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ON THE STRUCTURE OF INFINITELY

DIVISIBLE DISTRIBUTIONS

J. R. BLUM AND M. ROSENBLATT

1. Introduction and summary* Let F(x) be a distribution on the
real line. Then we may write

(1.1) F(x) = pF,{x) + (1 - p)F2(x)

where Fλ{x) is a discrete distribution, F2(x) is a continuous distribution
and 0 < p < 1. We shall say that F(x) is discrete if p = 1, F(x) is
continuous if p = 0 and F(x) is a mixture if 0 < p < 1.

Let f(s) = I eίsxdF(x) be the characteristic function corresponding

to F{x). It would be useful to give a convenient criterion on <p(s) to
determine when the corresponding distribution F(x) is discrete, continuous,
or a mixture. In § 2 we give such a criterion for the class of infinitely
divisible (i.d.) distributions, utilizing the Khinchin representation of the
characteristic function of such a distribution. In § 3 we apply the theorem
of § 2 to characterize a certain class of stochastic processes.

2 The structure theorem* Let φ(s) be the characteristic function
of an i.d. distribution. The Khinchin representation of such a charac-
teristic function takes the form

(2.1) Ψ(s) = exp {*•

where γ is a real number and G(u) is a real valued bounded nondecreasing
function, γ and G(u) are uniquely determined by the conditions
G(— oo) = 0, G(u + 0) = G(u). We shall need the following two lemmas,
the first of which is well known.

LEMMA 1. Let X and Y be independent random variables. Then
(i) the distribution of X + Y is discrete if and only if the distribu-

tion of each of the variables is discrete,
(ii) the distribution of X + Y is a mixture if and only if one of the

two distributions is a mixture and the other is either discrete or
a mixture.

Let F(x) be a distribution. We shall define Fw(x) as follows :
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J. R. BLUM AND M. ROSENBLATT

!or * ̂  U.
for x > 0

and for k > 2, FCk:>(x) denotes the &-fold convolution of F(x) with itself.

LEMMA 2. Let — o o < α < & < o o , and let F(x) be a nondecreasing,
bounded function defined for a < x < b such that F(a) = 0, F(b) — F(a) =
c > 0.

(2.2) ?(«) = exp J - c + Γ)eisxdF{x)]^

is a characteristic function corresponding to the i.d. distribution

(2.3) H(u) = e-±FVC^.

If F(x) is a pure jump function then H(u) is discrete. If F(x) is
continuous, then H(u) is a mixture with a jump of magnitude e~c at the
origin and continuous otherwise.

Proof. For every positive integer n let

and let

n 1 Γf6 ~]

ΨΛs) = Σ> ~.\ \ β "d^a?)l*/Σ- c *

Then Hn(u) is a distribution with characteristic function ^w(s). Since
Hn(u) converges to H(u) and φ(s) converges to the continuous function
φ(s) it follows that H{u) is a distribution with characteristic function
ψ(s). The fact that H(u) is i.d. is immediate from the form of <p{s).
Now if Fix) is a pure jump function then (2.2) becomes

where i^(^) has its jumps at the points xό with magnitudes pJf and such
a characteristic function clearly corresponds to a discrete distribution.
Finally if F(x) is continuous we may write

and since the infinite series converges uniformly it follows that H(u) is
the mixture of a continuous distribution and the distribution with a
single jump at zero.
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THEOREM 1. Let φ(s) be the characteristic function of an i.d. dis-
tribution F(x). Let G(u) be the function occurring in the representation
(2.1). Then

f°° 1(i) Fix) is discrete if and only if I — dGiu) < oo and Giu) is
J-~ u2

a pure jump function.

$ 1
— dG(u) < OD and G(u) is

-~ u%

not a pure jump function
Γ°° 1(iii) Fix) is continuous if and only if \ — dG(u) = oo .
J-~ uz

Proof. Suppose first that G(u) is a pure jump function with jumps
at the points ujfj — l,2f ••• and with corresponding magnitudes pό > 0,
such that ΣjPj < °° Then (2.1) (with γ = 0) takes the form

(2.4) φ(8) = exp JΣ Γ Λ - 1 - - ^ T

I J L 1 + u)I J L 1 + u) J u)

Now if ΣJPJIU) < °° w e m a y rewrite (2.4) in the form

φ(s) = exp \isb - c + 1 ^ s wdM(

where

h — v
3 Uj J Uj

and where M(u) is a bounded, nondecreasing, pure jump function with
jumps at the points Uj and corresponding magnitudes ((1 + Uj)lu))Pj.
Consequently it follows from Lemmas 1 and 2 that F(x) is discrete.

Conversely we suppose that F(x) is a discrete distribution. We shall
show first that G(u) is a pure jump function. To do this write G(u) =
Gλ(u) + G2(u) where Gx{u) is a pure jump function and Gt{u) is continuous.
If G(u) is not a pure jump function there will exist a closed interval
\a, 5] not containing zero such that G2(α) < G2(6). Then we may write
<p(s) in the form φ(s) = M(s)N(s) where M(s) is a characteristic function
and

- is? λdGt(u) - \bl±J^dGt(u) + \beisudH(u)\- exp

where dH(u) = ((1 + u2)[u2)dG.z(u). From Lemma 2 it follows that iV(s) is
the characteristic function of a mixture and from Lemma 1 it then
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follows that F(x) is not discrete. Hence G(u) is a pure jump function,
and <p(s) has the form (2.4).

We shall show that ΣJ/°J/%? < °° Since Σji°j < °° it is sufficient
to restrict attention to those u5 for which \u5\ < 1. Since F(x) is dis-
crete it follows that ψ(s) is almost periodic and we have

(2.5)

Now

\φ(s)\* = exp {Σ [COS^S - n ] A J

where

Let

9(R) = Σ

We have

(2.6) M s )p

{[cos ^ s -

The first of these inequalities is immediate and the second is an ap-
plication of Jensen's inequality.

From (2.6) we obtain

(2.7) ~

Σ Λ 4r Γ exp

^ I ^ I ^ I u) R Jo

Suppose R > 1 and | ^ | > l/i2. Then for every ε > 0 there exists δ
depending on ε only with 0 < δ < 1 and with the following property:
If R^ε) is the subset of [0, R] where cos u3s < 1 — δ and R.λ{έ) is the
subset of [0, R~\ where cos ŵ s > 1 — δ, then the measure of R2(e) does not
exceed εR. Using this and (2.7) we find

(2.8) — [R\φ(s)\
R Jo

ds
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Now if ΣJPJIM) = °°, then clearly lim^*,g(R) = oo. This together
with (2.8) contradicts (2.5), thus proving (i).

5 00

l/u2dG(u) < 00 and G(u) is not a pure jump func-
- 0 0

tion. Then we may write G(u) = Gτ(u) + G2(u) where G^u) is a pure
jump function and G%{u) is continuous. Of course we have

f" - L d G t f u K 00 , < = 1,2.
J— u2

Then from (i)

exp](~ ^ - 1 - i m y + ̂  dGJju)]

is the characteristic function of a discrete distribution. Similarly from
Lemma 2 it follows that

-« L 1 + u2 J

is the characteristic function of a mixture. Thus F(x) is the convolu-
tion of a discrete distribution and a mixture and from Lemma 1 it fol-
lows that F(x) is a mixture.

Conversely suppose F(x) is a mixture. Then

(2.9) ?(«) = vψι{s) + (1 - p)pa(β)

where 0 < p < 1, ^(s) is the characteristic function of a discrete distri-
bution and φ2(s) is the characteristic function of a continuous distribution.
If we write φ(s) = eψ^ then e<κs)M is a characteristic function for every
positive integer n because F(x) is infinitely divisible. Clearly eψ(Ww must
be the characteristic function of a mixture, i.e.

(2.10) β«o/ = VnΨhn(s) + (1 - A K Λ * " )

where 0 < p n < 1, and fi,w(s) and φ2,n(
s) a r e oί the same type as ψ^s)

and <p2(s) respectively. From (2.9) and (2.10) we obtain

t Ψ(sVΊn

+ Σ (t)Pn~"(l - P.) W ( « K («)

Now <fln(s) is the characteristic function of a discrete distribution
and the sum occurring in (2.11) is the product of (1 — pi) and a charac-
teristic function of a continuous distribution. Thus
Pn = Plln and [>i,w(s)]n = ^2(s) and we see that φ^s) is the characteristic
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function of an i.d. distribution. Writing ψ^s) = β<Vβ>, p = e~c with
0 < c < co we have

ψ(s) c ΨiΨAS)
(2.12) en —e~nen + ( 1 — e~n )<p2,n(s) .

If we expand the exponentials in (2.12) we obtain

(2.13) lim φM(s) = ΨΦ) = 1 + iί?>^Aί?> .

Since Φ(s) and ^(s) are continuous it follows that φ2>o(s) * s a charac-

S oo

elsxdH(x), where H(x) is a distribution.
- o o

Hence

(2.14) ψ(s) = β*<β>

Now e^i^s) is the characteristic function of a discrete distribution. If we
equate formula (2.14) for φ(s) with formula (2.1) for φ(s) it follows
from the first part of the theorem and the uniqueness of G(u) that

I llu2dG(u) < cx3. It is also a consequence of the first part of the
J -oo

theorem that G(u) is not a pure jump function. Thus (ii) is proved and
(iii) follows from (i) and (ii), proving the theorem.

From (2.14) we are able to deduce additional information in the
mixed case.

COROLLARY. Let φ(s) be a characteristic function corresponding the
i.d. distribution F(x). If F(x) is a mixture then F(x) is the convolution
of a discrete i.d. distribution and a i.d. distribution which has a jump
at zero of magnitude less than one and is continuous otherwise.

3 A class of discrete processes* Let Xj(t), t > 0, j — 1, 2 be
a sequence of independent stochastic processes such that for each j , X3(t)
is a process with independent increments and such that for 0 < tτ < ίa

the random variable Xj(t2) — Xjfa) has characteristic function

<PJ(S, tlf Q = exp
J. ~j~ Uj -J U j

where uό is a real number and ^( ί) is a nondecreasing function defined
for t > 0 with pj(O) = 0. Then each X3(t) is a generalized Poisson pro-
cess, i.e. Xj(t) assumes values of the form yh = ku} — {pj{t))ju3 with
probability

P { X λ t ) = M =
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where λ^t) = ((1 + u))lu))pj(t). Now if ΣJPJOO < °° f o r every t > 0,
then we can define a process X(t) as the sum of the processes Xj(t),
and the characteristic function of the process X(t) will have the form

(3.1) ,(»,.) = exp {E [ Λ - 1 -

It is an immediate consequence of Theorem 1 that for any t > 0, X(t)
will be a discrete random variable if and only if Σ J (PA^))IU) < °°

Conversely suppose for t > 0, X(£) is a stochastic process such that
X(0) = 0, X(t) is a discrete random variable for every t > 0, and the
process has independent infinitely divisible increments. This will be true,
e.g. if X(t) is a discrete process with independent increments and such
that X(t) is continuous in probability. Then from Theorem 1 it follows
that the characteristic function of the random variable X(t) is essentially
of the form (3.1) with Pj(t) nondecreasing and Σ J (fr(*))/%5 < °° f° r a ^ *•
Consequently X(t) has the stochastic structure of a sum of independent
generalized Poisson processes. We have

THEOREM 2. Let X(t) be a discrete stochastic process for t > 0, with
X(0) = 0 and such that X(t) has independent infinitely divisible increments.
Then there exists a sequence of independent generalized Poisson processes
Xj(t),j= 1,2 •-- such that X(t) has the same stochastic structure as

tf)
In the case when X(t) assumes only integer values Theorem 2 was

already proved by Khinchin [1],

REFERENCE

1. A Khinchin, Nachwίrkungsfreίe Fόlgen von zufdllίgen Ereignissen, Teor. Veroyatnost. i
1, (1956).

INDIANA UNIVERSITY





ASYMPTOTIC EXPRESSIONS FOR ΣW*/(Λ) log'n

R. G. BUSCHMAN

In this paper some asymptotic expressions for sums of the type

rn ,

where f(n) is a number theoretic function, are presented. (The sum-
mations extend over 1 < n < x unless otherwise noted.) The method
applied is to obtain the Laplace transformation,

= (~ e~stF(t)dt = f(s)

of the sum and then use a Tauberian theorem either from Doetsch [2]
or its modification for a pole at points other than the origin, or from
Delange [1] to obtain the asymptotic relation. If f(n) is non-negative,
then F(t) is a non-negative, non-decreasing function and hence satisfies
the conditions for the Tauberian theorems. In many cases the closed
form of a Dirichlet series involving the functions are known, and in
this case the relation

Σ naf(n)\ogrn\ = (-

can be used. The functions chosen for discussion and the Dirichlet
series involving them can be found in Hardy and Wright [3], Landau
[4], [5], or Titchmarsh [7]. We present first a few illustrations of the
method and then a more extensive collection of results is presented at
the end in a table.

