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HOMOGENEOUS STOCHASTIC PROCESSES*

JOHN W. WOLL, JR.

Summary. The form of a stationary translation-invariant Markov
process on the real line has been known for some time, and these proc-
esses have been variously characterized as infinitely divisible or infinitely
decomposable. The purpose of this paper is to study a natural gene-
ralization of these processes on a homogeneous space (X, G). Aside from
the lack of structure inherent in the very generality of the spaces
(X, G), the basic obstacles to be surmounted stem from the presence of
non trivial compact subgroups in G and the non commutativity of G,
which precludes the use of an extended Fourier analysis of characteristic
functions, a tool which played a dominant role in the classical studies.
Even in the general situation there is a striking similarity between
homogeneous processes and their counterparts on the real line.

A homogeneous process is a process in the terminology of Feller
[3] on a locally compact Hausdorff space X, whose transition probabilities
P(t, x, dy) are invariant under the action of elements g e G of a tran-
sitive group of homeomorphisms of X, in the sense that P(t, g[x~}> g[dyj) =
P(t, x, dy). It is shown that if every compact subset of X is separable
or G is commutative the family of measures t~τP(t, x, •) converges to
a not necessarily bounded Borel measure Qx( ) on X-{x} as £->0,
meaning that for every bounded continuous, complex valued function
/ on X which vanishes in a neighborhood of x and is constant at infinity
t-Ψ(t,x,f)-+Qx(f).

In 3 we show that the paths of a separable homogeneous process
are bounded on every bounded ^-interval and have right and left limits
at every t with probability one. If the action of G on X is used to
translate the origin of each jump to x, it is shown for suitably regular
compact sets D that the probability of a jump into D while t e [0, T]
is given by 1-exp {-TQX(D)}. The maps/->P(£, .,/) = (Γ,/)( ) map
the Banach space, C(X), of continuous functions generated by the con-
stants and functions with compact support into itself, and by a suitable
normalization can be assumed strongly continuous for t > 0. Indeed,
Tt is a strongly continuous semi-group. The domain D(A) of the in-
finitesimal generator A of Tt admits a smoothing operation whose precise
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nature is described in Corollary 1 of Theorem 2.2. Roughly speaking,
if g 6 D(A), ε > 0, and / e C(X) we can find an h e D(A) such that
\\h — /|Ioo < ε and / = h on any preassigned compact subset of interior
({x\f(x) = g(x)}).

A family of measures P(x, A) which is a probability measure on the
Borel subsets of X for fixed x e X, measurable in x for fixed A, and
invariant under G(i.e. P(g[x], g[A]) = P(x, A)), is called a homogeneous
transition probability of norm one. Such a family generates a continu-
ous endomorphism /-> P( ,/) = (P/)( ) of C(X), and a homogeneous
process Tt = exp{ίr(P— 1)}. This latter process is called a compound
Poisson process. In 4 we study strong convergence for compound
Poisson processes (Definition 4.1) and prove among other facts that
every homogeneous process is a strong limit of compound Poisson proc-
esses exp {tr^Pi — 1)}, and if rt < M < + oo the limit process is neces-
sarily compound Poisson. If X is given the discrete topology every
homogeneous process on X is compound Poisson. In case the Qx associated
with P(t,x, dy) vanishes identically, or equivalently P(t, x, dy) has con-
tinuous paths, we show in 5 that P(t, x, dy) is the strong limit of
compound Poisson processes whose Pι{x, dz) have support arbitrarily
closed to x.

In 7 we study subordination of homogeneous processes as defined
by Bochner [1]. By phrasing the definition in terms of a probabilistically
run clock it is shown that many processes are maximal in the partial
order induced by subordination. If we follow the notation in (7.2)
where exp {tS(b, A, F, z)} denotes the family of characteristic functions
of a homogeneous process X(t, ω) on Euclidean w-space, we obtain the
following type of result. When support (F) is compact, X(t, ω) is not
subordinate to any process but itself unless support (F) is also contained
in the half line R+b and A = 0. In this latter case X(t, ω) is subordi-
nate to the Bernoulli process Z(t, ω) = tb. Actually somewhat stronger
statements can be made but they are proven only for the real line.

In our notation we have not distinguished between the application
of a measure μ to a function / and the measure of a measurable set
E, denoting these respectively by μ(f) and μ{E). The set X-Έ is
denoted by Ec and the usual convention is adopted in letting C, R, R+,Z,
and Z+ represent respectively the complex numbers, the reals, the non-
negative reals, the integers, and the non-negative integers.

I would like to take this opportunity to express my gratitude to
Professor Bochner who has patiently encouraged this work, and whose
own ideas are at the base of § 7.

1. Introduction. Let G be a Hausdorff, locally compact topological
group and H one of its compact subgroups, We consider G as a group
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of homeomorphisms of the left cosets of G modulo H, which we denote
by G/H, the left coset xH being mapped by a e G into the left coset
axH. Moreover, if we are primarily interested in the space G/H and
the action of G on this space, there is no reason why the subgroup H
should play a dominant role, for the homeomorphism x -> xb of G carries
the left coset xH of H into the left coset xbb^Hb of b^Hb. As far as
left multiplication by elements of G is concerned this is an operator
homeomorphism and G/ϋ* is equivalent to Gjb~ιHb. For this reason we
use the neutral letter X for the space GjH and denote the operation of
a e G on x e X by a[x]. We call the system (X, G) a homogeneous
space and note that X is naturally homeomorphic to any coset space of
the form G\GZ where Gz = {a e G\a[z] = z).

For the sake of exposition let N(X) be the Banach space of regular
bounded complex Borel measures on X; CC(X) the linear space of con-
tinuous complex valued functions with compact support; CΌo(X) the
closure of CC(X) in the uniform norm C(X) the Banach space of functions
generated by CΌo(X) and the constant functions with the uniform norm.
We use the current notation of W. Feller and denote linear trans-
formations of N(X) by postmultiplication. In this notation a linear
transformation T of CΌo(X) is denoted by the same letter as its adjoint
transformation on N(X), viz. μT(f) = μ{Tf). By the expression μ > 0,
μ e N(X), we mean μ is a real valued non-negative measure, and by
the transformation La we refer to the isometries of CC(X), CΌo(X), C(X)
and N(X) generated by translation of X by a e G, viz. (Laf)(x) =
f(a-1[x~i)f μLa(E) = μ(a[E]). When x e X we denote by δx the measure
placing a unit mass at x, so that δx(E) = 1 if x e E and 0 otherwise.
For example, we shall often use the relationship SxLa-i= δaίxl. Finally,
when we say that a directed sequence (μq)qeQ of measures-commonly called
a net in N(X) - converges weakly to μ e N(X), in symbols μQ-+ μ, we
mean for every / e CC(X), μq(f) -> μ(f) as complex numbers.

DEFINITION 1.1. A homogeneous transition probability is a continuous
endomorphism P: N(X)-+ N(X) satisfying:

(i) μ > 0 implies μP > 0
(ii) μq-*μ implies μqP-+μP;
(iii) PLa = LaP.

An endomorphism, P, with properties (i) and (ii) is usually called
a transition probability and (iii) makes the transition probability
homogeneous.

When fe C^X) it follows from (ii) that SxP(f) is continuous in x.
In addition δxP(f) e CΌo(X). To show this let αjz] be any directed
sequence in X tending to infinity, then by virtue of the assumed com-
pactness of Gzy a^D] -> infinity for any compact set D c X and
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La-ιf(y) = f(<ii[y]) -* 0 boundedly and uniformly on every compact set.
It follows immediately that

= δ*LarlP(f) = δΨ(Larlf) -+ 0 ,

proving δ*P(f) e C^X). Now for any given μ e N(X) let μq = Σ ί^V^ be
a bounded, directed sequence of purely atomic measures in N(X) ap-
proaching μ weakly, μq -> μ. Then separate calculations show that on
the one hand μQP(f) -> μP(f), while on the other

μJP(f) = Σ i m ^

Accordingly, for / e C4-X") and μ 6 N(X)

(1.1) /<(«*[/]) - μP(f)

the adjoint of P transforms CΌo(X) into itself and when / e CJ^X)

(1.2) (Pf)(x) =

By letting / f 1 in (1.1) we see that (1.1) and (1.2) hold for fe C(X)
as well. If P and Q are homogeneous transition probabilities

(1.3)

( 1 . 4 ) IIPQII = I | P | | H Q I l .

We obtain (1.3) by noting first from (iii) that <5*P(1) does not depend on
x G X, and then it follows from (i) that μ > 0 implies \\μP\\ = μP(l) —
II^H^P(l); so | | P 1| > ^XP(1). The opposite inequality is obtained by
using the preceeding remarks on a Jordan decomposition of μ e N(X),
while (1.4) follows easily from (1.3).

We remark at this point that if z e X and m is the normalized

Haar measure of Gz, then the m a p P - > P e N(G), given for geC^G)

by P(g) = 1 δ'P(dy)\ m(dw)g(yw), maps the Banach algebra generated by

the homogeneous transition probabilities isometrically onto the subalgebra

m * N(G) * m of N(G).

DEFINITION 1.2. A homogeneous process is a one-parameter semi-
group, (T£)ί>0, of homogeneous transition probabilities which is temporally
continuous in the sense

(iv) μ e N(X) and / e C(X) imply μTt(f) is continuous in t.

