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l Definitions, Let G be a group, and suppose G is a subgroup of
the direct sum Σ o e i φ Hα of the collection of groups {Ha}aei. If the
projection of G into Ha is onto Ha for each a el, then G is said to be
a subdirect sum of the groups {Ha}aβI. (Only weak direct and subdirect
sums are considered here.) If a group G is isomorphic to a subdirect
sum of the groups {Ha}aei9 then G is said to be represented as a sub-
direct sum of the groups {Ha}aei. A group is called a rational group
if it is a subgroup of a Z(p°°) group or a subgroup of the additive
group of rational numbers.

2. THEOREM. Every Abelian group can be represented as a subdirect
sum of rational groups where the subdirect sum intersects each of the
rational groups non-trivially.

Proof. G is isomorphic to a subgroup of some divisible group, and
thus can be represented as a subdirect sum Gr of rational group {Ha}aei.
Let (hlf h2, , ha, •) be an element of G'. Let (hlf h2, * ,ha, )βx =

(klf K , K, •), where kx = ^ if Gf^HλΦ 0, and fcx = 0 if G' ( Ί f l i = 0 .

Assume /?c has been defined for c < δ. Define

(hu h2, , ha, )^δ = (fci, ^aι mfhf fa+u •)

where kb = Λ6 if i?& Π (Uc<6G
ί'/9c) ^ 0, and kb = 0 otherwise. Each βα

preserves addition because each is a projection. Let (hL, h.z, , ha, •) Φ

(0, 0, « , 0 , •••) and let

(Ax, hi, --,ha, )^α = (h, h, , ίfcα, Aα+i, ha+2, •)

Only a finite number of the coordinates of (hl9 h2, * ,ha> •••)^renot 0.

Let them be hai, ha%, , ha , where aλ < a% < < an. If a < αw, then

= (&!, /b2, •• ,/bα, Aα+1, - -, han, han+ι, •••) ^ (0,0, . . . , 0 , •••)

since httnΦθ. Assume <x^αw. If %—1 and α x = l , then (Ax, h2f , Aα, •) =

( ^ , 0 , 0 * « ,0 , . . . ) e G ' and G'O^Φo so t h a t (Aαi> 0, 0, --v Λ ™ =

(λαχ, 0, 0, , 0, - •)• That is, kai=haiΦQ, and hence (^,^ 2, , ^

(0,0, . . . , 0 , . . . ) • If n = 1 and αw =̂ 1, then (0,0, •• , ^ 1 , 0, 0, « ) e G '

and also in G'βc for all c < a,. Thus fl"αi Π (\Jc<aiG'βc) Φ 0, and
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(K K ••-,*«,- ~)βa - (0, 0, , 0, hH, 0, 0, .)/S»

- (0, 0, , 0, hai, 0, 0, . . . )/9αi - (0, 0, . . . 0, haιJ 0, 0, . . . )

* ( 0 , 0 , . . . , 0 , . . . ) .

Assume n > 1. If (^, &2, . . , ha, -)βa = (0, 0, , 0, •), then kc = 0
for c <̂  αn, and

(Ai, A», , ha, - ) / V i = (0, 0, , 0, KnJ 0, 0, •) .

Therefore ff.Λ Π (G' f t ,^) =£ 0, and so ff^ΓKUe^G'ft) =£ 0. Hence fcβn -

hanΦ 0, and this contradicts fcc = 0 for c ^ an. Therefore

(huh, ~-,ha, •••)/?«*= (0,0, . . . , 0 , . . . ) ,

and the kernel of βa is 0. Hence each βa is an isomorphism. Now let

(hu h2, - , h^ * )β = (fci, &2, •••,&«, ). Clearly /? is a homomorphism

of (r' into Σαei φ ^ α But the kernel of β is 0 because every element

in G' has only a finite number of non-zero coordinates. Let Γ be the

set of indices such t h a t a 0 / ' implies t h a t the image of the projection

of G'β into Ha is 0. G'β is isomorphic to a subdirect sum of the groups

{fΓα}αer If G'/9 Π Jϊi = 0, then for (^, ^ , . •-, ha, •) e G ; we have

(Ai, K ---,ha, Oft = (0, h2, ---,ha, •), so t h a t

(hlf h%,m ,ha, )β = (0, Jc2, h, , ka, •) .

Hence the image of the projection of G'β into fl, is 0. Therefore 1 0 Γ.

Let a > 1. Suppose G'βΓ\Ha = 0 and i? α n(Uc<«G^ c ) ^ 0. Then there

exists 6 < α such t h a t H α Π G'/36 ̂ 0 . Let ( 0 , 0 , . - . , 0, ka, 0,0, - ) e Ha Π G'/9δ,

where fcα =£ 0. Let (^, h2, ---,ha, -- )βb = (0,0, , 0, feα, 0, 0, .••). Then

(hlt K ••-, Aα, • 0/5 = (0, 0, . . . , 0, ka, 0, 0, . . . ) , and so G'βnHaΦθ.

Therefore if G>βnHa=0, then -ffαn(Uc<αG'/?c) = 0. This implies for

every (hl9 hz, ha9 •) e G' tha t

(^, A2, , ha9 )βa = (klf k2, , ka, ha+1, ha+2, •) ,

where ka = 0, and hence that

(&!, &a, , Aβ, )i® = (&i> 2̂» β Ί 0, fcα+1, /bα+2, .-.) .

Thus the image of the projection of G'β into Ha is 0 so that a $ I'.

Hence for α e i ' , G'βp[Ha Φ 0. Since G is isomorphic to G'β> the theo-

rem follows.