First we choose σk(n) as an example of a simpler type. Since

we have

For k > 0 the pole where 3ΐs is greatest is at s = b if b > 0. At that
pole, since

C(m)(s + 1 - 6) ~ (-l)mm ! (s - b)-™-1 ,

the Laplace transformation of the sum has the form

Received October 10, 1958.



10 R. G. BUSCHMAN

f(s) ~ 6-^(1 + k)r ! (s - &)--1 .

Now if δ > 0, then by modifying Doetsch [2, p. 517] for poles not at
the origin or from Delange [1, p. 235] we obtain

Σ nδ-1-*σ]fc(n) log7* n ~ b-χ(l + k)ehψ ,

or, if x — et

~ 6-^(1 + k)x* logr α .

If 6 = 0, then

/(s) - C(l + k)r ! s-?-2 ,

so that form Doetsch [2, p. 517] after substituting x — eι we obtain

(r + 1)"1C(1 + fe) logr+1r» .

The expressions for σ(n) can be obtained by setting k = 1.
For & = o, σ fc(%) becomes d(n) which will be covered as a special

case of dk(n).
For k < 0 the pole where 5Hs is greatest is at s = b — k so that

f or 6 > k

f(s) ~ (6 - k)~X{l -k)rl(s-b + k ) - ^ 1 .

Hence

~ (δ — k)'X{l - A:)^δ-fc log?'α; , for δ > &

(r + l ) - 1 ^ ! - k) log?+1x , for δ = k .

By analogy, since

then

Σ nb~2φ(n) \ogrn ~ {δC(2)}'V logrx , for δ > 0

Σ n~2φ(n) \ogrn ~ {(r + l ) ^ ) } " 1 logr+1^ , for δ = 0 .

If χk(n) represents a character, mod ky then the Dirichlet series can
be represented by

Σ n-^in) = Lk(s)
1

so that if χk is a principal character then L^s) has a pole at s = 1 and

Σ n^χ^n) \ogrn ~ φ(/b)(/cδ)-̂ δ logrαj , f or δ > 0
Φ(k){(r + l)δ}~1 logr+1x , f or δ = 0 .
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The Dirichlet series involving dk(n) yields a power of the ζ-ίunction,

i.e.

so that f or k > 0

Σ nh^dk(n) \ogrn\ = (-lYs^idldsYζ^s + 1 ~ b) .

Now the Laplace transform can be written to show the behavior at
the pole at s = &,

f(s) - (r + k - 1)

Thus

Σ n^d^ri) \ogrn ~ {δ(fc - 1)!} - V log^*-^ , for b > 0

Σ n-HJji) \ogrn ~ {(r + k)(k - 1)!} -1 \ogr+kx , for 6 = 0 .

Special cases can be obtained for k = 1,2, since d ^ ) = 1 and
<22(w) = σ0O) = d(^).

In an analogous manner we can obtain from

the expressions

Σ n^'din2) \ogrn — {2bζ(2)}~1xb logr+2x , for b > 0

Σ n-τd{n2) \ogrn ~ {2(r + 1)C(2)} -1 logr+Bx , for b = 0 .

Certain of the common number-theoretic functions have not been
considered and do not appear in the table (in particular μ(n), λ(n), and
yk(n) for non-principal characters) because the sum F(t) fails to satisfy
the non-decreasing hypothesis for the Tauberian theorems. λ{n) has the
additional bad characteristic as shown by the poles of the closed from
of the Dirichlet series

in that the pole of the numerator is on the line ?fts — 1/2 which is
critical for the determinator, and thus this is not the pole where 9ίs
is greatest as required by the theorem from Delange.

Results which he has obtained for the case r = 0 and the functions
σ{n)y σk(n), d(ri), and φ(n), treated by a different method, have been
communicated to me in advance of their publication by Mr. Swetharanyam
[6].
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General term of
the sum

nh~1~1cσ ic{n) \ogrn

(k>0)
r^-^icin) \ogrn

(*<0)
nb ~2σ(n) \ogrn
nb-ιdk{n)\ogrn

nb-ι\ogrn
nh-1/\{ri)\ogrn
n>}-2φ(ri)logrn
nb~1qk(n)logrn
nh'1\ μ(n) I \ogrn

cra(n)o'd(n) logrn

(a > 0) (d > 0)
σ-n(n)d(n) \ogrn

nl+a-ϋ

(α>0)
nb~2a(ri)logrn
rf'-T-χ^ri) \ogrn
n^-iγ^n) \ogrn

Table

Asymptotic expressions for 2 naf{n) \ogrn

Asymptotic Expressions

6 > 0 6 = 0
(r + l ) - 1 ^ ! + k)\ogr+1x

(6 - ^ '

b~1ζ(2)xb logrχ
{b(k - l)!

-k)logr+i(B

(r

(r + 2)-1

(r + I)- 1

(r + l)- 1

{(r +

{(r+
{2(r

xb \ogrx

ζHl + a) C2(l

(r + 2)f (2 + a)

2 { 3 ( r + l

φ(k){k(r
4(r + l)~
(r + l
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A CLASS OF RESIDUE SYSTEMS (mod r) AND
RELATED ARITHMETICAL FUNCTIONS, I.

A GENERALIZATION OF MOBIUS
INVERSION

ECKFORD COHEN

1. Introduction. Let Z denote the set of positive integers and
let P and Q be nonvacuous subsets of Z such that if nx e Z,n2e Z,
(nlf n2) = 1, then

(1.1) n = nxn2 e P^t^e P,n2e P;

suppose also that the elements n in Q satisfy the condition (1.1) with
P replaced by Q. If, in addition, every integer n e Z possesses a unique
factorization of the form

(1.2) n = ab, ae P,b eQ ,

then each of the sets P and Q will be called a direct factor set of Z,
while P and Q together will be said to form a conjugate pair. In the
rest of this paper P will denote such a direct factor set with conjugate
set Q. It is clear that 1 is the only integer common to both P and Q.
A simple example of a conjugate pair P, Q is the set P consisting of
1 alone and the set Q = Z.

Let r be a positive integer. In this paper we shall generalize the
notion of a reduced residue system (mod r). If P is a given direct
factor set, then the elements a of a complete residue system (mod r)
such that (α, r) e P will be called a P-reduced residue system (mod r)
or simply a P-system (mod r). Any two P-system (mod r) are equivalent
in the sense that they are determined by the residue classes of the in-
tegers (mod r). A P-system chosen from the numbers 1 < a < r will
be called a minimal P-system (mod r). The number of elements in
a P-system (mod r) will be denoted by φP(r) and called the P-totient of
r. Clearly, if P = 1, ψP(r) reduces to the ordinary Eulerian totient
φλ{r) = φ(r), while φz(r) = r.

We summarize here the central points of the paper. Analogous to
the generalization φP(r) of φ(r), we define in § 2 a function μP(r) ex-
tending the Mόbius function μ{r) to arbitrary direct factor sets P. On
the basis of this definition we prove in Theorem 3 an analogue of the
Mόbius inversion formula. This result is then applied in § 3 to yield
an evaluation of φP(r). In § 4 a generalization cP(n, r) of Ramanujan's
trigonometric sum c(n, r) is defined and evaluated for arbitrary direct
factor sets.

Received August 26, 1958.
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14 E. COHEN

In § 5 applications to two relative partition problems (mod r) are
considered. In particular, in Theorem 12 we obtain a formula for the
number of solutions (mod r) of the congruence

(1.3) n = xλ + + xs (mod r) ,

such that (xiy r) e P, (i = 1, . . . , s). In Theorem 13 a formula is deduced
for the number θP(n, r) of integers a (mod r) such that (α, r) = 1 and
(n — a, r) e P. These two theorems are wide generalizations of results
proved by the author in [1], [2], and [3]. We remark that the method
in § 5 and the latter part of § 4 is based on the theory of even func-
tions (mod r) developed in the three papers cited above.

In § 6 the results of the preceding sections are specialized to the
conjugate pair P, Q, where P consists of the A -free integers and Q is
the set of kth powers. Precise criteria for the vanishing of θP(n, r)
and θQ(n, r) in these cases will be found in Theorem 14.

Regarding the theoretical foundations of arithmetical inversion, we
mention an investigation of Holder [6]. Additional references to the
literature appear in Holder's paper.

REMARK. It is noted that several of the results proved in this paper
are valid for arbitrary sets P, as distinguished from direct factor sets
(for example, Theorems 6, 8, 9, and 13). In the general case, however,
the unifying method of arithmetical inversion is no longer applicable.
The broader topic of arthmetical functions in relation to arbitrary sets
P will be treated in another paper.

2* The inversion function μP(r). We recall the following funda-
mental property of μ(r).

(2.D

The /^-function may be generalized to arbitrary direct factor sets by
writing

(2.2) M 0 Σ
dβP

where the summation is over the divisors d or r contained in P. It will
be observed that μjj) = μ(r) and μz(r) = p{r).

By (2.2), (1.1), and the factorability of μ(r), it follows that μP(r) is
a factorable function of r :

THEOREM 1. If rxe J,r2e J, (ru r2) = 1, then
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(2.3) μP{r) = M n ) M O (r = r.r,) .

We next prove that the property (2.1) of μ{r) can be extended to
the function μP{r).

THEOREM 2.

(2.4) Σ

Proof. On the basis of (2.1), (2.2) and the uniqueness of the factori-
zation (1.2) one obtains

ΣμJrA = Σ Σ μ{D)
d\r \ & / dc = r e=8D
dβQ dβQ 8er

= ΈtiD) Σ 1 = Σ,KD) = P(r) .
D\r 8d = r/D D\r

δβP.dβQ

This completes the proof.
By means of Theorem 2 we generalize the Mobius inversion formula

to arbitrary direct factor sets.

THEOREM 3. If f(r) and g(r) are arithmetical functions, then

(2.5) f(r) = Σ g(~-) 2 9(r) = Σ f(d)μJrΛ .
d\r \d/ d\r \ (Z /
dβQ

Proof. Let f(r) be defined as on the left of (2.5). By (2.4) one
obtains

Σ f(d)μP(l) = Σ ( Σ g(.e))μJ J-)
a\r \ d I d\r \δe = cZ / \ (X /

= Σ flr(e) Σ μA?) = Σ ff(e) Σ M3')
e\r d8'*=r e\r 88r = r\e

8%Q

= Σ 9(e)p(~) - flf(r) .
e\r \ e /

Conversely, let #(r) be defined as on the right of (2.5). Then again

by (2.4)

/ Λ/ \
>Tϊ

dβQ " dβQ

= 8\r de = r 8\r dδ'=r/δ
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The proof is complete.
It is evident that if P = 1, Q — Z, Theorem 3 becomes the inversion

formula of elementary number theory.