Using (1.4), (1.3) and (iv) we see that | |Γ t | | = evt. Therefore, we
replace Tt by the equivalent process e~ptTt and assume in the rest of
this paper that (v) below is satisfied unless explicitely stated otherwise.

(v) \\Tt\\ = 1,
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The requirement of temporal continuity for a homogeneous process
is equivalent to the weak continuity of the restricted adjoint process
Tt: C(X) -• C(X), and by well known results, [5], implies the strong
continuity of this last process for t > 0. The theory of semi-groups
shows that Tt is strongly continuous at t — 0 on the closure of
\Jt>0TtC(X). This may be a proper subspace of C(X). For example,
let (G, G) be the homogeneous space of a group acting on itself by left
translations with μTt = μ * m, where m is the normalized Haar measure
of a non trivial compact subgroup. G. Hunt [7, pp. 291-293] has shown
that by enlarging the subgroups Gz if necessary we can always assume
a homogeneous process possesses the following quality.

Property I. For any fixed x e X and any Borel measurable neigh-
borhood N of x, dxTt(N) -> 1 or equivalents δxTt(Nc) -> 0 as t -> 0.

It is a routine calculation to show that Property I is equivalent to
the strong continuity of Tt: C(X) -> C(X) at the origin, so we hence-
forth assume our processes satisfy Property I, and by Hunt's result we
can do this without loss of generality.

In view of the above statements we can apply the Hille-Yosida
theory of strongly continuous semi-groups to the semi-group Tt: C(X) ~>
C(X). An elementary application of this theory shows that there exists
a dense linear subspace of C(X) which we denote by D(A), and a closed
linear operator A: D(A) -> C(X) with the property that for / e D(A)

- A/ΊU = 0.

2. Properties of D(A). In this section we investigate the domain
of the infinitesimal generator for homogeneous processes which satisfy
Property II below. Later we show that Property II is automatically
satisfied if either X is separable or G is commutative.

Property II. There is a regular Borel measure Qz on X — {z}, such
that t-\TJ){z) -> Qβ(f) as t -> 0 for all / e C(X) which vanish on any
neighborhood of z.

Qz is positive and QzLa-λ = Qα[β]. In general, of course, Qz will be
unbounded, although its values on any set E lying in the complement
of a fixed neighborhood N of z must be bounded, or equivalently
δ*Tt(E) = O(|ί I) as t -H>0. This is easily checked if one notes that D(A)
includes the constant functions and is invariant under G. For then we
can choose an / 6 D{A) which is everywhere positive on X, vanishes at
z, and is greater than 1 on Nc. Clearly

QZ(E) < (Af)(z) = limt^t'\Ttf)(z)

is bounded independently of E c NG.
The homogeneity of the process Tt entails a uniformity in this
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convergence to Qz which may be stated as follows.

THEOREM 2.1. // / is an open subset of X, fe C(X), and f(J) —
0 then t~ιTtf converges to its limit as t -> 0 uniformly on every com-
pact subset of J. If in addition Jc is compact, this convergence is even
uniform on every closed subset of J.

Proof. To prove the first assertion it suffices to show that the
approach is uniform on a neighborhood of z e J of the form N[z] where
N2[z] c J and N = N'1 is compact. If α, b e N, and K is chosen so
that t-ψTt(N[z]e) < K, then

| t -i 3 αω Γ ί ( / ) _ t-^Tt{f)\< K\\LhaM) ~ f\\-

The family {ht(x)\t > 0, ht(x) = t-ιδxTt(f)} is accordingly, equicontinuous
on N\z\, and ht(x) -> Qx(f) as t -* 0. It follows that this approach is
uniform on N[z], The second assertion is a consequence of the fact
that for each e > 0 there is a compact set Ds and a ts > 0, such that
x $ D2 and t < tε imply \t'\Ttf)(x)\ < ε. Assume on the contrary that
there is a sequence at[z] -> infinity, together with a sequence ί, -• 0,
such that \tr1(Ttif)(ai[z'])\ > s. Now choose a bounded sequence of
functions (̂  from C(X) which converges to zero monotonely while
their supports approach infinity, and which satisfy the crucial inequalities
g3 > sup^j |Z/α r l(/)|. The inequalities

ε < liminf<|t i-
1(Γ ί4/)(α,M)| < K m ^ f o ) = 0

yield the contradiction which proves the second assertion.
Suppose h 6 D(A) and on some open subset J of X we have / = h,

where fe C{X). Suppose further that either / or Jc is compact. Let
D be a closed subset of J, containing a neighborhood of infinity if Jc

is compact; and let m e C(X) be constructed so that o<m<l,m(D) =
0, and m(Jc) = 1. The map S: X x X x (0, oo) -> R defined by
S(x, y, t) = (Tm(yytf)(x) is, because of the strong continuity of Tu defined
and continuous in (x, y, t). Consequently its restriction to the diagonal
in the first two components is continuous on X x (0, oo). When
^ ^ ( ^ Λ W ^ t W ) , while if JG is compact (Tmωtf)(x) =
(TJ)(x) = f{x) close to infinity. The maps Wt:C(X) -> C(X) defined by
fix) -> Tm(x)tf(x) form a strongly continuous family of bounded linear
transformations, so that we may form the Rieman integral gix) =
r~\ (Wtf)(x)dt. If x 6 D, m(x) = 0 and g(x) = fix); while for any x,

Jo

\g(x) - f(x)\ = r-11 fP{TΓt/(a5) - f(x)}dt\
JO

< sup ί < r | l TFi/ - / | | . -»> 0 as r -»- 0 .
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Thus for any given ε > 0 we may guarantee that \\g — / |U < ε by
a sufficiently small choice of r.

THEOREM 2.2. Let D be a closed subset of the open set J in X, where
either J or Jc is compact. Let h e D(A), f e C(X), and f = h on J.
Then for each ε > 0 there exists a g,: e D(A)y such that (i) h = / = gs on
D, and (ii) | | # ε - / | L < ε .

Proof. We only need to prove that the g defined above lies in D(A).
To do this we show that

\ - f}dt

converges to its limit uniformly on X. The computations are divided
into two cases.

Case I. m(x) < 1/2. On this closed subset of J

-h} +s-
1{Ts(f~h)~(f-h)} .

Now s~x{Tsh — h} -> Ah in the uniform norm as s -• 0, and by Theorem
2.1 s-'iT^f- h) - ( / - h)} ->Qx(f- h) uniformly on {x\m(x) < 1/2}.
Accordingly,

s'τ{Tsg - g} ̂ r - 1 Γ Wt{Ah + Qx(f - h)}dt
Jo

uniformly on {x\m(z) < 1/2).

Case II. m(x) > 1/4. On this set

s-^Tsg - g} = (rs)'1 [ {Ts+mix)tf - Tm(x)tf}dt
Jo

[ Γ m(x}r+s Γs 1

{Tuf}dn- Tufdu\
m(x)r J Jθ J

-+ {rnι(x)}-i{Tmωrf(x) - f(x)}
as s -> 0, uniformly on {x\m(x) > 1/4}. These observations show that
g 6 D{A).

In the above proof we did not really need the fact that h e D(A).
Indeed, had we replaced h by h + u, where u e C(X) and u{J) — 0,
there would have been no change in the proof. Furthermore, since
g(x) = r~ι \ (Tm{x)tf){x)dty if / is real valued we have the relation

Jo

infx f(x) < inf yg(y) < sup^(2;) < supx/(x). These remarks allow us to
state a corollary.
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COROLLARY 1. Let Jlf J2, •••, Jn be disjoint open sets of Xand let

Dt be a closed subset of Jt. Suppose that for each i either Jt is compact
or for at most one i, J\ is compact. Let ht e D{A) and f e C(X) satisfy
f —hi on Jt. Then for each ε > 0 there exists a g2 eD(A)> such that

(i) ge = ht = / on Di9

(ϋ) | l f l r β -/ | | -<e, and
(iii) iff is real valued then mfxf(x)< mf yg£(y) < sup* gs(z)<supxf(x).

Specializing the preceding we get the following.

COROLLARY 2. If B is compact in X, His closed, and H Π B — φ;
there exists an f e D(A), such that 0 < / < 1, f(H) = 0, and f(B) = 1.

The above results have been derived under Property II and we now
show that we can replace Property II by a condition on D(A).

Property III. For each ε > 0 and / e C(X) which is zero in a neigh-
borhood J of x9 there exists an / ε e D(A), such that fs = 0 in a neigh-
borhood U of x which is independent of ε, | | / ε — / | U < ε, and if / is
real valued so is fe with inΐxf(x) < infyfB(y) < supz f,(z) < supxf(x).

THEOREM 2.3. Property III is equivalent to Property II for homo-
geneous processes.