3. REMARKS. Theorem 9 in [1] is an immediate corollary of the

preceding theorem, as are some other known theorems in Abelian group

theory. In [2], Scott proves that every uncountable Abelian group G

has, for every possible infinite index α, 2°w subgroups of order equal

to o(G) and of index α, and that for each given infinite index, their

intersection is 0. The following theorem shows that if G is torsion free,

one can say more.
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4. THEOREM. Every torsion free Abelian group G of infinite rank
has, for every possible infinite index a, 20(G° pure subgroups of order
equal to o(G) and of index a. Furthermore, the intersection of these pure
subgroups of index a is 0.

Proof. Represent G as a subdirect sum Gr of rational groups
{Ha}aei such that for each a e I, G'f)HaΦθ. Let a be an infinite
cardinal such that a <Ξ o(G). o(I) = o(G) since G has infinite rank. Let
I = SxUSa where o(S1) = a, o(S2) = o(G), and S^S, = φ. Let Γ be a
subset of S2 such that o ( S a - Γ ) = o(G). There are 2°<σ> such Γ's. Let
(hlf hz, "-,ha, •) be in G', and let

(hl9 K , K, )t = ( Σ Aj, fci, &2, , ka, ) ,

where &< = ht if i e S : and fe, = 0 otherwise. The mapping t is a homo-
morphism and the order of its image is equal to o(Sλ). That is, the
index of the kernel of t is α. The order of the kernel of t is equal to
o(G) since o(S2-T)=o(G), and G'f)HaΦθ for all a el. Let T,T'^S2,
T Φ T. Then there is a j e T such that jφT, say. Let h3 e G', h5 Φ 0.
Then

( 0 , 0 , . . . , * „ 0 , 0 , . . . ) « = ( A , , 0 , . . . ) .

However, (0, 0, , hJf 0, 0, )ί' = (0, 0, 0, •). Hence the kernel of t
is not the same as the kernel of V. These kernels are pure in G1 since
the quotient groups are torsion free. Thus G has 20( ί?) pure subgroups
of index α, and of order equal to o(G). Suppose (hlf hz, ---,ha, •••) is
in the intersection of all these pure subgroups of index a. Then if
beSl9 hb = 0. Hence if hc Φ 0, letting T = {c}, we have

{hlf htJ , he, , λα, •)* = (Ac, 0, 0, •) Φ 0 ,

which is impossible. Therefore for each α e / , ha = 0, and this shows
that the intersection of these subgroups is 0.

5. REMARKS. Every torsion free divisible group D of rank a is a
direct sum of a copies of the additive group of rational numbers, and
D contains an isomorphic copy of every torsion free Abelian group of
rank a. The following theorem says that if a is infinite, every torsion
free Abelian group of rank a is represented in a special way in D.

6. THEOREM. Every torsion free Abelian group G of infinite rank
can be represented as a subdirect sum Gr of copies of the additive group
of rational numbers, and in such a way that Gf intersects each subdirect
summand non-trivioλly.

Proof. Represent G as a subdirect sum Gf of the rational groups
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{Ha}aei such that for each a el, Grf]Ha Φ 0. Suppose first that G has
countably infinite rank. That is, suppose I is the set of positive inte-
gers. Each Ha is a subgroup of the additive group of rational numbers,
since G is torsion free. Let kl9 k%, k3, be a sequence of non-zero
rational numbers such that kteG'(Ίίfi. Let rlf r2, r3, ••• be the non-
zero rational numbers arranged in a sequence. Let st = rjki. Let
(hly h» , hn, •) be an element of G'. Let

/ oo oo co \

(Aj, Λa, , hn, -)β = Σ »Λ, Σ 8A, , Σ sthi9 ) .
\i=l i=2 ί=» /

Σί°=fcSince only a finite number of the ht'& are non-zero, for each k,
is a rational number, and for only a finite number of k's is ΣΠUsA non-
zero.

= {hi + 0i, h2 + g2, * , hn + gn, * )β

= ( Σ β i ( λ i + ffi), •• , Σ « i ( λ i + 0ι),
^ cx> oo oo oo

V o 7 > _ i _ V o ^ . . . V O / Ϊ I V Q

\ί = l ί=l i=n i=n

= (&i, K ->,hn, - )β + {gl9 g%9 , £„, )β .

Hence /? is a homomorphism of G' into a direct sum of copies of the
additive group R of rationale. Let Rn be the set of nth coordinates of
elements of G'β. Rn is a subgroup of R since it is the image of the
projection of G'β onto its nth coordinates. Let m^n.

(0, 0, •••, 0, km9 0, 0, . . . ) e G '

and

(0, 0, , 0, kmy 0, 0, )β - (rm, rm> , rm, 0, 0, .) ,

so that rme Rn. Thus Rn contains all but at most a finite number of
elements of Ry and being a subgroup of R, must then be R. Therefore
G'β is a subdirect sum of copies of R. Let xeG', x Φ 0, and let hr be
the last non-zero coordinate of x. Then the rth coordinate of xβ is
srhr Φ 0. Hence the kernel of β is 0 and β is an isomorphism of G onto
a subdirect sum of copies of R. Now consider the case where / is not
countable. Let I be the union of the set of mutually disjoint countably
infinite sets {Ijjjej Denote by Sj the image of the projection of G'
into Σaei φ Ha. Then G' is a subdirect sum of the set of groups
{Sjjjej, and each Sj is of countably infinite rank. Hence each S3 may
be represented as a subdirect sum of copies of the additive group of
rational numbers, and it follows that G may be so represented. In
light of the proof of 2, this representation may be assumed to intersect
each subdirect summand non-trivially.
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