3* The totient function φP(r). The following principle is basic in
considering P-totients.

THEOREM 4. Let d range over the divisiors of r contained in Q,
and for each such d let X range over the elements of a P-system (mod
rid). Then the set d X forms a complete residue system (mod r).

Proof. In the proof we suppose n to range over the positive in-
tegers < r. For a fixed divisor d of r, d e Q, let Cd represent the set
of those n for which (n, r) is of the form (n, r) — de, e e P. By the
uniqueness of the factorization (1.2), a given n lies in exactly one class
Cd hence the set of elements in the classes Cd consists precisely of the
integers 1, , r. Moreover, for a fixed divisor d of r such that d e Q,
the elements n — dx comprise Cd if and only if {%, rjd) e P, 1 < x < rjd,
that is, if and only if the elements x form a minimal P-system (mod
rid). Replacing the particular P-system x (mod r/d), by an arbitrary
P-system X (mod r/d) the theorem results.

Theorem 4 leads immediately to

THEOREM 5.

(3.1) Σ

The evaluation of φF(r) follows from (3.1) on applying the inversion
formula of Theorem 3:

THEOREM 6.

(3.2) φP(r) = Σ dμP(^) .
d\r \dJ

In case P = 1, Theorem 6 becomes the well-known evaluation formula
for φ(r).

Since μP{r) is factorable (Theorem 1) the same is true of φP(r)f by
(3.2):

THEOREM 7. If (rlf r2) = 1, then
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(3.3) φP(r) = φpirjφpirz) , (r = rλr2) .

Next we show how φP(r) may be expressed in terms of the ordinary
φ-ί unction.

THEOREM 8.

(3.4) φP(r) = Σ Φ (—) .
fϊGP

Proof. By (2.2) and (3.2) it follows that

φp(r) = Σ ^ ZJ Pi — v- — Σ Σ W-!-—
δfr d|r/δ \ d / Λ\r 8jr/d \ 0 /

d€P dBP

and (3.4) results by (3.2) with P = 1.

4Φ The exponential sum cP(n, r). We define

(4.1) cP(n, r) = Σ e(»̂ » r ) » e(α^ r ) = ^ial\
(i,r)6P

where the summation is over a P-system (mod r). In case P = 1, cP(n, r)
reduces to the Ramanujan sum, c(n r). The next theorem generalizes
the familiar evaluation of c(n, r).

THEOREM 9.

' r
(4.2) C/,(w, r) - Σ dμ

d\(n,r)

Proof. Placing ^(n, r) = cz(τt, r), we have

Furthermore, by Theorem 4,

(4.4) r,{n, r) = Σ Σ e(daw, r) = Σ cP(w, —) .
ά\r (ϊ,r/ιί)6P Λ|r \ (X /

Therefore, by the inversion theorem (§2),

cP(n, r) =Σ
d]r

and the theorem follows on the basis of (4.3).
The function cP(w, r) is a generalization of both φP{r) and
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COROLLARY 9.1. If n = 0 (mod r), then

(4.5) cF(n, r) = φF(r) .

COROLLARY 9.2 // (w, r) = 1, then

(4.6) cF(w, r) = μP(r) .

By (4.2) and (2.3) we have, in addition,

THEOREM 10. The function cP(n, r) is a factorable function of r;
that is, if (rlf r2) — 1, then

(4.7) cP(n, r) = cP(n, r^cP(n, r2) , ' (r == rx r2) .

In the proof of the next theorem we assume the results on even
functions (mod r) proved in [1]. We first state a lemma which results
on applying the Mobius-inversion formula to (2.2).

LEMMA 1.

(4.8)

It

(4.

is noted that

THEOREM 11.

9) c

Pi(r)

P(n,

=

r)

d\r

p(r) .

Σ
d)τ
aep

Proof. By (4.2), cP(n, r) = cP((n, r), r), so that cP(n, r) is an even
function of n(mod r). Hence by Theorem 9 and [1, Theorem 4], cP(n, r)
has a Fourier expansion,

cP(n, r) = Σ # (c

where

α(c2, r) = 5

and the theorem follows by (4.8).
We note that (4.9) reduces to (3.4) in case n — 0, thereby providing

a new proof of Theorem 8, while in case n = 1, (4.9) becomes (2.2).

5. Relative partitions (mod r). In this section we assume the results
of [2] and [3], Let A(

p

s\n, r) denote the number of solutions (mod r) of
(1.3), such that for each xl9 (1 < i < s), (xi9 r) is contained in a P-system
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(mod r). We deduce the following expansion for A(

p

s)(n, r).

THEOREM 12. For arbitrary positive integral s,

(5.1) Aψ(n, r) = 1 Σ (cJ^, r))'c(n, d) .

Proof. We prove (5.1) inductively on s. Obviously A{p(n, r) =
pF((n, r)). Hence applying [2, Theorem 3] to (4.9), one obtains

(5.2) A$\n, r) = ±Σ>cP U, r) c(n, d) .
r d\r \d J

This proves the theorem in case s = 1. We assume the theorem for
s = t > 1. Then by [3, Theorem 1]

A^+ι\nf r)= Σ Aψ(ay r)Aψ(b, r)

n=«+δ (mod r)

1 / / ni W + 1

r dir \ \d J J

This completes the induction.
Next we derive an arithmetical formula for the function θP(n, r)

defined in the Introduction. Equivalently θP(n, r) may be defined as the
number of solutions, x9 y (mod r) of

(5.3) n = x + y (mod r) , (x, r) = 1 , (y, r) e P .

The proof will depend on the following lemma.

LEMMA 2. Let e be a positive integer. Then

(5.4) ΣfeW) K7Λ
| V c t y ( otherwise.

Proof. By the evaluation formula for c(n, r),

d\r \ d ' dlr Σ>\(rld,e) \ JJ

= Σ ^ ( ! , > Σ μ(d),
D\(e,r) \JJ/ d\r/D

and (5.4) follows on applying (2.1) to the inner sum of the last expres-

sion.
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THEOREM 13.

(5.5) θF(n, r) = φ(r) Σ
d\τ

(d,n)-l

wΛerβ ίfeβ summation is over the divisors of r prime to n.

Proof. Using (5.2) we apply [2 Theorem 6] to θP(n, r) with
f(n, r) — ACp\n, r), obtaining on the basis of Theorem 11 and Lemma 2,

w Σ c

Σ -4- Σ ( Σc^eMί)

= Σ -Ĵ r- Σ HE) = Σ ~r- Σ HE),
\ φ(d) ' \ φ(d) E'

Σ r
*\ φ(d) a\r φ(d) Ee'

(d,n) = l r v 7 (r/d)E=e (Λ,w)-1 7 x / e 'SF

and the theorem follows by definition μP(r).

6. Special cases* For a fixed non-negative integer k, let P be the
set of all fc-free numbers and let Q be the set of all fcth powers. Clearly
P and Q form a conjugate pair of direct factor sets. We introduce the
following notation for the functions corresponding to these sets:
Φ*(r) = ΦP(r), μk(r) = μP(r), gk(n, r) = cP(n, r), and Ψk(r) = φQ(r), λk(r) =
PQ(T)I hk(n, r) = cQ(n, r). If (α, b)k is defined to be the greatest kth.
power divisor of a and b, then Φk(r) denotes the number of integers a
(mod r) such that (α, r)fc = 1, while Ψk(r) denotes the number of a
(mod r) such that (α, r) is a feth power, that is, (α, r)Λ = (α, r).

It is observed that, in case k = 1, (?Λ(r), μk(r), and flrΛ(n, r) reduce
to φ(r), μ(r), and c(w, r), respectively. We also note that λ2(r) — λ{r),
where λ(r) represents the Liouville function. The conjugate totient
functions Φk(r), and Ψk{r) were introduced by Rogel [9]. Regarding the
special case k = 2 of these two functions, 02(r) was evaluated by
Haviland [5] using a definition equivalent to that given here, while Ψ2(r)
was evaluated by the author in [2, Corollary 4.2]. For a further discus-
sion of the function Φk(r) we refer to McCarthy [7].

The following evaluation arise as corollaries of the results proved
in §§ 3 and 4.

(6.1) () μ() Σ

(6.2) U)
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(6.3) gt(n,r)= Σ dμj.r) = Σ
cl\(n,r) \ d / |

(6.4) Λt(n, r) = Σ
d[(n,r) d \ r

By (2.2) the functions /^(r) and Λfc(r) may be written

(6.5)

In view of the factorability of μk(r) and 4 ( r ) it is sufficient to evaluate
these functions for prime-power values of r, r = p m (p prime, m > 0).
In particular, it is easily deduced from (6.5) that

while for fc > 2,

( 1 (m = 0 (mod k))
(6.7) 4(p-) = J - 1 (m = 1 (mod k))

{ 0 (otherwise) .

The functions μk(n) and λk{n) were introduced by Gegenbauer [4];
for a further discussion we mention Holder [6, §§ 6-7]. Note that
ΛO) = μ*(r) = p(r), ;0(r) = μ(r).

The corresponding inversion formulas are contained in the following
relations (Theorem 3):

(6.8) f(χ) = Σ ff(^) 7t 9(r) = Σ

(6.9) /(r)= Σ gU)τt9(.r) = Σlf(d)λJ
d\r \dJ Λ\r \d

(d fc-free)

The case ft = 1 in (6.8) is the ordinary inversion theorem, while the case
k = 2 in (6.9) yields the formula,

(6.9a) f(r)= Σ ΰU ) ̂  9(r) = Σ f(d)λ( r

d\r \dJ d\
()

the summation on the left ranging over the primitive (square-free)
divisors of r.

We now specialize the additive results of § 5 to the particular
sets P, Q of this section. Placing Ric>s(n, r) — A(f(n, r), Sk>s(n, r) =
A{q\ny r), we observe that RjcfS(n, r) represents the number of solutions
of (1.3) such that (xt, r)k — 1, while Skt8(n, r) represents the number of
solutions of (1.3) such that (xt, r) is a ftth power (i = 1, « ,s). In
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particular, one obtains from Theorem 12,

(6.10) Rkt8(n, r) - - ! Σ (g*(^, r))Sc(n, d) ,
r a\r \ \d JJ

(6.11) SUn, r) = A Σ (h*(-j, r))'c(n, d) .
r a\r \ \d //

The case k = 1 in (6.10) is Theorem 6 of [1], (also cf. [2, § 2]), while
the case k = 2 in (6.11) is Theorem 3 of [3] in an equivalent form.

If one places θP(n, r) = 0fc(w, r) and 0Q(w, r) = εk(n, r), then 0Λ(w, r)
denote the number of integers a (mod r) such that (α, r) = 1 and
(w — α, r)fc = 1, while εk(n, r) denotes the number of a (mod r) such
that (α, r) = 1 and (w — α, r) is a fcth power. We deduce then from
Theorem 13,

(6.12) θk(nfr) ^

(6.13) efc(n,r)

The case fc = 1 in (6.12) is [2, Corollary 21] while the case k = 2 in
(6.13) is [3, Corollary 38].

Finally, we investigate the conditions under which θk(n, r) and
εk(n, r) vanish. It is sufficient to consider these functions when r and
n are powers of the same prime p, r = p\ n — pδ, t > 0, t > b > 0.
A simple computation yields the following results. If k > 1, then

<MP , P - | ^ - i ( p _ i) otherwise .

Suppose ak < t < (a + l)k where a is a (uniquely defined) non-negative
integer. Then, if k < 2,

( X - 1) ,
(pfc - l)εk(pb, vι) = ^ - ^ c ^ 1 ) ^ - 1 - 1) + pk+t~\p - 2) + p ' " 1

(^+fc-i(p - 2) + j)*-^-!^* _ p + 1) ,

according as (i) b > 0, (ii) 6 = 0, ί = (a + l)fc, or (iii) 6 = 0, ί < (a + l)k.
From these results it is easy to deduce that θk(pb, pι) — 0 if and

only if p — 2, k = l,b = 0 and that ek(pb, pι) = 0 if and only if p —
2yt<kyb — 0. We are therefore led, on the basis of factorability
considerations, to the following criterion in the general case.