Proof. We have already seen that Property II implies Property III
and will now demonstrate the converse. First, let / be a neighborhood
of x, and choose a function h e C(X), such that h = 0 in a neighborhood
U d J of x, and h(JG) — 1. We also require that h > 0 everywhere.
Now for 0 < ε < 1 choose an hs in accordance with Property III.

t-λd*Tt{JG) < (1 - eyWT^t-1 < K{U)< + oo

for some constant K(U) depending on U. If / e C(X) and /(J) = 0,
Property II is equivalent to the fact that t~1dxTt{f) -> a limit as t -> 0.
The inequalities

) - \im t-WTt{fH)\ <

<lim sup t - H H

< (ε, + e,)lim sup t-WTW) < (ε, + et)K(ϋ)

show that lim lim ί'^Γ^/g) exists. If we call this limit 6, the inequality

\WTt(f) -b\< \t-WTt(fe) - 6 | + εK{U)
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shows by first letting t -> 0 and then ε -> 0, that t"\TJ){x) ->b as t -> 0,
completing the proof.

By the use of well-known smoothing techniques which exist on
a differentiable manifold we can conclude that if G is a Lie group or
if X is a differentiable manifold on which G acts differentiably, and
D(A) includes C°°(X) Π C(X), then Property III and Property II are
automatically satisfied.

We close this section by remarking that the only place where we
have used the homogeneity of Tt was in the proof of Theorem 2.1, so
that a strongly continuous semi-group on C(X) satisfying the conclusions
of Theorem 2.1 also satisfies the conclusions of Corollary 1 if its adjoint
preserves positivity.

3* The paths of a homogeneous process and Property IL Before
we discuss the nature of the paths of a homogeneous process it is
necessary to take certain precautions which will assure us that the
properties we want to discuss can be handled by the theory of probability.
Given a consistent set of transition probabilities for a particle moving in
a locally compact Hausdorff space it is possible, using a theorem of
Kolmogoroff s, to construct an infinite product space in which these
transition probabilities determine the finite dimensional distributions.
From this we can construct, in the usual manner, a set of paths and
a probability measure on this path space. Alternatively, we can consider
a process as a family X(t, ω) of measurable transformations from some
abstract sample space Ω to the range space X. Since there is some
freedom in the definition of X(t, ω) given only the finite dimensional
distributions, it is important to notice that the concept of separability
as used on the real line is available in this case.

DEFINITION 3.1. A process {X(t, ω), 0 < t) will be called separable
relative to the class A of closed subsets of the locally compact Hausdorff
space X if, and only if, (1) there exists a denumerable subset {tj} c [0, oo),
and (2) an event K c Ω with P{K} — 0, such that for every open in-
terval Ic. [0, oo), and every set F e A, the event

{ω\X(tjf ω) β F, tj 6 I Π {tj}} - {ω\X(t, ω) 6 F, t € 1} C K .

The importance of the concept of separability rests on the validity
of the following theorem.

THEOREM 3.1. Let Xbe a separable locally compact Hausdorff space,
and let {X(t, ω), t < 0} be an X-valued process. Then there exists an
X*-valued stochastic process {X(t, ω), t > 0} such that: (1) X{t, ω) is
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defined on the same ω-space, Ω, as X(t, ω) and takes values in the one
point compactification, X*, of X; (2) X(t, ω) is separable relative to the
class of closed sets of X* (3) for every t>0 {Pω\X(t, ω) = X(t, ω)} = 1.

Proof. This theorem may be proved in a manner entirely analogous
to the comparable theorem on the real line, and its proof is given, for
example, in Doob [2 p. 57]. We remark that the separability of the
space is necessary for this proof.

In the following we discuss the displacements of the path X(t, ω)
during a closed interval of time. The success of our technique depends
directly on the possibility of comparing two such displacements with
different origins. If our homogeneous space (X, G) is that of a group
acting on itself, we can translate all displacements origins to the identity
and their endpoints are uniquely determined. On a general homogeneous
space, however, the endpoint of a translated displacement is not deter-
mined by its new origin. We introduce several concepts from the
calculus of relations and a space of displacements to handle this ambiguity.

By a relation (U) on X we mean a subset of X x X which contains
the diagonal. The notations (U)-1 = {(y, x)\(x, y) e (U)}, (W) o (U) =
{(x, y)\ for some z, (x, z)e(U) and (z, y) e(W)}, and (U)[A]= {x\(y, x)e(U)
for some y e A} are standard. It is sometimes convenient to substitute
Ux for (U)[{x}] and in this notation (W) o (U)x = \Jveϋx Wy. A relation
(U) is called homogeneous whenever (x, y) e (U) implies (α[x], a[yj) e (U)
for all a e G, and it is convenient to describe a relation by giving
a property possessed by all the sets Ux. For example, we call a relation
(U) compact, open, closed, or a neighborhood relation if each Ux is
compact, open, closed or a neighborhood of x respectively. Using a double
coset representation it is easily shown that the class of homogeneous
neighborhood relations forms a base for the natural uniformity of the
homogeneous space (X, G). We say the displacement from x to y belongs
to the homogeneous relation (£7) if (x,y) e (U). The reason for this
mention of relations is that they appear to be exactly what is needed
to generalize the statement and proof of a theorem from Kinney [9],
p. 292-293.

THEOREM 3.2. Let (X, G) be a homogeneous space satisfying the
first axiom of countability, and let X* be the space X compactified by
adding a single point at infinity. Let {X(t, ω), t > 0} be an X*-valued
homogeneous stochastic process governed by the transition probabilities
δxTt. and separable with respect to the closed subsets of X*. Then if
T > 0, there is an ω-set Eτ with P{ET) = 0, such that ω 0 Eτ implies
the statements below.

(1) X(t, ώ) is bounded on t e [0, T). By which we mean
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Cl[{X(t, ω)\t β [0, T)}]

is a compact subset of X.
(2) X{t, ω) has finite right and left hand limits at every t e [0, T).
(3) The number of jumps in [0, T) whose displacements lie out-

side a homogeneous neighborhood relation (U) is finite. Furthermore,
for any homogeneous neighborhood relation, (U), the maximum number
of disjoint subintervals (t,s) o/[0, T) for which (X(t~,ω), X(s~,ω)) $ (U)
is finite, where X(t~, ω) = \imh]QX(t + h, ω).

In particular the use of the one point compactification of X was
only necessary to cover the processes constructed in Theorem 3.1 and
may be eliminated as soon as (1) is proved.

The displacement or jump of a particle from x to y can be considered
as a point in the space X x X. It is natural to consider classes of
similar displacements, and this involves the introduction of an equi-
valence relation on X x X, two points, (x, y) and (#', yf), being considered
equivalent if there is an a e G such that (a[x~], a[yj) = (xf, yf). This is
a closed equivalence relation and the quotient space is homeomorphic
to the space of double cosets {GxaGx} = Y. Let p : l x l - > 7 b e the
canonical projection. Y is a locally compact Hausdorff space known as
the space of displacements, and p is a continuous open mapping. If we
fix the first component at x, so we only consider jumps origination at
xf we get a mapp':X-> Y given by z-+p(x,z). Using this map the
commutativity of Tt with La shows that we can very properly place
the measures δxTt and Qx on the space Y without losing a thing. If
/ e CC(X), and m is the normalized Harr measure of Gx, the equation

δxTt(f) = [f(a[z})m(da)δxTt(dz) indicates a means of returning 3xTt and

Qx to X from Y. The following theorem is the key to the results of
this section. It and Theorem 3.4 are generalizations of similar results
for homogeneous processes on the real line which may be found, for
example, in Doob [2, p. 422-424].

THEOREM 3.3. Let (X, G) be a homogeneous space satisfying the first
axiom of countability, and X{t, ώ) a separable homogeneous process on
X governed by the transition probabilities δΣTt{ ). Suppose that for
some sequence of t-values, t5 -> 0, there is a not necessarily bounded
regular Borel measure Qx on X — {x} for which f e CC(X), x 0 sup-
port (/), imply t]1(Ttif)(x)-+Qx(f) as t3 -> 0. Let Y be the space of
displacements of (X, G), and denote the measures δxTt and Qx after
transference to Y by the same symbols. Suppose X(0, ω) — x a.s,, C(D) =
{ωllim^ooPίXίί - n~\ ω), X(t + n'\ ω)) e D for some t e [0, I7)}, and
let P* and P* be the inner and outer measures induced by P on Ω.

