila, @)+ Vit D)+, 2 Ve b)< ) +§]—"I~
& g 95-a

Since, by 3.2, Vi(a, b) < oo, with the help of 3.1 we see that Vi(a, a,) > 0
and V,(b,, b) > 0 as n — o. Thus, the S,(a, b) form a Cauchy sequence

and Sbwd¢.<00.

4.3.8. THEOREM. Suppose 6 >0, a < 8, L < oo, ||¢(a) — ¢(®) || < 1,
and

Vila, b) < L||¢(a) — ¢(b) ||*
whenever 0 < a<b<1and b —a <d. Then, for some M' < oo,
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H wdye — P(a, b)| < M' || 9(a) — ¢(b) ||

whenever 0 <a<b<1and b —a <.

Proof. Given 0 <a<b<1and b—a<5d,let
a, = inf{u:u e range T, and a < u} ,
bt = sup{u:u € range T, and u < b} ;

and let n be the integer such that [T,-./a, b] =0, [T,/a, b] # 0.
Given ¢ > 0, we can choose p so that

H 0dP — Spap(@yep Dlar) | < €
and

lP(a'y b) - P(:H‘py b:z+p)l < 3
and

[T e(a) — e@) || — | p(ans,) — ¢@hp) || < €.
Hence we need only to show that
ISn+p(a:b+py b:z+p) - P(a/;t-*pr b;z+p)l < M’ “ So(a’;ﬁp) - So(b7'1+p) “m

for some M’ < « and all positive integers p.
We can check that

’Sn-i-p(a’:‘lﬂl-p’ b;H'p) - P(a';wpr b;l+p) l
< | Sulan, 8)) — Play, b)) | + |P(@h+py @0) + Plan, b)) — P(@4p, b)) |
+ IP(G/;Mpy b;) + P(b;u b;H-p) - P(a’;wp’ b:l-i-p)l
+ MZ;O {IP(@nspy Brsra1) + P(@napsrs Qnar) — P@hsp, Gar) |

+ | P@hs sy Dhsrsr) + POhsinry Disp) — Pbary bsp) |
+ 1 Snr e (@t a1y Urar) — PQsgars Qnag) |

+ lSn+k+1(b;'L+k’ b:z-l-k-l-l) - P(b;z+k+1! b1’1+k) l

+ | Sharer(@nars Ohsr) — Spar(@hsry Drar) [}

Now, we observe that

2

o) — el < 505 for ah, <u < v < @y
) — eIl < oy For By Su <o <Yy,

[Tn+k/a’:L+k+11 a’;+k] =0,
[Tn+k/b;l+k! b7,1+75+1] =0.
Hence by 4.3.5, 4.3.3, 4.8.6 we have
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lS;Hp(a‘;Hm b,n+p) - P((L;Hp, b:z+p)‘
< M5B VB(a';n b:a) + Mvﬂ(a;pr b:w) + Mvﬁ(a';r,+py 'n+p)

+ M S AVidhon 620+ Vil b’w)(zm)ﬁ “

=0 27’:+’C
n+k
5 V(s Gho) + 5 Vi Yirnr) + 2Vlhons a5 ) )
< M5 V(G Vo) + 2V (s Vo)
n+k
MV V@ + 1+ 29 5 ( L)

= n+k
< MV@r, b;,,,,)[SB +2+ @+ 14293, < 2}_;) ]

< M || ¢(@nsp) — ¢(Bh4) [I”
where

M= ML[5ﬂ+2+(2% “ 41 +2w)2(2ﬁ. )k} <o

4.3.9. THEOREM. If0<a<b<c<1,

Sbwdgﬂ + Scwdga‘ < oo, then
a b

Scwdgo = Sbwdgo + Scwd<p .

a @ b

Proof. Let
a, = sup{w:u € range T, and » < b}
b, = inf {w :u e rangeT, and b < u} .
We have lim,_., P(a}, b,) = 0 and for sufficiently large »
S.u(@, ¢) = Su(a, b) + P(ar, br) + Su(b, ¢) .
Taking the limit on both sides we get the desired result.

4.8.10. REMARK. If o and o' are both 1-forms in the sense of 4.1,
then so is (v + ') and

Sb(w + o')dp = Sbwdq) + gb o'dp

provided the right hand side is bounded. This is an immediate conse-
quence of the definitions.
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