THEOREM 14. If k>l, then θk(n, r) = 0 if and only if k = 1, r
is even, and n is odd.

If k > 2, then εk{n, r) = 0 if and only if r is of the form 2ιR
where R is odd, 0 < t < k, and n is odd.
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The above result for θk(n, r) in case k = 1 is due to Ramanathan
[8, p. 68J. The result for ek(n, r) in case k = 2 was proved in [3,
Corollary 38.1].
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NON-ABELIAN ORDERED GROUPS

PAUL CONRAD

l Introduction* In this paper we prove some theorems about non-
abelian o-groups, and give some methods of constructing such groups.
Most of the literature on o-groups is concerned with abelian o-groups,
and the examples in print of non-abelian o-groups are few. Iwasawa [8]
proves that any free group can be ordered, and he also gives some
additional examples of o-groups. Vinogradov [15] shows that the free
product of two o-groups A and B can be ordered so as to preserve the
given orders. Chehata [1] gives an example of an o-group that is simple.
[3] and [11] contain examples of o-groups. Most of the theorems in
this paper give methods for constructing o-groups. For example, in §3
we study the o-automorphisms of an o-group G. For every group A of
o-automorphisms of G that can be ordered we can construct a new o-group
H that contains A and G. H is the natural splitting extension of G by
A. In § 5 the relationship between central extensions and bilinear map-
pings is exploited. It is shown that any skew-symmetric real matrix can
be used to construct o-groups. In §6 some o-groups of rank 2 are con-
structed. In § 4 a study is made of the ordered extensions of a subgroup
of the reals. One of the main results is a necessary and sufficient
condition for such an extension to split. The principal tool used through-
out is the extension theory of Schreier [14].

2. Notation and Terminology. The notation of [3] is used through-
out. In particular, the notation and results from § 2 [3, pp. 517-518] are
used repeatedly. Unless otherwise stated the group operation will always
be addition and 0 will denote a group identity. N and Nf are o-groups
with elements α, 6, c, and α', bf, c', respectively. G is a normal
o-extension of N by JV\ We identify G with its representation G' =
N' x N, where

(α', a) + (&', b) = (af + δ',/(α', V) + αr(δ') + b)

and (α', α) is positive if a! > 0 or a! = 0 and a > 0. See [3] for the
properties of the factor mapping / and the representative function r.

θ will always denote a trivial homomorphism of a group onto the
identity element of some other group. For an o-group H, let A(H) be
the group of all o-automorphisms of H. For an abelian o-group K, let
D{K) be the ^-closure or completion of K. In particular, D(K) is a vector
space over the rationale and there is a natural extension of the order

Received August 25, 1958. This work was supported by a grant from the National
Science Foundation.
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of K to an order of D(K). Finally let R be the additive group of all
real numbers, P be the multiplicative group of all positive real numbers,
R be the additive group of all rational numbers, P be the multiplicative
group of all positive rational numbers, and / be the additive group of
integers—all with their natural order,

3, Order preserving automorphisms of G» If H is an o-group and
A is a group of o-automorphisms of H that can be ordered, then the
group Hr = A x H, where (a, a) + (β, b) — {aβ, aβ + 6) for a, β in A and
a, b in JET, can be ordered. Simply define (a, a) positive if a is positive
in A or a is the identity and a is positive in H. Then clearly Hr is a
splitting o-extension of H by A. Thus if A contains more than one
element, then Hr is a non-abelian o-group. If A is the group of all
o-automorphisms of H, then W is called the o-holomorph of H. In [5]
it has been shown that a certain class of o-groups with well ordered
rank have ordered o-holomorphs. In this section we investigate the
o-automorphisms of G.

Let π be an o-automorphism of G for which (0 x N)π = 0 x N. and
let S/ be the group of all these o-automorphisms. If G has well ordered
rank or if Nf or N has finite rank, then Ssf = A(G). For (α', a) and
ψ y b) in G we have

(a', a)π = [(a', 0) + (0, a)]π = («', O)ττ + (0, α)τr

= (α'α, α'/?) + (0, aγ) = (α'α, α'/ί + αr) ,

where

(1) 0/9=0.

[(α', α) + (δf, 6)]τr = (α' + &',/(α', 6') + arψ) + b)π

= ((α' + 6')^, (α' + V)β + (f(a'9 V) + arψ) + b)γ) .

(α', α)τr + (6', δ)τr = (α'α, α'/5 + αr) + (6'Λ, δ'iS + 6r)

= (a'a + b'a,f(a'a9 Va) + (a'β + ar)r{b'a) + b'β + bγ) .

Thus a e A{N') and

(α' + V)β + (f(af, 60 + arψ) + δ)r

= f(a'a, Va) + (a'β + aγ)r{Va) + Vβ + bγ .

When a' = V = 0 this reduces to (α + b)γ = aγ + bγ. Thus γ e A(N).
The following two equations are the result of letting ol = b = 0(α = δ =0).

( 2 ) 6'/? + ar(V)γ = αrr(δ' α) + δ'/3

( 3 ) (αf + δ')/5 + J\a', V)γ = f(a'a, Va) + a'βrψa) + δ'/9 .

Conversely suppose that a e A(Nf), γ e A(N), β:Nf ->N, and (1), (2), (3)
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are satisfied. For (a' a) in G define (α', a)π = (a'#, α'/3 + αr). Then by
straightforward computation it follows that π e jtf

For mappings u and v of JV' into N and α' 6 Nf we define α'(w- + v) =
α'% + α'v. Then each TΓ e j y has a matrix representation

where 0 is the trivial homomorphism of N, into JV', and the mapping
of π onto its matrix representation is an isomorphism of j>/ onto

a e AN), γ e A(N')9 β:N'-> N, and (1), (2), (3) are satisfied[ .

For, let π = (a, β, γ) and π = (a, β, γ), then

(a'jβ)ππ = (α'α, α'J9 + αf)τr = (a'act, a'aβ + (a'~β + af)γ)

= (α'αα, a'(aβ + βγ) + aγγ)

and

(4) [aJjaβΛYάa aβ + ~βr

Iθf \[βr \-\_θ fr

We shall frequently identity the elements of j y with their matrix
representation. Let & be the set of all β: Nf-> N that satisfy (1), (2), (3)
when a and γ are the identity automorphisms of Nr and N respectively.

LEMMA 3.1. ,O9 is an additive group that can be ordered.

Proof. From the matrix representation of s$7 it follows that &
is a group. Well order the elements of Nr and define β e ,ζ& positive
if β φ θ and a'β > 0, where oJ is the first element in the well ordering
for which a'β Φ 0. It is easy to check that this definition orders &.

COROLLARY I. The group of all mappings of a set onto an o-group
can be ordered.

COROLLARY II. The group of all o-automorphisms of G that induce
the identity automorphism on G/(0 x N) and on 0 x N can be ordered.

Now suppose that &, A(N') and A(N) are o-groups and let

be elements of Ĵ Γ Then

1 _ Γ^"1 ~ a^βΓ1! λ - _ \a-ιaa a~\aβ + βγ) - a^βγ^γγl
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DEFINITION 3.1. π is positive if a is positive in A(Nf) or a is the
identity and γ is positive in A(N) or a ond γ are identity automorphisms
and β is positive in &.

Let ^ be the set of all positive elements in Sf. It follows from
(4) that & is closed with respect to multiplication. It follows from the
first part of (5) that for each π e S$ζ either π is the identity or π e & or
π'1 e ^ Unfortunately & is not in general normal. For suppose that
π e tϊ] then if a is positive or f is positive, then π'ιππ is positive.
Finally assume that a and f are identity automorphisms, then

φ

where φ'(φ) is the identity of A(N')(A(N)). Thus our definition orders

j>r if and only if a~\β + βγ - β) = a^β + a~% - a~λβ is positive. If

we use the ordering of & defined in the proof of Lemma 3.1, then it

suffices to show that a'a"1 β > 0, where ar is the first element in the

well ordering of Nr such that α/αr1/? Φ 0.

THEOREM 3.1. If A(N) can be ordered, then the group of all o-auto-
morphisms π of G such that (0 x N)π = 0 x N and π induces the identity
automorphism on G/(0 x N) can be ordered.

We next consider the special cases where G is a central extension
of N or where G is a splitting extension of N. First assume that JV
(actually 0 x JV) is in the center of G. Then r = θ and N is abelian.
In particular, (1), (2), (3) reduce to

(α' + b')β +f(a', V)γ =f(a'a9 b'a) + a'β + b'β

and 0/9 = 0. Thus & is the torsion free abelian group H{N'9 N) of all
homomorphisms of N' into N. Let Γ be the set of all ordered pairs
of convex subgroups iV'\ N'y of JV' such that Nn covers JVV

THEOREM 3.2. Suppose that G is a central extension of N, A(N) can
be ordered, Γ is well ordered, and for each pair a e A(Nr) and γ e Γ there
exists a pair of positive integers m and n such that nga == mg modulo N\
for all g e N'y. Then A(N') and s^/ can be ordered.

Proof. By the theorem in [5], A(Nf) can be ordered. As in the
proof of Theorem 3 [4 p. 388] we well order the elements of Nf so that

0jτ>g u j->gu-^ •_•_ #2L->022L-> . . . 0»i->qrtz* " ' . . .
JV'1 " iV/2\iV'2 iV'ω\iV'ω

For each θ Φ β e & there exists a least element L(β) in this well
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ordering such that L(β)β Ψ 0. Define β positive if L(β)β > 0. As before
this orders &. Thus to complete the proof it suffices to show that if
β is positive, then aβ is positive for all a e A(N'). Let g e NryIN'y.
Then there exist positive integers m and n such that n(ga) = mg + d,
where d e N'y, hence d-> g. If g -+ L(β), then

n(gaβ) = (m<? + <2)/9 = m(<?/9) + d/9 = 0.

Thus gaβ = 0. If # = L(/3), then

n{L{β)aβ) = (mL(/9) + d)/3 = m(L(β)β) + dβ = m{L{β)β) > 0 .

Thus L(,3)α:/? > 0.

COROLLARY. If N is in the center of G, A(N) can be ordered and
N' = R, then A(G) can be ordered.

One should be careful not to place too many restrictions on G. For
A(G) may become trivial (consist of the identity only), de Groot [6] has
shown that exist 2C non-isomorphic archimedean o-groups that admit only
the identity automorphism. Suppose that G admits no proper o-auto-
morphism and that N' and N are non-trivial. Then, since an inner
automorphism is an o-automorphism, G is abelian. Hence N is in the
center of G. Thus in order to construct a non-archimedean o-group that
admits only the trivial o-automorphism, it suffices to find non-trivial
subgroups N' and iV of R such that neither admit proper o-automorphisms
and the only homomorphism of iV' into N is θ. Then G = Nf φ N will
do. One such pair is

N = / and N' - {m/2w: m, n e I}e + {pl&:p, g e l } ,

where e is trancendental.
For the remainder of this section assume that G is a splitting extension

of N by N' and that N c R. Without loss of generality f(a', 6') = 0 for
all a', V in Nr and A(N) E P. Thus τ (δ'), r e P , and ar(V), aγ repre-
sent ordinary multiplication, where a e N, br e Nf and γ e A(N). In par-
ticular, (2) and (3) reduce to

(2') rψ) = φ'a), and

(a* + V)β = α'

Pick an element k e N and define #'β = k(r(xf) — 1) for all xf e N'.
a'βrψ) + b'β = k(r(af) - l)r(δ') + k(r(V) - 1) = k(r(a')rφ') - 1) = A<r(αf +
5') — 1) = (<x' + δ')/? Thus β e ^>. Suppose that there exists an ele-
ment a! in the center of Nf such that r(af) Φ 1. Let xr be any other



30 PAUL CONRAD

element of JV', and let β e &. Then x'βr(af) + a'β = {x' + a!)β —
{af + x')β - a'βφ?) + x'β Thus x'β(r(a') - 1) = a'β(r(xf) - 1) or

(6) ^

Therefore β is determined by a'β.