(1) Then for any compact subset D of Y — {x}:
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1 - exp {T\imsuv3tj
1δxTt(D)} < P*{C(Z>)} P

(2) If D is a compact subset of Y — {x} satisfying, either
(i) there is a Uopen c D for which δxTt(U — D) = o(t) as ί -• 0, or
(ii) £Λere exists a sequence C^ compact c interior (D) for which

Qx(Ck) -> QX(D) as k -> oo,

= P*{C(Z>)} = 1 - e-Γβ«w

Proof. Using the monotone sequence t3 -> 0 we define a sequence
of partitions of [0, Γ). The ith partition being given by

{[0, tj), ltJf 2tj), , [(kj - l)tj, kjtj), [kjtj, T)} ,

where k3 is the largest integer < Tjt3. Define Y-valued random variables

= p(X({n - l}tj'f ω), X{ntf, ω)) l < n < k3

+ l) = p(X(kjtf9 ω)X(T-, ω)) ,

where as usual X(t~, ω) — limsTcX(s, ω). For any measurable subset
FdYwe put F(j, n) = {ω\H(j, n) eF} and F(j) = (JV1 F(j, n). Since
{H(j, ri)yl <n < kj} are independent and identically distributed random
variables, it follows that

P{F(j)} = 1 - {1 - δ*Tτ_kjtj(F)}{l - δ*Ttj(F)}*> ,

where 1 > ε, -> 0, 0 < T - kόt3 < t5 \ 0, and k5 = Ttf1 - ε3. Let D be
a compact subset of Y, and Z7 an open neighborhood of D whose closure
does not contain x. Our knowledge that the paths have right and
left hand limits at every point shows that C(D) c lim inf3 U(j). If
ω e lim sup^ D(j), choose a sequence of semiclosed intervals [n3t3, (n3 + l)t3)
which converge to a point, and across whose length the path ω has
a displacement H(j, n3) e D. By passing to further subsequences if
necessary we can assume that the sequences of endpoints are monotone.
There are four cases;

(a) njtj f, (nj + ΐ)t31 leads to ω e C{D)
(b) itjtj I, (n3 + l)tj t is impossible; while
(c) n3t3 f, (n3 + ΐ)tj t and
(d) n3t31, (n3 + l)t31 both lead to ω's having infinitely many dis-

placements close to D in [0, Γ), and, accordingly, occuring with proba-
bility zero by condition (3) of Theorem 3.2. Therefore, lim sup^ D(j) c
C(D) c lim inf 3 U(j) which in turn implies

1 _ exp {- Tlimsup^r^CD)} <

and

P*{C(D)} < 1 - exp {-
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It can be shown by a standard arguement that if V open 3 U and x 0 V,
then QX(D) < lim inf} tfιdxTt){U) < QX{V), and by letting Fand Ushrink
to .D it follows that

P*{C(D)} < 1 - e-^^) .

If in addition D satisfies either (i) or (ii) in (2), it is easy to see that

which implies the conclusion of (2).
We now show that the conditions (i) and (ii) placed on the compact

set D in (2) of Theorem 3.3 are sufficiently unrestrictive for us to prove
Property II for homogeneous processes.

THEOREM 3.4. Let (X, G) be a separable locally compact homogeneous
space, and let Tt be a homogenous process on (X, G). Then there exists
a unique not necessarily bounded Borel measure Qx on Y — {x}, the
space of displacements of (X, G)> such that f e C(X) and x $ support
(/) imply

t'\Ttf){x) -> Qx(f) as £->0.

Proof. The use of the Hille-Yosida theory of strongly continuous
semi-groups shows that when restricted to the complement of any neighbor-
hood U of x e Y, the family of measures t~1δxTt is bounded. We compact-
if y Y by adding a point at infinity and denote the compactified space by
Y*. Using the compactness of bounded sets in the weak star topology,
and the first axiom of countability for Y, we can find a sequence tό -> 0
and a not necessarily bounded Borel measure Qx on F* — {x}, such that
for any feC(Y) = C{ Γ*), x φ support (/) implies tfιdxTtμ) as t3 -> 0.
There remain two problems.

(a) to prove Qx is unique, and
(b) to show that Qx({^}) = 0. Using the separability of (X, G)

construct a representation, X(t, ω), of the paths of Tt satisfying all the
conditions in Theorem 3.2.

Suppose that sf1SxTSj -> QJ were another limit and let C be any
compact subset of 7 - {x}. For an arbitrary ε > 0 let Us be chosen
so that C a Uζ open c Us compact c Y- {x}, QX(U,) < QX(C) + ε, and
QX'(US)< QX'(C) + ε. Now construct a function f e Ce(Y), such that
f(U,c) = 0, 0 < / < 1, and f(C) = 1. Select a 6 e (0,1) such that

\f() - ί>}) - o

and put D = {x\f(x) < b}. Note that

C compact c interior (D) c D compact c UC9
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Qx (interior (D)) = QX(D), and QJ (interior (D)) = QJ(D). Accordingly, D
satisfies condition (ii) of Theorem 3.3 (2), and thus for any fixed T > 0,

P*{C(D)} = 1 - e~τQx(D) = 1 - e-
rρ*'W ,

so that QX(D) = QJ{D). This shows

\QΛC) ~ QX(C)\ < \QX(D) - QX(D -C) + QΛD - C) - QX'(D)\ < 2ε

for every ε > 0; so Qx = Qx

r.
To show that Qx is really a Borel measure on F - {x}, and not on

F* — {x}9 we must show that Qx({oo}) = 0. In order to do this we
make a final appeal to the paths. Except for an event of probability
zero we know that Cl[{X(t, ω)\t e [0, T)}] is a compact subset of X, and,
consequently, its projection on Y will also be compact. Using the
method above, choose a sequence of compact sets Dn[ {cχ>} in F* and
satisfying condition (ii) of Theorem 3.3 (2). Then if Qx({oo}) ψ 0,

P{C(D)} =l-e-τQx(Dn)>r>0,

and P{f\ n-\ C{Dn)} > 0. Any path with a jump in every Dn during the
time interval [0, T) certainly contains co as a limit point. Thus our
process violates the condition that the paths are a.s. bounded. Hence
Q,({«>}) = 0.

The temporal continuity (weak continuity) of Tt enables us to restrict
consideration to a sigma-compact subset of X, namely U t > 0 support (δxTt).
As a consequence of the preceeding theorem this remark proves the
following corollary.

COROLLARY. Let (X, G) be a homogeneous space where every compact
subset of X is separable. Then every homogeneous process on (X, G)
possesses Property II.

The following theorem gives an accurate description of the important
set support (Qx).

THEOREM 3.5. Let (X, G), Y, X(t, ω), δxTt, and Qx be as in Theorem
3.4. For those ω's which have one sided limits let

F{ω) = {limp(X(ί - n~\ ω), X(t + n~\ ω))\t > 0} .

Then F(ώ) = support (Qx) U {x} a.s..

Proof. By definition CflJΛ) = U«C(Fa) for FΛ measurable c Y.
Now choose a sequence of compact sets Di9 such that U<A =
{support (Qx) U {̂ }}c. P*{C(D)} < 1 - <rΓ ° = 0, so

- 0 ,
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which shows F(ω)dsupport(QX)U {#}. Let Uopenc Ucompactc Y— {x},
and U Π support (Qx) =£ φ. Choose / e Cc( Γ), such that 0 < / < 1, sup-
port (/) c U, and Qx(f) > 0. Let

r(U) = lim sup t'^xTt(U> Qx(f) > 0 .
£->U

If {Ui9 i = 1, 2, , n} is a finite class of such U's, let

P*{ω|ω has a jump in every Ut when ί < ϊ7} = A(T)

P*{ω|ω has a jump in C7fc when T(k - l)^" 1 < ί < Tkn"1}

= 5(fc, Γ) .

We have the following inequalities relating the above numbers

A(T) > J5(l, Γ)5(2, Γ) B(n, T)

> (1 - exp {- ^^ΓrίC/,)}) . (1 - exp {- n-ιTτ{Un)}) .

Letting T approach infinity one sees that

P^{ω\ω has a jump in each ί7έ for some t > 0} > 1.

If we now choose a countable sequence of finite classes of the type {[/«}
above, and let their sets become arbitrarily fine while their unions swell
out and eventually cover support (Qx),

P* {ω I ω has a jump in each Z7t of the fcth covering} = 1 .

Hence the inner measure of their intersection is one. Now the paths
in their intersection have jumps in the closure of each of the finer and
finer covering sets, and consequently for these paths Cl [F(ω)] D sup-
port (Qx). The existence of left hand limits for X(t, ω) implies x e [F(ω)].

4. Compound Poisson processes* The poisson process with rate
parameter r > 0 on the real line is a homogeneous process with transi-
tion probabilities δ°Tt(E) = exp {triδ1 - δ°)}(E). It can be generalized
to a compound Poisson process by replacing δ1 by any positive regular
Borel measure μ of norm one. Probabilistically one thinks of a compound
Poisson process in the following manner. A simple Poisson process is
run at a rate r, and when a jump occurs in this simple process, the
particle ruled by the compound Poisson process jumps from its position
x into the set E + x with probability μ(E).

Suppose we observe two Poisson processes, exp {tr^δ1 — δ0)} i = 1, 2,
running simultaneously. We can then define a new process as follows.
The state of our process will be described by a finite sequence of x^s
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and x2's called a word, and we change states when a jump occurs in either
of our two simple Poisson processes. If a jump occurs in the ΐth process
we lengthen our state by placing the symbol xt to the right of the
current word. One can calculate that the probability of starting with
the empty state at time zero, and being at a fixed state with nxXi$
and n.zx2'$ at time T, is independent of their order, and given by
exp { - (n + r2)Γ}(r1T)wi(^22

7Γ2/(^i + njl. To give an alternative de-
scription of this process, let H be the free group generated by the symbols
{xl9 x2}. Topologize H with the discrete topology, and consider the
compound Poisson process on H given by

δeTt = exp {tin + r2)(pδxi + qδx2 - δe) ,

where p = rλ{rx + r^'1 and q = r%{rι + r2y\ An elementary expansion
shows this process is identical with the word generating process defined
above. It would seem natural to define the superposition of the two
Poisson processes exp {trt(δxi — δe)} to be the process δeTt. This symbol
generating process can also be interpreted by running a simple Poisson
process at the rate rλ + r2, and each time a jump occurs, multiplying
on the right by xι with probability p and by x.z with probability q.