LEMMA 3.2. if there exists an element a! in the center of Nf such
that r(α') Φ 1, then & is isomorphic to a subgroup of R that contains JV.

Proof. For β e & we define βσ = {afβ)\(r(a!) - 1). Then

af) - 1) = ftσ + ftσ .

If 0 = 0σ = (a'β)l(r(af) - 1), then α'/9 = 0. Thus by (6), /9 = 0. There-
fore σ is an isomorphism of ^ into R? and by the preceding discussion

If r(α') < 1, then 1 < r{a'Yx = r(— αf). Thus we may assume that
r(V) - 1 > 0. Define β e & positive (notation) β > θ) if βσ > 0. Then
& is ordered and A(N) EΞ P has a natural order, βσ = (a'β)l(r(af) —
1) > 0 if and only if α'/9 > 0. Thus β > θ iί and only if α'/9 > 0.
Suppose that A(N') is also ordered. Then Definition 3.1 orders A(G) if
we can show that ~β > θ implies that a'\β + ~βγ — β) > θ for all ~βe ^ ,
and all TΓ = (α, /9, γ) e A(G).- But

~βγ - β) -

-1) - l)/(r(α') - 1)] r = α'J9r .

But since α'/^ > 0 we have a'βγ > 0.

THEOREM 3.3. If G splits over N, NQR, A(Nf) can be ordered and
there exists an element af in the center of N' such that r(af) Φ 1, then A(G)
can be ordered.

COROLLARY. If His a non-abelian splitting o-extension of a subgroup
of R by a subgroup of R, then A(H) can be ordered.

This is an immediate consequence of the theorem. If JV' = R, then
(2') is equivalent to 1 = r(b\a — 1)). Hence either r = θ or a = 1.
Thus if JV' = R, then this corollary is an immediate consequence of
Theorem 3.1.



NON-ABELIAN ORDERED GROUPS 31

4. Ordered extension of subgroups of R. Throughout this section
assume that JVis a subgroup of R and that JV' is abelian. In particular,
r is a homomorphism of JV' into the group A(N)f and without loss of
generality A(N) <= P and ar{br) is ordinary multiplication, where a e N
and V e JV.

(a', a) + (0, b) = (α', a + 6) and (0, 6) + (α', α) = (α', δr(α') + α) .

These are equal if and only if br(αr) — b. Thus G is a central extension
of JV by JV' if and only if r = 0.

LEMMA 4.1. Suppose that Nr is d-closed. Then there exists a non-
central o-extension of N by JV' if and only if there exists 1 φ p e P such
that psN = N for all s e B.

Proof. First suppose that G is a non-central o-extension of N by
N'. Then rΦθ. Pick af e N' so that 1 φ r(a') = p e P. For each positive
integer % there exists bf e JV such that nb' = α'. Hence p = r(α') =
r{nbf) = r(6')w Thus r(δ') = p1 / n. For m e ί , we have r(mbf) = φ')m =
Pm/ra. Thus pm/ΛiV = JV for all rational numbers mln.

Conversely suppose that there exists l ^ p e P such that psN = JV
for all s e B. Pick 0 Φ b' e N'. Then Nr = i » f © A where ita' is the
one dimensional subspace of Nr that contains a' and D is a subspace
of N'. Each α' 6 iV' has a unique representation α' = sb' + d, where
seR and deD. Define q(a') = ps. Then H = N' x N, where (α', α) +
(6', b) = (af + V, ag{b') + b) is a splitting extension of JV by JV' that is
not a central extension.

COROLLARY. // JV' is d-closβd and N^R, then Gisa central extension
of N by N'.

THEOREM 4.1. Suppose that r Φ θ. Then G splits over N if and only
if there exist a' e N' and a e N such that

(a) r(a>)Φl
(b) [lf(r(a') - l)][a(r(b>) - 1) + f(a\ b>) - f(b\ a')] e N for all V e N\

Proof. First suppose that G splits. Choose a group H of repre-
sentatives of G/N, and pick one element (a', a) of H such that r(af)Φ 1.
Let (6', b) be any other element of H. Then since H is abelian,

(6' + a',f{b', a') + br{af) + a) - {V, b) + (α', a) = (α', α) + (6', 6)

= ( α ' + &SΛ< &') + αK&') + &)

Thus
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b(φ') - 1) = a(r(V) - 1) +/(α', V) -/(&', a>) .

(b) is satisfied because

[l/(r(α') - l)][α(r(6') - 1) + /(α', 6') -/(&', α')] = 6

Note that

') - 1) + /(α', V) -/(&', αf)]):

Thus H is uniquely determined by (α', α).
Conversely suppose that af e Nr and a e N satisfy (a) and (b).
Let

S = {(6', b) 6 G: (6', 6) + (α', α) - (a9, a) + (6', 6)} .

Clearly S is a group. By the above computation it follows that (6', b) e S
if and only if

b = [l/(r(α') - l)][α(r(&') - 1) +/(α', 6') -/(&', α')] .

Thus for each bf e iV' there is one and only one (6', b) in £. Therefore
S is a group of representatives for G/N.

The factor mapping / is symmetric (skew-symmetric) if f(a', b') =
f(V,σ!)<J(a'9V) = -f{bf,a')) for all α', δ' in 2V'.

COROLLARY I. If r Φθ and f is symmetric, then G splits. Moreover
/(α', 6') = 0 for all a'\ b' in N'.

Proof. Pick a! e Nf such that r{a') Φ 1 and let a = 0. Then (a)
and (b) are satisfied, hence G splits. Also by the proof of the converse
of the theorem, S = {(&', 0): 6' e iV'} is a group of representatives.
Thus « 0) + (6', 0) = (a' + b',f(ar, b')) e S. Therefore f(a', V) = 0

Let f(Nf, N') denote the range of /.

COROLLARY II. If there exists an a' e Nr such that r(ar) Φ 1 and
[l/(r(α')-l)]/(iV', N') £ N, then G splits.

Proof. Let a = 0. Then (a) and (b) are satisfied. Moreover,
{(&', [l/(r(α') - l)][/(α', &') -/(&', α')])} is a group of representatives.

COROLLARY I I I . If N is a field and r Φ θ, then G splits.

Proof. Pick af eNr such t h a t r(af) φ 1. Since leN and r(a')N =

N, r(a') 6 N. Thus l/(r(α') - 1) e N and

REMARK. Rich [13] proved that if N <= R, N' = R and r =£ /?, then
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G splits. This is a special case of Corollary III. Corollary III can be
stated independently of the representation of G as follows: If H is an
o-group, C is a convex subgroup of H that is o-isomorphic to the additive
group of a subfield of R, and HjC is abelian, then either H is a splitting
extension of C or H is a central extension of C.

COROLLARY IV. If there exists an a' e N' such that r(a') = (n + l)jn
for some positive integer n, then G splits.

Proof. ll(r(a')-l)^n. Thus [l/(r(α')-l)]/(iV', N') = nf(N', N')SN.

COROLLARY V. Jf N is d-closed and there exists an a' e Nf such
that 1 Φ r(af) is rational, then G splits.

Proof. l/(r(α') - 1) is rational, hence [l/(r(α') - 1)]NCZN.
By Theorem 3.3 [3, p. 522] there exists an α-extension H oΐ G such

that the convex subgroup K of H that covers 0 is o-isomorphic to R and
H/K is o-isomorphic to Nr. Thus by Theorem 4.1 either His & splitting
extension of K or H is a central extension of K.

REMARK. If H is a splitting o-extension of K, then without loss of
generality H = Nf x R, where (a', a) + (&', b) = (af + V, as(b') + b).
s is a homomorphism of Nf into P. For each x in D(N) there exists
a positive integer n such that nxeN'. Define t(x) = [s(nx)Jln. Then t
is the unique extension of s to a homomorphism of D{N') into P.
D(N'), R and t determine a splitting o-extension M of R by D(N). M
is an α-extension of H and M is d-closed. Thus by Theorem 3.2 [3 p. 519]
there exists an α-closed a-extension Q of M with each component
o-isomorphic to R. Q is an α-extension of G.

A mapping g of N' x Nf into N is called bilinear if for all x, y> z
in N'

g(x + y,z) = g(x, z) + g(y, z) ,

and

g(xf y + s) = 0(#, ?/) + # 0 , z) .

Yamabe [16] and the Neumanns [12] have shown that if N — I, and the
cardinality of N' is at most ^Γi, and g is bilinear and satisfies g(x, x) = 0
only if x = 0, then JV' is a free abelian group. Hughes [7] has classified
the groups of class 2 in terms of some special bilinear mappings. Iwasawa
gives an example ([8] Example 2, p. 7) of an o-group that is determined
by a bilinear mapping. For let Nf=1x1 and N=I. Define g((a,b), (x,y)) =
ay. Then G — / x / x /, where (α, 6, c) + (a?, 2/, 2) = (α + a?, b + y, ay + c + z),
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and (α, 6, c) is positive if a > 0 or a = 0 and 6 > 0 or α = δ = 0 and c > 0,
is an o-group of rank 3 that is isomorphic with Iwasawa's example. In
fact, G is generated by a = (0, 0, 1), b = (0, 1, 0) and c = (1, 0, 0) and has
generating relations a + b — b + a, a + c = c + a and c + b — c = a + b.

The last example can be generalized because the bilinear form is
a product of homomorphisms. For example, let JV be the additive group
of an ordered ring, and let σ and τ be homomorphisms of JV' into
JV. For a', V in JV' define g(a', b') = er(α'M&'). Then if = JV' x JV,
where (<z', α) + (6', 6) = (ar + &', #(α', &') + a + &) is a central extension
of JV by JV'.

LEMMA 4.2. If f is bilinear, then G is a splitting extension of N or
G is a central extension of JV.

Proof. For x, y, z in N' we have

A*, v) + A*,

Therefore jT[a?, y) =f(x, y)r(z). Thus either r(z) = 1 or f(x, y) = 0.

COROLLARY. // JV ώ abelian (not necessarily a subgroup of R),
/ is bilinear and f(N', Nf) generates N, then G is a central extension of N.

5 Central extensions and bilinear mappings* Throughout this section
assume that N is in the center of G. Thus G is determined by the o-group
N', the abelian o-group JV, and the factor mapping / : JV' x Nf -+N that
satisfies

(1) / ( 0 , & ' ) = / « 0 ) - 0 , and

( 2 ) f(a' + b\ c') + A*', V) - f(a', V + c') + /(&', <f) .

In particular, any central extension of JVby N' can be ordered. A central
extension H of JV by JV' with factor mapping h is equivalent to G (nota-
tion H^G) if there exists an isomorphism a of H onto G such that
(0, a)a = (0, a) and (α', α)# = (a', a) modulo 0 x JV for all a in JV and all
α' in JV'. If H is ordered in the usual way, then a is an o-isomorphism.
It is well known that H ~ G if and only if there exists t: JV' -> JV such
that ί(0) = 0 and

f(a', V) = h(a', V) - t{a' + 6') + ί(α') + t{V)

for all α', δ' in JV'. In particular, G ~ JV' φ JV if and only if there
exists t: JV'~> JV such that ί(0) - 0 and /(α', &') = -t(af + 6') + ί(αf) +«(&')
for all α', &' in JV'.
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It is easy to verify that if g is a bilinear mapping of N' x N' onto
N, then g satisfies (1) and (2). Moreover, such a g exists if and only
if we can choose a representative function r: Nr -> G such that

r{ar + V + cf) = r{a' + V) + r(af + cf) + r(b' + c') - r{af) - r(V) - r(cf)

for all af, bf', & in Nf. From (2) we have

f{af + V, c') - / « c') -JXV, c') =/(α', V + c') -f(a'9 V) -j\a', C) .