The analogue of the compound Poisson processes for a homogeneous
space (X, G) is the class of processes of the form Tt = exp {tr(P — 1},
where P is a homogeneous transition probability of norm one. We shall,
accordingly, call these processes compound Poisson processes. An easy
computation shows that the infinitesimal generator of such a process is
A = r{P - 1) and D(A) = C(X). Thus the superposition of the two
processes in the preceeding paragraph corresponds to the addition of
their infinitesimal generators. We use this last remark to define the
superposition of an arbitrary homogeneous process and a compound
Poisson process.

DEFINITION 4.1. The sequence T^ of semi-groups on C(X) is said
to converge in the sense of Bernoulli {strongly} to the semi-group Tt if,
and only if, whenever / e C(X), (Tipf){x)-+{Ttf)(x) for each fixed x
and t as n -» oo {if, and only if, the following condition is satisfied.
For each δ > 0 and each / e D(A) where A is the infinitesimal generator
of Tt1 there exists an integer Nstf, such that n > Nstf implies
\\(T^f- Ttf\U < St for all ί > 0}.

It is an elementary consequence of this definition that T^ -> Tt

strongly implies T£° -> Tt in the sense of Bernoulli. We now recall a fact
from the theory of semi-groups which we need in the proof of the next
theorem. Put As - ε'\T9 - 1), then \\etA*f - TJW- -> 0 as ε -* 0 for
any f e C(X), and uniformly for t e (0, M), M < oo. More precisely,

(4.1) | |(e"β - Tt)f\U < ^ limsup||(A2 -
S > 0
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which for fe D(A) becomes \\(etA* - Tt)f\U < t\\(As - A)/|U.

THEOREM 4.1. Every homogeneous process is a strong limit of
a sequence of compound Poisson processes.

Proof. Let Tt be a homogeneous process, / e D(A), and A,Q be as
above. Then ||(exp {tAtQ\ - Γt)/IU < tδtQ, where StQ~>0 as ΐo-> 0.

We now study the concept of strong convergence in more detail
for compound Poisson processes. Our main results are stated in Theorems
4.2 — 4.5, but before proceeding to these theorems we establish the
following useful lemma.

LEMMA 4.1. Let πntt n = 1, 2, , oo be positive Borel measures on
(X, G) while t ranges over the compact separable set F. Suppose for
each f e C(X), πΛtt(f) is continuous in t> and πnti(f)-+ π*>tt(f) as n-+ oo
uniformly for t e F. Under these conditions

sup {\πnΛ(Laf) - π^t{LJ)\: a e G} -> 0

uniformly on F as n -> oo.

Proof. We show first that given ε > 0 there exists a compact set
B, for which πnίt(BG) < ε whatever n and t. Choose {ίj as a countable
dense set in F, and consider the union, E, of the supports of all πntH.
E is sigma-compact as the closure of a sigma-compact set in a uniformly
locally compact space, and includes the supports of all the measures
πn>t because by the continuity of πntt(f) if a point does not lie in Έ it
cannot lie in the support of any πn>t. Select a sequence of functions
Λ 6 C(X), such that fn I 0 on E, fn(0c

n) - 1, and fn(Vn) = 0, where Vn

is a compact set contained in the open set 0n c Vn+1. For fixed k the
sequence of continuous t -> πhft(fn) converges monotonically to zero on
the compact set F a s n -> CXD . This convergence is then uniform. Ac-
cordingly, we can find an Mk, such that n> Mk implies 0 < πktt(fn) < ε/2
all t 6 F. Using the hypotheses of the lemma, we can find a Kn, such
that k > Kn implies \π^t(fn) - π^t(fn)\ < ε/2 for all t. Put n' = Mco.
Then for any Knf < k < oo, and every ί e F ,

< π»tt(fnf) + \πktt(fn>) ~ π-Λfn,)\ < e .

Whereas for k < Knn and every t e F,

If we put Ws equal to the union of 0n, and \J^0M , Bs — Ws satisfies
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the desired condition.
Now put / = 1 and observe that from πΛtt(f) -> π^^f) uniformly

on Fj we can conclude there is an M, such that 0 < | |7r n > ί | |< M, and
II^Λ.ίll-^lk o.ίH uniformly on F. This shows we need only to prove the
lemma for / e CUX). Choose a δ > 0, an / e CΌo(X), and put Dδ =
{x: \f(x)\> δ}. D8 is compact. If H8 = {a e G:a[Dδ~\ Γi B, = φ}, H8 is
open, and a e H& implies.

\π%ti(La-J) - π-tALa-J)\ < 2 ε | | / | U + 2SM .

In this paragraph we show that

lim supwsup {\πntt(La-jf) - ^ ( L ^ / ) | : t e F, a e Hi} = 0 .

Regard a -> \πnΛ{La^f) — π^^L^jf)] = hatfi(t) as a map from the com-
pact set HI to the space of continuous real valued functions on F.
If b is sufficiently close to α, | | I# α -i/—Z/ 6 -i/IL < s', from which
l̂ α.w(̂ ) — Λ'&.nOOl ^ 2Mε', so that the maps ha,n( ) are equicontinuous in
α. Now lim^oo hatn(t) = 0 uniformly in ί by"hypotheses, so that we have
a sequence of equicontinuous functions, a —> ha<n( ), defined on a compact
set, Hξ, with values in a normed vector space and converging pointwise
to zero. As a trivial consequence, they converge uniformly to zero and

lim supw sup {ha>n(t): t e F, a e iίg} = 0 .

Collecting results we have shown

lim supw sup {ha,n(t): t e Fy a e G} < 2 ε | | / | U + 2δM .

Since ε and δ are arbitrary, this gives the conclusion of Lemma 4.1.

THEOREM 4.2. If rn->r and P ( w ) , P are homogeneous transition
probabilities, such that for each fe C(X), p(n>f-+Pf pointwise as n-> oo.
Then.

exp {trn(PW - 1)} -> exp {tr(P - 1)}

strongly as n -> oo .

Proo/. Given / 6 C(X) define W(n, t) by

ίlF(Λ, ί) = IKexp {trn(PW - l)} - exp {tr(P - l ) })/ |μ .

We must show that lim supw sup {W(n, t): t > 0} = 0 . An expansion gives

{\rne-tτnδ*P<v{LJ) - re~trδ*P(Laf)\:a e G}
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where Q%tt is a difference of two positive measures and satisfies:
HQS.ί II < 2; llί-'QS.t II -> 0 uniformly in n as t -> 0 t~ιQlt{g) -> 0 for each
g 6 C(X) as n -> oo uniformly in every compact t subinterval of (0, oo).
We handle these three terms separately. Clearly

lim supw sup {| t-\e'trn - e~tr) | : t > 0} = 0 .

Lemma 4.1 shows that the second term is also zero in the limit. For
the last terms we let t range over a bounded interval [t0, T] where
0 < ί0 and again use Lemma 4.1. If ί0 is small enough and T large
enough the extra pieces are arbitrarily small, so that for sufficiently
large n we can make this last term small too. This completes the proof
of Theorem 4.2.

For later use we weaken the hypothesis of Theorem 4.2 by gene-
ralizing the concept of a homogeneous process to allow an escape of
mass to infinity. Let X* = {X, x*} be the cannonical one point com-
pactification of X with x* denoting the point at infinity. Extend the
operations of G to X* as proper maps, so that G[x*] = se*. In order to
use our earlier notation we consider the spaces CJ.X), CC(X) as imbedded
in C(X*) = C(X). A homogeneous transition probability on (X*, G) is
a continuous endomorphism P : N(X*) -> N(X*) satisfying (i), (ii) and (iii)
of Definition 1.1. It follows as before that P satisfies equations (1.1),
(1.2), (1.3) and (1.4) of § 1 with / e C(X) and μ e N(X*). On the sub-
space N(X) of JV(-X"*), P can be expressed as

(4.1) P=P' + kS ,

where Pf is a homogeneous transition probability on (X, G) and μS =

A homogeneous process on (X*, G) is a weakly continuous one-
parameter semi-group of homogeneous transition probabilities of norm
one acting on C(X), or as adjoints on N(X*). If X is not compact it
is easy to show that whenever x Φ x* there is an r > 0, such that

(4.2) δ*Tt(E) = δ*Tt(X Π E) + {1 - e-rt}P*(E) ,

and

(4.3) δ**Tt(E) = δx*(E) .

THEOREM 4.3. Ifrn->r and P ( w ) , P are homogeneous transition
probabilities on (X*, G), such that for each fe C(X), P ( w )/-> P/ point-
wise as n —• oo. Then

exp {trn(P^ - 1)} -> exp {tr(P - 1)}

strongly as n -> oo.
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Proof. An expansion shows immediately that one only need con-
sider those / e CJJK) in the criterion for strong convergence. Since
for these /, Pf = P'f, the conclusion of Theorem 4.3 follows by the
methods used in the proof of Theorem 4.2.

THEOREM 4.4. Let exp{trn(P^n) — 1)} be a sequence of compound
Poisson processes on (X, G). Suppose rn<K< oo and exp{trn(Pw — 1)}
converges in the sense of Bernoulli to the homogeneous process Tt on
(X, G), where | ]Γ t | | = l . Then Tt = exp{ίr(P - 1)} is a compound
Poisson process on (X, G), and for some subsequence {wj of {n}, rn% -> r,
and P<V/ -> Pf pointwise whenever f e C(X)

Proof. Choose a subsequence {%J so that rn. approaches some r
and <$*P<V -> δxP' + kδx* in the weak topology generated by C(X). By
Theorem 4.2 it suffices to show k = 0. If & ̂  0 it follows from Theorem
4.3. that

Tt = exp { W ~ 1)} + (1 - e-*tr)δ* ,

violating the condition that \\Tt\\ = 1 on (X, G).
The following theorem is known for homogeneous processes on

a commutative group. A proof based on an analysis of characteristic
functions is given in Bochner [1, p. 76].

THEOREM 4.5. Let X be a discrete space so that every one point
subset of X is an open set, and let Tt be a homogeneous process on
(X, G). Then Tt is a compound Poisson process.

Proof. Select a sequence of compound Poisson processes

exp{ίrn(P<n> - 1)}

converging strongly to Tt and normalized by 3xP^({x}) — 0. Using the
discretness of X the characteristic function of the set X — {x0}, Ix-{Xo},
is in C(X). For any ε > 0 we can choose an f e D(A), such that
llίr-{»0} — / I U < e. By addition of the constant — f(x0) to / we obtain
an h—f — f(xQ) 6 D(A) which vanishes at x0 and is greater than 1 — 2ε
elsewhere. Using this h in the definition of strong convergence we find
that on the one hand

- 1)} - Γβ)(A)IL < δn -> 0

as n -> co, while on the other this first expression approaches

\\rn(P^ - l)(h) - Ah\U

&& t->0, From this it follows that
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(1 - 2ε)rn < rnδ*oPW(h) < δn + Ah(x0) ,

which implies

rn < {δn + Ah(xo)}(l - 2s)-1 < K < oo .

Then Tt is a compound Poisson process by Theorem 4.4.

5, Processes with continuous paths. We define in this section a
class of processes having continuous paths, and we give conditions
for a process to belong to this class.

DEFINITION 5.1. We say that a homogeneous process Tt on (X, G)
has the property Gw {GJ, or belongs to the class of processes designated
by the symbol Gw {Gs}, if, and only if, for any fixed x0 e X and any
neighborhood NXQ of xOf there is a sequence of compound Poisson proc-
esses exp{£rw(P(rι) — 1)} converging in the sense of Bernoulli {strongly}
to Γ£, with support (δaίx

oψ^) c a[NXύ] for all a e G

THEOREM 5.1. If TteGs and satisfies Property II of § 2, it follows
that δxTt(Nx) = o(t) as t -> 0 for every measurable neighborhood Nx of x.

Proof. Choose a compact neighborhood, Vx, of x contained in the
interior of NX9 and in accordance with Corollary 2 of Theorem 2.2 let
/ 6 D(A), 0 < / < 1, f(Vx) = 0, and f(N%) = 1. Now select a sequence
of compound Poisson processes exp{£rw(P ( w ) — 1)} converging strongly
to Tt and satisfying support (<TP(W)) c Vx. It suffices to show (Ttf)(x) =
o(ί) as ί-+0, or that for every ί Λ -^0, lim sup M C(2\/)(a0 = 0. It is
no restriction to assume tnrn and ίnrj are both less than n~\ The con-
dition of strong convergence applied to /, then shows that

lim suVntΰ\Ttnf)(x) = lim s u p ^ e x p {ίnrn(P<»> - l)}(/)](a?)

< lim supw t~1e~tnrn{etnrn — 1 — rntn)

< lim ^vφnt^e-tnrn{tnrnf

as we desired to prove.
In the proof of a partial converse to Theorem 5.1 we will need the

following lemma.

LEMMA 5.1. If t,ε,δ>0 and k > (te2 + l ^ " 1 + 1 - logδ, then

Σexp { - tε-^itε-γinl < εδ .
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Proof. Rather than prove this lemma in detail we will indicate
a method of proof. If the sum is overestimated by an integral and
the n\ in that integral is underestimated using (2π)1/2wn+(1/2)e~n < n\, one
obtains the statement that k > εΉe2 implies

Σ exp {- tε-^itε-^lnl < (2πk)-1'2 ex^ {- (k + te-1)} .

The desired conclusion follows easily from this estimate.
Lemma 5.1 gives more than we need to prove a weak converse to

Theorem 5.1, but not enough to prove a converse. The best we are
able to achieve in this direction using the above estimate is stated
below.

THEOREM 5.2. (i) / / SxTt(Nc

x) = o(t) as t -> 0 for every neighborhood
Nx of xe X, Tt e Gw.

(ii) / / SxTt(Nc

x) = o(t2) as t -> 0 fore very neighborhood
Nx of xe X, Tt e Gs.

Proof. These results are stated together because their proofs para-
llel one another. Let Tt be (at first) any homogeneous process, and
suppose NXQ is a compact neighborhood of xQ. Put WXQ = f\ae&x a[NXQ]
and Wy = b\Wa^ where b[x0] — y. This choice of WXQ insures that Wy

is well-defined, WaίXQl c a[Nx^\, and Wx is a compact neighborhood of x.
Now define a homogeneous transition probability, P ε , by SyTs(F) =
δ*Te(WyΓίF). Let s(e) = δ*Te{Wc

x), and q(e) = 1 - s(e) = δ*T9(WΛ).
We show that the compound Poisson processes exp {ίε"α([l — ̂ ( ε ) ] " ^ — 1)}
approximate Tt in the desired sense as ε -> 0. Since support
(3XPS) c Wx c a[NXQl whenever a[x0] = x, this will be sufficient to prove
Theorem 5.2. Since it is known that the processes exp {tε~\Tz — 1)}
approximate Tt in the strong sense, it suffices to show

U(t, ε) - |[ exp {tε-i[q(e)-ψζ - 1]} - exp {U~\TZ - 1)} | | -> 0

as ε->0 for fixed t in conclusion (i), and that t^Uit, ε) -• 0 uniformly
in t as ε —> 0 in conclusion (ii). Calculation shows

U(t, ε) < Σ e x p {- ί ε ^ K ί ε - 1 ) " ^ , e)lnl

where

Since δx(T? - P?) > 0, it follows that | | Γ? - P ? | | = 1 - g(e)n; so
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B{n, e) < 2g(6)-{l - ?(e)"} .

For large n there is a better bound because B(n, ε) < 2 in any case.
We will also use the fact that 1 > s > 0 implies log (1 — s) > — s(l — s)"1.

Proof of (i). Let s(ε) = /(ε)ε where /(ε) -> 0 as ε -+ 0, and suppose
t is fixed and ε small enough so that ε~~λK > (te2 + l)ε-1 + 1. Putting
δ = 1 in Lemma 5.1, and using the substitution

E(n, r) = exp {rε"1 log[l - εw/(ε)]} ,

we find

U(t9 e) < Σ {terms above} + Σ {terms above}

< £7(1, - £Γ){1 - £7(1, £Γ)} + 2ε ^ 0

as ε -> 0 .

Proof of (ii). For δ > 0. We will show lim supε_>0 sup^oί"1?/^, ε)<<5.

Since Z7(ί, ε) < 2, we only need to consider those t < 2δ~\ For these
t choose K > 0 and a range of ε's sufficiently close to zero, so that the
hypothesis of Lemma 5.1 is satisfied for all ε's and t's which come
under consideration. Let s(ε) = ε2/(ε) where f(e) -> 0 as ε -• 0. Com-
puting as before and noting that

• Σexp {- ίε^Kίε-^'VVw! < ε'1 ,

we find

f'E/ίί, ε) < ε-χ{l - £?(2, £Γ)}£7(2, - £Γ) + εZε"1 Σ {terms above}
n>iΓε~1-l

- Kf(ε)e[l - ε2/(ε)]-}£;(2, - K)

+ 2eδK-1 -• 0

as ε -> 0, which completes the proof of Theorem 5.2.
In Euclidean spaces it is easy to see that δ°Tt(NG

0) = o(t) implies
δ°Tt(NQ) = o(tm) for any m -> 0 as t -> 0. Accordingly, in these spaces
the o(£) condition and the Gs condition are equivalent. This may be
true in general but we will not explore the question further here.

6. The commutative case. This section contains an independent
proof of Property II that is more general than the proof in § 3 in that
X need not be separable, and more restrictive because G must be
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commutative. LetG = {x,y,z, •} be a commutative, Hausdorff, locally-
compact topological group, and let G = {a, b, c, } be its character
group. Denote the Fourier-Stieltjes transform of the measure μ e N(G)
by μ(χ) = I (χ9 a)μ(da), and write μn -4 μ if, and only if, for every
g e C(G), μn(g) -> μ{g). If fn, f are uniformly continuous bounded func-
tions on G, we write / w - ^ / as a substitute for the fact that fn-+f
pointwise and uniformly on compact sets. It is convenient to denote
the Haar measure of a Borel set E by \E\, and to let N+(G) be an ab-
breviation for the cone of positive measures in N(G). We need the
following results which we state without proof from harmonic analysis.

(a) If μn, μ e N+(ό), then μn -4 μ is equivalent with μn -4 μ.

(b) If μn e N+(G) and μn ->/ pointwise, / being continuous at e e G,
then / is continuous on G and there is a μ e N+(G), such that f = μ and

(c) If μw 6 N+(G), μn~> μ almost everywhere with respect to the
Harr measure on G, and μn(

e)-* Ke) 1 then μnAμ.