Thus / is bilinear if it is linear in one variable.

LEMMA 5.1. Suppose that f is bilinear, then for a,b in Nand a1,bf,c'
in Nr we have:

(i) -j\a>, V) =f(- a', V) =f(a'f - V).
(ii) Λa',b')=Λ-a',-V).
(iii) (α', a) + (6', 6) - (α', α) - (V, b) = (a' + b'-a'- 6',/(α', V) -/(&', a')).

For O=f(a'-a',b')=f(a',br)+f(--a',b'). Thus -f(a',bf) =/(-a',V)
and similarly —f{ar,bf) =/(α' , — &')• (ii) is an immediate consequence of
(i), and (iii) follows by computing the left hand side.

Let D(N) be the d-closure of N, and let H=N' x D(N). For (a', a)
and (6', 6) in H define (αf, α) + (V, b) = (αf + &' ,/« &') + α + 6). Then H
is a central extension of Z)(iV) by Nr, and G is a subgroup of H. There
is a natural extension of the ordering, of G to an ordering of H. If
G ~N'ζ&N, then H ~ iV' φ D(iV), but the converse is false. For in [2]
there is an example where N' = D(N) = R, H^N' ®N and GxN'®N
[2, p. 862].

THEOREM 5.1. Suppose that N' is abelian and let H = D(N') x D(N).
Also suppose that for all af,V in Nf and for all positive integers n,f
satisfies

( 3 ) nf(a', V) =f(na', V) = f(a', nb') .

Then there exists a unique g: D(N') x D(N') -> D(N) that satisfies (3) and
such that g(σJ, br) = f{a'y V) for all α', b' in N'. For (x, y) and (u, v) in
H define (x, y) + (u, v) = (x + u, g(x, u) + y + v).

(a) H is a central extension of D(N) by D(Nf), and G is a subgroup

of H.
(b) H is d-closed.
(c) For each h in H there exists a positive integer n — n(h) such

that nh e G.
(d) There exists a unique extension of the ordering of G to an ordering

of H. H will be called the d-closure of G.

Proof. For each pair x, y in D(N') there exists a positive integer
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n = nx>y such that nx, ny e N', define g(x, y) = (l/n2)f(nxf ny). This defini-
tion is independent of the particular choice of n. For if mx, my e N',
then m2f(nx, ny) =f(mnx, mny) — n2f(mx, my). Thus (ljnz)f(nx, ny) =
(ljm?)f(mx, my). Let x,y,ze D(N') and choose a positive integer n such

that nx, ny, nz, n(x + y), and n(y + z) belong to Nf. Then

g(x + y,z) + g(x, y) = (Iln2)[f(nx + ny, nz) + f(nxf nz)]

= (l/n2)[f(nx, ny + nz) + f(ny, nz)] = g(x, y + z) + g(y, z) .

By a similar argument # satisfies (1) and (3). Also if g' is any other
extension of / to D(N') x D(N') that satisfies (3), then n?g'(x, y) =
0'(wa?, ny) — f(nx, ny). Therefore g\x, y) = (ljn?)f(nx, ny) = g{x, y) for all
x, y in D(N').

Clearly (a) is satisfied. To prove (b) it suffices to show that n(x, y) ~
(a, b) has a solution in H, where n is a positive integer and (α, b) e H.
By induction

φΰf V) — (n®> [ ( ^ — l

Thus x = (l/w)α and

is a solution. Consider {x, y) in ίί, and let m be a positive integer such
that mx e N' and my e N Then
is a solution. Consider {x, y) in
that mx e N' and my e N. Then

2m\x, y) = (2m(mx), (2m2 — l)m2g(xf x) + 2m(my))

= (2m(mx), (2m2 — l)/(ma?, m?/) + 2m(my)) e G .

Thus (c) is satisfied. The orderings of iV and iV' can be uniquely ex-
tended to orderings of D(N) and D(N'). Define (x, y) e H positive if
x > 0 or x = 0 and y > 0. This extends the ordering of G to an order-
ing of H. But for any extension of the order of G, h e H is positive
if and only if nh is positive in G, where n is a positive integer such
that nh e G. Thus this extension is unique.

REMARK. If / is bilinear or symmetric or skew-symmetric, then so is
g. By Theorem 3.2 [3, p. 519] there exists an α-closed α-extension of
H with each component o-isomorphic to R.

Suppose that / is bilinear. Let x,y,ze Nr and let w = x + y — x — y.
Then

flw, z) +f(y, z) +f(x, z) =f(w + y + x,z) =f(x + y, z) =/(a?, z) +f(y, z) .

Thus f(w, z) = 0. Similarly flz, w) = 0. Therefore f(c, z) =f(z, c) = 0 for
all z in Nr and all c in the commutator subgroup of N'.

LEMMA 5.2. Iff is bilinear and Nf coincides with its commutator
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group, then G — Nf ® iV.

Newmann [11] exhibits an o-group that coincides with its commuta-
tor group.

Suppose that 2N = N and / is bilinear. Let p(x, y) = (l/2)[/(a?, y) +
f(y,x)'\ and let q(x,y) = (l/2)[/(α?, y) -f(y, x)] for all x,y in iV'. Then
p(q) is a symmetric (skew-symmetric) bilinear mapping of Nf x Nr into
JV, and f(x, y) — p(x, y) + q(x, y). Moreover, as in matrix theory, this
representation is unique.

THEOREM 5.2. If 2N = N and f is bilinear, then G ~ H, where H
is the central extension of N by Nf that is determined by the skew-sym-
metric part q of. If f is symmetric, then G ~ Nr φiV. Thus if G is
abelian, then G ~ NfφJV.

Proof. For each x in N' define t(x) = ( - lβ)f{x,x). Then

- t(x + y) + t(x) + t(y) + q(x, y)
+ y,χ + y) -f(Xj x) -f(y, y) +f(χ, y) -f(y, χ)~\ = f(χ, y) .

Thus G — JEZ". If / is symmetric, then H=N'®N, and if G is
abelian, then / is symmetric.

Suppose that N and Nf are abelian and that / is bilinear. Then by
Theorem 5.1, we can embed G into its cZ-closure H— D(N') x D(N). The
factor mapping g associated with H is bilinear, and by Theorem 5.2 we
may choose g so that it is skew-symmetric and bilinear. Moreover,
sg(x, y) = g{sxy y) = g(x, sy) for all s e R and for all x, y in D(N). For

ng((mln)x, y) = g(n(m\n)x, y) = g(mx, y) = mg(x, y) .

Thus (mln)g(x, y) = g((mjn)x, y). Let au α2, be a basis for the rational
vector space D(Nf) and consider X~xLaSi + ••• + xmctSm and Y~
. + 2/nαίn in D(N'). Then

Thus β' is determined by the skew symmetric matric A = [̂ (α ,̂ αj)] with
components in D(N). Conversely any such matric determines a bilinear
skew-symmetric factor mapping of D(N') x D(N') into D(N).

THEOREM 5.3. If N' is abelian and f is bilinear, then G is a sub-
group of its d-closure H and H is completely determined by N, Nf and
a skew symmetric matrix with entries from D(N). The dimension of this
matrix is equal to the rank of the vector space D(Nf).

If the rank of D(N') is finite, say n, and D(N) = R, then by a suitable
choice of coordinates for D(N') we can get a canonical form for A.
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- o
^
0 -

1
0

1

0 •
1

o .

Thus H is determined by n and the rank of A. For example if Nr =
R x R x R and N—R, then we have two non-trivial choices for /. One
of which is

/((#i, X

= b

2, a?3),

** X X ~\

0

-1

0

2, 2/3))

1

0

- 1

0"

1

0 .

"2/1"

2/2

- 2 / 3 -

then (n - 1) A + (n - l)B>(n - 1)(B + A) . If

B) + A = n(B + A) > nB

and the other is obtained by using the cannonical matrix of rank 2.
Thus for any ordering of Nf we have at least two non-trivial central
o-extensions of N by N'.

LEMMA 5.3. If A and B are elements of an ordered semigroup S and
A + B <B + A, then nA + nB< n(A + B)< n(B + A )< nB + nA for
all integers n greater than 2.

Proof. If

A + (n - 1)A + (n - 1)B + B = nA + nB > n(A + B)

= A + (w - 1)(5 + A) + B ,

nA

then (n - 1)(A + B)>(n- 1)5 + (n - 1)A. Thus the lemma follows
immediately by induction on n.

THEOREM 5.4. If 1 e N' c: Ry then G is abelian.

Proof. By a simple induction argument (see [9] p. 265), f(x, y) =
f(yf x) for all integers x and y. Let A = (α', α) and 5 = (6f, 6) be ele-

, ments of G. Then since a' and 6' are rational numbers, there exists
a positive integer n such that %A = (#', #) and wi? = (yf, y), where x'
and yf are integers.

^A + nB = (a;f + 2/',/(a?', 2/f) + a? + y)

= (2/' + ^,/(?/', a?') + 2/ + a?) = nB + nA .

Thus by Lemma 5.3, we have A + B = B + A.
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6. o'groups of rank 2. Throughout this section we assume that
N and Nf are subgroups of R. By Theorem 3.5 [3 p. 523] there exists
an α-closed α-extension H of G such that both components are o-isomor-
phic to R. By Theorem 4.1, either if is a central extension of R or H
is a splitting extension of R. A splitting o-extensiόn of R by R is
determined by a homomorphism of R into P. If H is a central extension
of R by R with a bilinear factor mapping, then H is determined by
a skew-symmetric real matrix.

If Nf is cyclic, then G is a splitting extension of N. Thus if N' is
cyclic and N admits no proper o-automorphisms, then G = Nr φ JV. In
particular, if N' = N = /, then G = Nf φ iV. In fact, as Loonstra [9]
shows, there are only two normal extensions of / by / (not necessarily
ordered) For if H is a normal extension of / by /, then H splits over
/. Thus H = / x / and (α'f α) + (6', 6) = (a' + 6', αs(δ') + 6), where s is
a homomorphism of I into the multiplicative group {1, — 1}. Either
s(l) = 1 or 8(1) = - 1. If 8(1) = 1, then s = θ and # = / © / . If s(l) =
— 1, then s(2n) = l and s(2n+l) = — 1 for all we/. Thus the addition
rule for i ί is

(x, y) + (2m, n) = (a? + 2m, y + n)

(x, V) + (2m + 1, w) = (a? + 2m + 1, w — y) .

In this case H can^t be ordered because -(1,0) + (0,1) + (1,0) = - (0,1).
Thus (0, 1) can't be positive or negative.

If N = N' = R, then G is o-isomorphic to R φ R. For by Lemma
4.1, G is a central extension of N and by Theorem 5.4, 6? is abelian.
Thus G is an abelian o-group of rank 2 with both components o-isomor-
phic to R. By Hahn's embedding theorem (see [2]) G is o-isomorphic to

Example of a non-abelian o-group of rank 2 that is isomorphic to its

group of o-automorphims. Let N — Nf = R. For a', b' e Nr define f(af, b') =

0 and r(α') = βα', where β is transcendental. Then (αf, a) + (6', 6) =

(α' + b', aehr + 6). By the remark at the end of § 3, an o-automorphism

7r of G has a representation π = i ^ , where C e P and α'/ί = lβ(ext —

l)/(β - 1) = ^σ(βx/ - 1) for all x' e N'. The mapping of π onto ΓJ ^ σ Ί

is an isomorphism of Λ(G) onto the multiplicative group A =

| [ ] 5 6 R and C e P f The m a P P i n £ of (α'^ α) Γ ]
isomorphism of G onto the multiplicative group 5 = 1 ^ j L e P and

y e R | . The mapping of Γ J onto \x Λ is an isomorphism of A onto

B. Therefore G is isomorphic to A(G). In particular, there exists a non-
trivial splitting o-extension of G by G.
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We conclude by giving an example of an o-group of rank 2 that is
not a central extension nor a splitting extension of its convex subgroup.
Let G be the o-group of the last example, and let H be the subgroup of
G that is generated by {(α, a): a e R}. We have (— 1, - 1) + (1, 1) =
(0,1 - e). Thus H has rank 2.

(1, 1) + (0, 1 - e) = (1, 2 - β) Φ (1, e - e2 + 1) = (0, 1 - e) + (1, 1) .

Thus H is not a central extension.

LEMMA. // (&', 6) e H, then b = ΣΓ M% wλerβ b^^eR and ΣΓ &4 = &'.
ί b r (£>', 6) = Px + P 2 + + Pnf where Pt or — Pi is a generator. A simple
induction on n proves the lemma. In particular, (&', 0) 6 H only if b' — 0.
It can be shown that H = {(α, Σ α«β & ί) : α> αi> bt e R and Σ ^ = ^}

Now suppose (by way of contradiction) that H is a splitting ex-
tension of its convex subgroup C. Pick a group K of representatives
of fl/C, and let (1, a) be the element in K with first component 1.
a = χ } α / ί , where Σί^i = 1. In particular, a Φ 0. By the proof of
Theorem 4.1

# - {(&', α(β6' - l)/(β - 1)): 6' e i2} .

Let d be the least common multiple of the denominators of the at and
let bf — ljpy where p is a prime and p > d . Then d ( Σ ^ δ 0 = Σ c i g δ i has
integral coefficients. By the above lemma

( 1 )
e — 1

where e<( di € i2. Let q be a positive common multiple of p and the
denominators of the &4 and the dt. Then

)' - 1] *

(2) ^ ^ T

where utfwifv e I. Without loss of generality we may assume that the
ut and the wt are positive integers (multiply both sides of (2) by a suitable
power of ellq). ellq is trancendental. Thus (2) is essentially an equality
of elements in the simple transcendental field extension R(X) of R.

( 3 )
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bf = 1/p = v/g = v/pv. Thus there exists a positive integer n such that
pn divides q, but pw does not divide v. The cyclotomic polynomial

J\X) = 1 + JC*""1 + JΓ3*n~ι + + xv-v**'1

is an irreducible factor of Xq — 1, but it does not divide Xυ — 1.
Therefore/(X) divides Σ M ^ Thus Y.cJC^ =j\X)g(X)f where <?(X)
is a polynomial with integral coefficients. Now let X— 1. Then cϋ —
ΣΊ^i =/(l)flr(l) — P#(l) Thus since p and d are positive and #(1) is
an integer, d > p. But this contradicts our choice of p.

Note that the example on page 526 of [3] is a splitting extension
of N by N'; and that {(α', - 1): 0 ^ α' e JV'} U {0, 0)} is a group of
representatives.
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ON THE VAN KAMPEN THEOREM

RICHARD H. CROWELL

l Introduction. The van Kampen theorem provides a defining set
of generators and relations for the fundamental group of the union of
two topological spaces X and Y where the fundamental groups of X,
Y, and their intersection are given by defining sets of generators and
relations. An intrinsic, purely group-theoretic formulation has been
given by Fox using his direct limits of systems of groups [4] however,
the corresponding abstract proof had not been worked out. The present
paper supplies such a proof (distilled from an earlier proof by Fox of
the van Kampen theorem) to a natural generalization of the van Kampen
theorem, which includes for example, in addition to the original theorem,
the determination of the fundamental group of the union of an increas-
ing nest of open sets each of whose groups is known [2].

In proving the principal result, Theorem (3.1), we depart from the
usual development of the fundamental group in that paths and loops
are not required to have the fixed unit interval as domains. In
particular, a path a is a continuous mapping of the interval [0, \\a\\]
into the space in question for some H a \\ > 0. For paths a : [0, || a ||] -* X
and b : [0, | |δ [|] -> X which satisfy a (\\a \\) — 6(0), we define the product
path α δ by

for °~t - llα"
t-~ \\a\\) for | | α | | < ί < l | α | l + P | | .

Thus, path multiplication is associative. Paths a and fe, having the
same initial and terminal points, are equivalent, denoted by a^.b, iff
there exists a collection of paths hs\ [0, \\hs ||] -> X, 0 < s < 1, such that

h0 = a and hλ = 6,
h,(0) = φ) - 6(0),

ll^sll is a continuous function of s,
hs(t) is simultaneously continuous in s and t.

We note that, for any path a and positive number t, there is a path
b equivalent to a with H&|| = £. Furthermore, \\hs\\ can always be
taken as a linear function of s and thus, in view of the preceding
sentence, may be arranged to be constant. The induced multiplication
of equivalence classes of paths and the definitions of the fundamental
groupoid and group of X are made in the usual way.

Received July 8, 1958.
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2, Systems of groups and direct limits (cf. [4]). A system is any
collection @ of groups and homomorphisms such that if θ Ga -> Gβ is
in @, then (?# and Gβ are in @. A homomorphism Φ & -> G of a
system @ iwέo α #rcwp G is a function which assigns to each group GΛ

in @ a homomorphism φa: G^-^G such that, for every θ : GΛ-> Gβ in
@, we have <pΛ = φβθ. The image of Φ is the smallest subgroup of G
which contains the image of every homomorphism ψa in Φ, and Φ is
onto iff its image is G itself.

A homomorphism Φ : @ -> G is a direct fo'miέ iff (i) Φ is onto and
(ii) for any group H and homomorphism Ψ : @ -• fl, there exists a
homomorphism λ:G-> H such that UP* = Λ0, that is, for every group GΛ

in @, ^Λ = λφa.

(2.1) THEOREM AWI/ system @ Λαs α dir^cί limit unique to within
isomorphism.

The proof is straightforward and is given in [4]. As a result of
(2.1), one may relax the above terminology and speak simply of the
group G as the direct limit of the system @.

A given system @ may always be enlarged to a system @' by
adjoining all, or any number of, identity homomorphisms and finite
compositions of homomorphisms of @. It is obvious that any homomor-
phism of @ is also a homomorphism of @r, and conversely. Thus,

(2.2) Any direct limit Φ : @ -> G is a direct limit Φ :& -> G, and
conversely.

3 The generalized van Kampen theorem* Consider a collection of
pathwise-connected, open subsets Xa of a topological space X closed
under finite intersections and such that

p e f)XΛ, for some point p

The set @ of fundamental groups Ga = π(XΛ, p) and all homomorphisms
θ :G(Λ-+Gβ induced by inclusion is a system, and the homomorphisms
φ«'-GΛ->G = 7r(X, p) induced by inclusion constitute a homomorphism

(3.1) VAN KAMPEN THEOREM. Φ :&->G is a direct limit.

Proof. There are two propositions to verify :

I. Φ is onto. Consider an arbitrary non-trivial element A e G and
a loop a representing A. Since AΦl, we know that | | α | | > 0. We
construct a subdivision.
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0 = ί0 <«!<••• < ί « = Hα||

such that each tt — tί-1 is less than the Lebesgue number of the open
covering of [0, | | α | | ] consisting of all inverse images a~ιX%. We then
choose XΛι, ί = 1, , n, such that

a[ii-t, £,] c l t f . i = 1, •••, n.

For each point tifi = 0f , n, of the subdivision, we select a path 6*
in X subject to the conditions :

( i ) 64(0) = p and &4(Hδ4||) = αfo)
(ii) If α(ίi) = p, then bt = p
(iii) 64(ί) 6 X . Π X. + l , 0 < t < | |6 f H and i = 1, . , n - 1.

Note that (iii) uses the fact that the collection of subsets XΛ is closed
under finite intersections. Next, consider paths ai : [0, tt — ί|-J -> X, i =
1, , w, defined by α4(ί) = α(ί + ίj-x).
Clearly,

ί = l

and

i = l

Each path 6^! a% &Γ1 is a p-based loop whose image lies entirely in

XΛ% and which, therefore, is a representative loop of φoίl% At for some

A e Ga. Thus,

A = ft Pe.Ac
i = l J

and the proof of I is complete.

II. For any group H and homomorphism Ψ : & -> H, there exists a
homomorphίsm λ : G -> H such that Ψ = λΦ.

Proving II obviously amounts to proving that, for any At e Ga., i =

1, •••, r,

Π ΨoΛi = 1 implies Π ^.A* = 1 .

We select representative loops αz e Aif ί — 1, , r. Then the product

r

tt = Π ψΛi a>ι

is contractible (We denote an inclusion mapping and its induced homo-
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morphism of the fundamental groups by the same symbol), and there
exists a homotopy h\ R-> X, where R = [0, || α||] x [0, 1], which satisfies

h(t, 0) = a(t)

The vertical lines t = ΣSLi \\aJc II i — 1> * *» Λ provide a decomposition
of i?, and we consider a refinement

O = ί o < ί 1 < ••• < ί n = | | α | |
0 = s0 < §! < < sm = 1

into rectangles

^ij = {(£> s ) I **-i <t<tι and ŝ -i < s < s,}

the maximum of whose diameters is less than the Lebesgue number of
the open covering of R consisting of all inverse images h^X*. Con-
sequently, there exists a function a(ifj) such that

h(Rij) c M ) ί = 1, , n and j = 1, , m.

For each lattice point (tu Sj), we select a path eυ in X subject to the
following conditions.

(iv) The initial and terminal points of etJ are p and h(tiy Sj),
respectively.

( v ) If h(tif Sj) = p, then etJ = p.
(vi) The image of eυ is contained in

~xr pi v" pi v" p| V*

(Assume X^αj) = X if i = 0, w + 1 or if j = 0, m + 1).

(vii) If Σ*-* II α* II < **-i < ί* < Σ L i l|αfc ||, then the image of etl

contained in XΛ .
Next, cf. Fig. 1, consider paths

and set

ai3 = βj-^j c t j β^ 1 i = 1, , n and j = 0, , m

&u — βi,j-i * ̂ u * ̂ ϋ1 ΐ = 0, , w. and j 1 = 1, , m

s

Fig. 1
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The image points of the loops aυ, bijf cίij.u and 6{-u all lie in XΛ(4 J),
Consequently, they define group elements Aij9 Bijy Af

ijy and β'tj respectively.
GoίCij). The product ait}-.v 6έj αf/ &ϊ"Λj is obviously contractible in X;
moreover, since the image of Ri3 as well as the images of the four
paths lies in X^GJ), the product is also contractible in XΛ(itJ). We may
conclude that

( 1 ) A^βi5ArAB\3Y
ι - 1.

The central idea in the proof of II is the fact that if group elements
A 6 GΛ and B e Gβ possess a common representative loop, then φΛA —
ΦβB.

The proof is easy: By assumption the system @ contains the
fundamental group Gy of the intersection Xy — Xa Π Xβ and the homo-
morphisms

GΛ *- Gy > Gβ

induced by inclusion. The assertion that A and B possess a common
representative loop states that there exists a p-based loop c in Xy such
that θxc e A and θ.β e B. Thus, if c defines C e Gy, we have

θτ C = A and θ2 C - B

Since Ψ is consistent with the mappings θ,

ΦΛ = ΦAC - φyC - φβθ,C - φβB .