(d) If G is connected, μn e N+(G)t\\μn\\ < M< + oo, and μn->M
on a set, A, of positive Harr measure in G then/^ -4 M on G.

(e) If \\μn\\ < M < + oo, then μn~> μ if, and only if,

for every compact E c G.
Let P+(G) be the cone of regular not necessarily bounded Borel

measures, Q, on G-{e} for which the integral Q'{x) = I {1 — (x, a)}Q(da)
exists and is continuous on G. If U is a compact symmetric neigh-
borhood of e e G, we define the function h on G by

and observe that this h has the following properties:
(i) h is real valued and continuous;
(ii) 0 < h(a) < 2
(iii) it G is connected, h(a) = 0 implies a = β
(iv) ft(α) -> 1 as a -> infinity, so that h e C(G).

By choosing if necessary a new Haar measure we can assume \U\ = 1.
We do this in the proofs below, and in addition denote the measure

μ{F) = f h(a)Q(da) by hQ.

LEMMA 6.1. 7 / Q e P+(G), 0 < U(α)Q((ϊα) - < +
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Proof. [ Q'(x)\dx\ = f \dx\ (Λ Λ {1 - (x,a)}Q(da) =[h(a)Q(da).
JU }u jG-{e} J

The first term above is clearly bounded, so \\hQ\\ is finite.

Let {Qq, q e L} be a directed set with Qq e P+(G), and g a con-
tinuous complex valued function on G. We say Qq-> g boundedly on
every compact set if Qq-> g pointwise, and for every compact set D c G
there is a positive KD and an JV̂  6 L, such that q > ND and x e D imply
\Q'q(x) \<KD. We denote this by Qq^> g. The following theorem collects
the Fourier analysis we need for P+(G).

THEOREM 6.1. ForQeP+(G) define Q\x) = Ux, a)h(a)Q(da), and let

Qq be a directed sequence from P+{G). Then

(1) Q'q\Q>^ Q* -> Q* pointwise ^ > QJ Λ Q ^ O hQq 4 hQ

(2) Qq^> g continuous =φ QJ -> some continuous / φφ QJ Λ / <̂ iφ &Qq -4

some /ί e N+(G).

Proof. Only the first implications need proof in each case. Cal-
culation shows

Qh(x) = J (x, α)Λ(α)Q(dα) = ̂  | # | j Q(dα){(a?, α)[l - (y, a)]}

Q(da){[(x, a) - 1] + [1 - (yx, a)]}

= \ Q'(yχ)\dy\ - Q'(χ).

The implications follow after an application of the Lebesgue bounded
convergence criterion.

THEOREM 6.2. Let Tt be a homogeneous process on G. Put δeTt — wt.
Then wt(x) = etf^ where f is a uniquely determined continuous com-
plex function on G.

Proof. This is an immediate consequence of the semi-group prop-
erty wt(x)ws(x) = wt+s(x) and Property I, wt 4-1 as t -> 0. For small
enough values of t we can even define / directly at a particular x e G
by putting f(x) = t'1 log wt(x) and using the principal branch of the
logarithm.

We can now prove a slightly weaker statement than Property II
for commutative groups.
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THEOREM 6.3. If Tt is a homogeneous process on the locally compact

abelian group G, there is an me N+(G), such that t~ιhδeTt A- m as t —> 0.

Proof, [(x, a)δ°Tt(da) = e~tgCx> from Theorem 6.2. If we put Qt =

t-\l - exp {- tg(x)}) = Q[(x) Λ g(χ)

as t —> 0, and Theorem 6.1 shows hQt -> some m e N+(G).
In general it is not possible to choose a single h in the above manner

which vanishes just at e. For example, if G is the real line with the
discrete topology, denoted by Rd, then in order to satisfy the condition
I U\ < + oo, U must be a finite point set and generate a proper sub-
group K of Rd. In this case the associated h will surely vanish on
K* = RJK which is certainly not equal to {e}. By K* we mean, as
usual, the set of characters identically equal to one on K. By varying
U we can, however, prove Property II. In the following we denote by

J the class of h's defined by h(a) = | U\~λ \ {1 — (y, a)}\dy\ for some

compact symmetric neighborhood U of e.

LEMMA 6.2. IfheJ, then Hh = [a:h(a) = 0} is a compact subgroup
ofG.

Proof. Hh is closed and compact because h-+l as a -> infinity.

Since a e Hh is equivalent to (x, a) = 1 for all x e U, Hh is also a sub-

group of G

LEMMA 6.3. For each a e G — (e) there is an h e J with h(a) > 0.

Proof. Choose a y e G for which (y, a) Φ 1, and for any U satisfy-
ing the above conditions construct a new U' = yU U U U ZT̂ /-1. i7'
satisfies the required conditions and since (x, a) Φ 1 for every x e IP,
the /t corresponding to IP satisfies h(a) > 0.

With this preparation Property II is immediate.

THEOREM 6.4. Given any open neighborhood N% of e e G and any

homogeneous process Tt on G, t~ι3eTt -^ some μ € N+(NΛ) when restricted

to NZ.
e

Proof. Compactify G by adding a point at infinity. Then taking
complements in the compactified space {H°h Π Ni: h e J} forms an open
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covering of the compact Ni. Choose a finite subcovering {Hc

h. Π Nϊ, 1<

i < n}, then Σ ? - A > 0 on NZ. By Theorem 6.3 htt-ψTt Λ mΛ i on G

as £ -> 0 and, accordingly,

so that

on iV;

c.

7. Subordination of stochastic processes • In this section we give
a new definition of the concept of subordination introduced by Bochner
for homogeneous processes on Euclidean spaces. Using this definition
we are able to show that there are a great many processes which are
not subordinate to any but themselves. We introduce this topic by
discussing subordination from the characteristic function viewpoint.

Bochner calls a map v: (0, + oo) -> (0, + oo) a completely monotone
mapping if for every completely monotone function f:R+-*R, the func-
tion / v: R+ -> R is completely monotone. A mapping, v, is a complete-
ly monotone mapping if, and only if, dvjdx is a completely monotone
function, or equivalently e~tυ is a completely monotone function for
every ί > 0. If v is a completely monotone mapping, it can be extend-
ed to a map v: R + + %R —> R + + iR of the closed right half complex
plane into itself, which is analytic on the interior of its domain, and
is of the form v(z) = c0 + cz + Qυ(z) where c0, c > 0

(i) SRe{QB(s)} > 0 ;
(ii) SteJQΛs)} - 0, 9te(z) > 0 implies Qυ = 0;
(iii) 9te{Qβ(s)} = 0, 9ΐe{̂ } - 0 implies 9fm{Qβ(2)} = 0;
(iv) ϊRt{Qυ(z)} = o(\z\) as \z\ -> + oo with 3ΐe(z) > 0. If v is a com-

pletely monotone mapping ^(0 + ) exist, and we call v a subordinator

when vifl + ) = 0. v is a subordinator if, and only if, e~tυ(-x) — \ e~xsπt(ds)f

Jo

where πt > 0, 1)̂ 11 = 1, πQ({0}) = 1, τrt*^s = π8+t9 and s -> ί implies πs -> π t.

If v is a subordinator and e" ί f t ( x ) = i (x, a)3eTL(da) is the family or Pourier-

Stieltjes transforms of a homogeneous process on G, then exp {— tv[h(x)]}

is also the family of Fourier-Stieltjes transforms of a homogeneous

process on G.

DEFINITION 7.1. (Bochner) A process e'thW = \ (x,a)δ°Tt(da) is called

subordinate to a process e-"ίΛ(Λ) = 1 (a?, a)δeTt(da) if, and only if, one of
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the three following equivalent conditions is satisfied.

S CO

e~sxπt(ds,) such that
0

v{h(x)} = h(x).

(2) e'ihW

(3) VTt = \~δsT,πt(d8) .
Jo

If Tt is a homogeneous process with infinitesimal generator A and
A; = ε'^Ts — 1), then the equation exp {— tv{— As)} — \ exp {sAB}πt(ds)
shows that subordination leads from a process with infinitesimal gene-
rator A to a process with infinitesimal generator — v( — A) when suitable
interpreted. Bochner has proven that an infinitely decomposable process
with a Fourier-Stieltjes transform of the form exp {— t(bx2 + ib'x)} on
the real line is not subordinate to any processes but those with ch.f ,(Xt) =
exp {— tcφx2 + ib'x)} and c > 0. In this case subordination is simply
a linear change of time scale. In general we denote the relationship
T[ is subordinate to T[ by T[ < Tt. If processes differing only by
a linear change of time scale are identified, it is easy to show using
Bochner's result that the relation < is a proper partial ordering of
homogeneous processes.

An alternative definition of subordination rests on a probabilistic
choice of time scale. If X(t, ω) is a measurable stochastic process and
Y(t, ω) is a non negative stochastic process which is independent of
{X(s, ω)}9 and whose paths are almost surely non decreasing in R + , we
can form the composite process Z(t,ω) = X(Y(t,ω),ω). Under special
circumstances this composition corresponds to subordination of the
X(t, ω) process by the Y(t, ω) process. In general the transformation
X(t, ώ) -* Z(t, ω) will preserve any of those properties of the X(t, ώ)
process which depend only on the order relations of the time scale.
For example, if X(t, ώ) is Markov, a semi-martingale, a martingale, or
spatially homogeneous, so is Z(t, ώ). The stationarity of X(t, ω), a prop-
erty depending not only on the order of the time scale but on the
magnitude of certain time differences, will in general not be preserved
unless Y(t, ώ) is a homogeneous process (i.e. spatially homogeneous
and stationary). In this last case if Y(0, ω) — 0 with probability one,
we say Z(t, ω) is subordinate to X(t, ω) with subordinator Y(t, ω).

After making the observation that P{Y(t, ω) e E\ Γ(0, ώ) — 0} should
correspond to πt(E) in Bochner's definition, we can show the coincidence
of transition probabilities in the two concepts of subordination. If X(t, ώ)
is a homogeneous process on the commutative group G with X(t, ω) — e and
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P{X(t + S, ω) 6 E\X(8, ω)} = δz«"*>Tt(E) ,

then subordinating by F(ί, α>) according to Definition 7.1, we get δeT[(E) =

\ δeTs(E)πt(ds). If we subordinate the same process using the definition

in terms of paths, we find

- P{Z(t, ω) e E\Z(O, ω) = β}

= \P{X{U, ω) 6 J£|Y(ί, ω) = u}P{Y(t, ω) 6 du}

- \P{X(U, ω) 6 £7}τre(dtt) = [δeTu(E)πt(du) .

Consider a homogeneous process on a not necessarily commutative
locally compact topological group, G, described by the transition proba-
bilities δxTt. For such a process, define the set F(Tt) = Πί>o support
(δeTt). F(Tt) is a closed possibly empty semi-group of G.

THEOREM 7.1. Let T[ be a homogeneous process subordinate to Tt

on G, and supporse t~1δeT[-^ Qe on G — {e} in the sense of Theorem 3.4
as t -> 0. The either T[ = Tct for some c > 0, or support (Qe) z> F(Tt).

Proof. Since the paths of Y(t, ώ) are non decreasing and accord-
ingly, of finite length in any time interval,

(7.1) #{exp {iuY(t, ω}} = exp {t(icu + ί°° [eixu -
J

where e > 0 and \ xJ{dx) < + oo for any ε > 0. If J = 0, Γ(ί, ω) =
Jo

cί a.s. and T[ — Tct. If J Φ 0, the F(£, ω) process will have jumps
with probability one, and during any of these jumps there is a positive
probability that the Tt process will move from its position to a neigh-
borhood of any specific point in F(Tt). This means the subordinated
process may have jumps anywhere in F(Tt), then from Theorem 3.3
F(Tt)d support (Qβ).

That support (Qβ) φ F(T[) in general can be seen by subordinating
a Bernoulli process on the real line (see Bochner [1] for definitions).
It is easy to refine Theorem 7.1.

THEOREM 7.2. Let T[ be a homogeneous process subordinate to Tt on
G. Let t-^eT't->Qf

e and t'^eTt->Qe as t -> 0 in the sense of Theorem
3.4. Let Y(t, ω) be the subordinating process as in (7.1). Then if c < 0,

support (Q'e) = Cl [ U {support (δeTs): s e support (J)} U support (Qθ)] ,

and if c = 0 ,
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support (Qί) = Cl [ U {support (δeTs): s e support (/)}] .

In particular, support (Q') = φ if, and only if, J = 0 and either Qe or
c equals zero.

Proof. Let z e support (δeTs) and s € support (J). Then given any
neighborhood Uz of z there is a neighborhood Vs of s, such that t e Vs

implies beTt{Uz) > 2~1δeTs(Uz) > 0. We can show this by choosing a com-
pact set Da Uz and a function / e CC(G), such that f(D) = l,f(Uc

a) = 0
and 0 < / < 1. If D is chosen so that δeTs(f) is close to δeTs(Uz) the
assertion follows from the continuity of δβTt(f). There is a positive
probability that Y(t,ω) will have a jump while ί e F s and the T[ proc-
ess a corresponding jump in t/z. Thus z e support (Qe). If c > 0 it is
clear from the definition of subordination, and the fact that the paths
of a homogeneous process can be chosen to have limits from both the
left and the right at all time points, that support (Qe) c support (Q'e).
If, conversely, y e support (Q'e), the subordinated paths will have a jump
in every neighborhood of y and the only manner in which this can
happen is for y to lie in the right hand side of the above expressions.

COROLLARY 1. // F(Tt) = support (δeTs) for every s > 0, and J Φ 0,
then support (Q'e) = F(Tt). If J = 0 support (Q'e) = support (Qe).

COROLLARY 2. If all motion in the Tt process occurs by jumps, as
is the case if Tt is compound Poisson, and J Φ 0, then

support (Q[) - F(Tt) = Cl [ U Γ-i {support (Qeψ] .

Proof. In this case F(Tt) = support (δeTs) for every s > 0 and the
first corollary applies.

If G is commutative we can use a different method of description.

THEOREM 7.3. Let T[ be a homogeneous process subordinate to Tt on
the commutative group G. Let t^δ'Tl -> Q'e and t-ιδeTt-+ Qe as t -* 0.
Then

support (Q'e) Z) support (Q[) support (Qe) .

Proof. In this case it is clear that

support (δeTt) support (Qe) c support (δeT)

and the conclusion follows from Theorem 7.2.

Let us now restrict our attention to Euclidean w-space. In Rn we
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denote the inner product by ζx,yy and the norm by \x\. The charac-
teristic functions of a homogeneous process X(t, ω) have the form

(7.2) #[exp {i<z, X(t, ω)>}] = exp {tS(b, A, F, z)}:

where b e Rn, A is a positive semi-definite linear transformation of Rn, F
is a positive, bounded, regular Borel measure on Rn — {0},

(7.3) S(b, A, F, z) = i<b, z) - (Az, z) + Q(F, z) ,

and

(7.4) Q(F, z) = f Γexp [i<u, z>} - 1 - - ^ ' - > Γ 1 ~P^- F(du) .
J | w ι > o | _ 1 + \u\2 J \U\2

Corollary 1 shows that if X'{t, ω) is a process subordinate to X(t, ώ)
in a non trivial manner and

(7.5) #[exp {i<z, X'(t, ω)>}] = exp {tS(V, Af, Ff, z)} ,

then support (F) contains the subspace of Rn orthogonal to {x|^4x = 0}.
If, in particular, A is positive definite support (F') — Rn. Theorem 7.3
states

support (Ff) + support (F) c support (F') .

This shows if support (Fr) is compact that X(t, ω) is not subordinate to
any process but itself and possibly a Bernoulli process of the form
X(tt ω) = tb. In the latter case X'(t, ω) — Y(t, ω)b and all displacement
of the X'(t, ω) process takes place along the ray {sb:s>0} = R+b.
These observations are summarized below.

THEOREM 7.4. Let X'(t, ω) be a homogeneous process on Rn for which
support (Ff) is compact, then X'(t, ω) is not subordinate to any process
but itself unless support (Ff) c R+b, and A' = 0. In the latter case
Xf{t, ω) is subordinate to the Bernoulli process Z(t, ω) — tb.

Theorem 7.4 does not exhaust the results which can be obtained
by the above technique. In particular we will improve Theorem 7.4 for
the real line.

Let X'(t, ω) be a homogeneous process on the real line subordinate
to X(t, ω) as above. For convenience put

Hf) = ί [f(x)ΓF(dx) ,
Jxφo

and

B(s) = [b + L(x)]s + Cl [ U »+-°ΐ {support (F)}n]
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when L(\x\) < + oo. Then if δ°Ts denotes the transition probabilities
of X(t, ω), and X(t, ω) has no Gaussian component, it is clear that
support (δ°T8) = B(s) when L ( | x | ) < + oo, and support (δ°T8) = R other-
wise. Using Theorem 7.2 this leads to the following.

THEOREM 7.5. Let the homogeneous process X'(t, ω) on the real line
be subordinated by Y(t, ώ) to the process X(t, ω), where their Fourier-
Stieltjes transforms are given by (7.1) and (7.2).

(1) / / A Φ 0 or L(\x\) = + oo, support (Ff) = R.

(2) / / A = 0 and L(\x\) < + oo, then

support (Ff) = [ U {2?(s): s e support (J)}] lj support (J)

if c > 0, and

support (F') = U {.B(s): s e support (J)}

ifc = 0.
It should be noted that we are using the notation of a multiplicative

group, so that U +Γi {support (F)}n in B(s) refers to the additive semi-
group generated by support (F).

If we use the easily proved fact that a closed additive semi-group
of the real line which contains both a positive and a negative number
is necessarily a subgroup of R, the following corollary of Theorem 7.5
is immediate.

COROLLARY. // X'(t, ώ) is non trivially subordinate to a homogeneous
process, then support (Ff) has one of the forms (H + S) (J W or H + S,
where W is a closed set which generates the closed additive semi-group
S, and H is not empty and is contained in either [0, + oo) or (— oo, 0].
// S is not a closed subgroup of R it is contained in either [0, + oo)
or (— oo, 0].

This rules out, among others, sets like {...,— 2, — 1, 0} U (0, + oo)

as the support of the F of a non trivially subordinated process.
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