Applying the central assertion, we obtain

ί 2 ) ΦaXiJ^Aij — ψcΰ(iJ + ϊ)Aιj + ι

Equation (1) says that the result of reading around each Rt) under the
homorphism v'Vi.j) is the identity. Equations (2) show that edges of
adjacent rectangles will cancel. It follows (by induction) that the result
of reading around the circumference of the large rectangle R is the
identity. Furthermore, only the elements along the bottom edge, s = 0,
are non-trivial. We conclude, therefore, that

n

Π Φott.vAtj = 1 .
ί = l

Since each of the numbers ΣΛUI II0* IL 3 = 1> * * ι r> ί s a member of
{ti, '"ftn}t there exists an index function i(j) such that i(0) = 0, and
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Then,

Π α<0^¥>α>A* i = 1, ••-, r.

However, by virtue of (vii), we may assume that the equivalence is in

JEαy Thus, each loop aiQ, i = i(j — 1) + 1, , i(j), determines a group

element AΊ e GΛ and

Π Ai = Aj.
ί-ί(J-l) + l

Since Ai0 and 4̂ possess a common representative loop αίc, it follows
from our central assertion that

Finally, therefore,

Π Π ^αo)^o = Π Π

and the proof of the generalized van Kampen theorem is complete.

4. Generators and relations* Since generators and relations describe
a group only to within isomorphism, we shall speak of the image group
of any direct limit of a system as the direct limit of the system. To
obtain a presentation of the direct limit of a system of groups which
are given by generators and relations is a simple matter of setting up
the proper homomorphisms and chasing around a batch of consistent
diagrams. Consider a system @, each group GΛ of which has a pre-
sentation (cf [3])

Each mapping θ : GΛ -» Gβ in @ is described by giving the assignment
θxι

Λ e Gβ, i = 1, 2, . Then, the direct limit of @ has the presentation

(1) G = ({α;i}:{ri}, {^(flαi)-1})

i.e., all generators a&, all relators ri, and all elements x^iβxl)"1 (a proof is
given in [4]). The presentation (1) can be simplified in that, for each
homomorphism θ \GΛ~> Gβ, the relators r£, i — 1, 2, , may be dropped.
The reason is that, in the free group F generated by all the generators
in (1) and of which G is the homomorphic image, the relators rl are a
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consequence of the relators rβ and the elements xKθxl)"1. To prove this
assertion consider the diagram

θ

Fa^-> Fβ

inclusion \ / inclusion
F

FΛ is the free group generated by xι

a, i = 1, 2, , and ζΛ is the con-
onical homomorphism whose kernel is the consequence of rι

aj i = 1,2, .

The mapping θ, which strictly speaking should be used in (1), is simply
θ lifted to the free groups. Consider an arbitrary homomorphism η of
F which maps rι

β1 xi(θ xi)~l, i = 1, 2, , onto 1. Then, for any u e Fa,

η U — η θ U .

Since

each θrl is a consequence of the elements rι

β. Hence,

and the assertion is proved.

Consider a topogical space X which is the union of two pathwise-
connected open subsets X1 and X2 whose intersection Xϋ = Xτ Π X2 is
also pathwise-connected and contains a point p. Suppose we are given
presentations of the fundamental groups G4 = π(Xu p), i = 0, 1, 2,

G τ = ( α ? i , α a , ••• : r τ , r 2 , • • • )

G 2 = ( 2 / 1 , 2 / 2 , ••• : s j , s 2 , • • • )

Go = fe, 2a, : tl9 ί2, •)

and the mapping 04 : Go -> G«, i = 1, 2, induced by inclusion are described
by assignments θi Zj e Giy i = 1, 2, i = 1, 2, . By our principal Theorem
(3.1) and the results of the preceding paragraph, the fundamental group
G = π(X, p) has the presentation

G - ({xj}, to}, {zj} : {r,}, {s,}, {^(β,^)-1})

This presentation is equivalent to (cf. [3])

G = ({X,}, {VJ} : W , {Sj}, {θ1zJ(θ1βJ)^})
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which is the assertion of the usnal formulation of the van Kampen
theorem.

Consider a system @ of groups and mappings

( 2 )

such

( 3 )

that

G,— - G,

G

>

xί

G3

• {χ\, xl

= x{+, and

• with

: r\, τ\,

β.r{ = ?

presentations

i+l

(Gi+ι may have more generators and relators than Gt). We may define
a group

( 4 ) G = ( i / t , 2 / 2 , ••• : s χ , s 2 , • • • )

and a homomorphism Φ :&-+G such that

= Vj and ^4r/ = Sj .

It is easy to check that G (more precisely, Φ : @ —> G) is the direct
limit of @.

Finally, we consider an ascending chain of non-empty, open subsets
Xλ c X2 c of some topological space. We have by (3.1) and (2.2)
that the fundamental group G of the union is the direct limit of the
system

θ1 θ2

Gx > G a > ,

where G% = π(Xt, p) is the fundamental group and θx is induced by
inclusion. Using the results of the preceding paragraph, we obtain a
presentation (4) for G, if presentations (2) satisfying conditions (3), are
given. This procedure is used in [1] to obtain (among other examples)
a presentation of the group of the exterior of the Alexander Horned
Sphere.
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CONVOLUTION SEMIGROUPS OF MEASURES

IRVING GLICKSBERG

Let S be a compact topological semigroup, C(S) the Banach space of
all continuous complex valued functions on S, and £ the normalized non-
negative regular Borel measures on S. Under convolution and the ω*

topology of C(S)*, S and the unit ball S of C(S)* each form a compact
semigroup. The main purpose of this paper is the determination of all

subgroups of S and S when S is abelian.
In the case in which S is a group, J. G. Wendel [10] has determined

the idempotents in S: they are just the Haar measures of subgroups of
S. This fails to hold for the general compact semigroup S, but does
remain valid for compact abelian semigroups, due primarily to the fact
that the least ideal in a compact abelian semigroup is a group. Indeed
it is just this feature of the abelian case which allows one to complete
the one point in WendeFs argument where essential use is made of a
group structure, rather than a semigroup structure, for S, and further

allows one to determine the subgroups of S.

The structure of the subgroups of S (when S is abelian or a group)
is quite simple : each subgroup Γ of S consists of the G — translates
of Haar measure on g, where G is a subgroup of S, and g a normal
subgroup of G. Thus Γ is just the set of point masses on Gjg imbedded
in S in the natural fashion, and we arrive essentially at the fact that

the only subgroups of S are the obvious ones. But a consequence of
this knowledge is an extension of the Weyl equidistribution theorem :
for μ in S, N~ι Σ»-iJ"n —^ H a a r measure of the least ideal of the sub-
semigroup of S generated by the carrier of μ (in the group situation
this is convergence to Haar measure of the subgroup generated by the
carrier).

Finally, in the abelian case, the determination of the subgroups of
S is obtained as a consequence by virtue of a theorem of Eberlein [3]
we can apply our results to obtain the subgroups of the convolution
semigroup formed by the unit ball of C0(2f )* where gf is a locally com-
pact abelian group.

It is a pleasure to record the author's indebtedness to K. de Leeuw
for his stimulating comments and suggestions, which were directly
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1958.

51



52 IRVING GLICKSBERG

responsible for many of the results our indebtedness to WendeFs paper
will be self-evident.

1. Preliminaries* We begin with a resume of the facts and nota-
tion we shall use in connection with semigroups, ideals, measures and
convolution for standard results on measure theory and topological
groups the reader is referred to [5, 6, 9]. Let S be henceforth a compact
semigroup, i.e. a compact (Hausdorff) space with a jointly continuous
(binary) operation (multiplication) under which it forms a semigroup.
By a subsemigroup of 5 we shall implicitly mean a closed subsemigroup
a not necessarily closed one will be called an algebraic subsemigroup.
By a subgroup G of S we shall mean a (closed) subsemigroup which
algebraically forms a group under our operation since G is compact, in-
version (as is easily seen) is automatically continuous and G is a compact
topological group.

(1.1) Suppose now that S is abelian. An ideal / of S is a nonvoid
subset closed under multiplication from outside (SI c /), and a con-
sequence of compactness is the fact that S contains a least ideal / =
ΠxesxS for xyS c xS Π yS implies {xS: x e S} has the finite intersec-
tion property while xS is trivially closed so that I Φ φ. And clearly
/ is a (closed) ideal contained in any other ideal. Moreover

(1.11) if E is dense in S, then I = Π x e s ^
For given an open set V containing / we have an x in S with xS c V
(otherwise the filter generated by {xS: x in S} has each of its elements
meeting the compact complement V of V, whence / Π V' Φ φ). Thus
by compactness and the continuity of multiplication we have a y in E
near x for which yS a V, I a ΓiyβEVS c V, and (1.11) follows. Further
/ is a subgroup of S as well [8]: for x e S =Φ xl is an ideal contained
in /, so xl — I. Thus if x e / we have an e in / for which xe — x,
whence yxe = yx since Ix — xl — 7, e is clearly an identity for /. On
the other hand yl = I implies that there is a z in I with yz = e, and /
is a group.

For a non-abelian S we have the usual variety of ideals and the
above facts are of course invalid however it will be convenient to note
that if S is a group any sort of ideal must coincide with the full group
S, and all of our remarks retain their full force.

(1.2) With S abelian or not the fact that S is compact allows us to
identify C(S)* with the space of (integrals with respect to) complex
regular Borel measures of S. We shall use the same letter to denote

the functional and the measure, writing μ{f) = \f{x)μ{dx). The norm
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\\μ\\ of μ in C(S)* is of course its total variation, and the unit ball of

C(S)*, S—{μ\ \\μ\\ ^ 1} is compact in the ω% topology, as is its sub-

space S — {μ : μ ^ 0, \\μ \\ — 1}.

For / e C(S) let fx(y) = f(xy), f*(y) = f(yx), so that fx and f* are

in C(S). The compactness of S and the continuity of multiplication

combine to yield the maps x -± fx, x-+ fx of S into C(S) continuous, and

thus for μ in C($)*, \f(xy)μ(dx) is continuous in y. Consequently we

can form the iterated integral \\f(xy)μ(dx)v(dy) which, as a function of

/, lies in C(S)*. The corresponding measure μv, the convolution of μ

and v, thus satisfies

(1.21)

for / in C(S). Moreover using the monotoneity arguments of [6]1 we
have (1.21) holding for bounded Baire functions f. Since the associative
law is easily verified, and μ, v ^ 0 implies μv >̂ 0 while \\μ || = μ(l) =

\/̂ (cίx) for μ ^ 0, S clearly forms a semigroup under convolution, abelian

if S is (by Fubini's theorem) similarly *§ forms a semigroup since

clearly | | ^ | | ^ \\μ\\ \\v\\. If we now add the ω* topology we obtain

compact semigroups: for since y-> fv is continuous for an / in C{S),

F — {fy :y e S} is a, compact subset of C(S), and thus point wise con-

vergence of an equicontinuous bounded net of functions on F implies

uniform convergence by Ascoli's theorem. But S and S are equicon-

tinuous sets of functions on F and ω* convergence amounts to pointwise

convergence, so μδ -» μ, vδ -» v imply \f(xy)μδ(dx) -* \/(^)^(d^) uniformly

in ?/ and therefore

\\ f(xy)μ(dx)v(dy), or

Finally we note the existence, for each non-negative regular Borel
measure //, of a unique closed set A = carrier μ d S with the property
that μA = \\μ\\ and μ U > 0 for each open C7 with A Γ\ U Φ φ [10]

1 For μ, v ^ O one argues as follows: the set of non-negative Baire / for which

Γ(y) = JΛ*0) Λ i M(^)

defines a Baire function / r and for which

[[f(py) Λ 1 μ(dxHdy) = ^ « ) Λ 1 ^(da?)

is clearly a monotone class containing the non-negative elements of CR(S), and thus includes

all non-negative Baire /. For general μ, v the decomposition μ = μ{ ~ μ2 + i(μz ~ μ±), and

the obvious distributivity of convolution suffice. Also monotoneity shows / Baire on S im-

plies / : (x, y)^>f{xy) is a Baire function on S x S, and thus Fubini's theorem may be

applied to /.
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it is simply the complement of the union of all open sets of μ measure
zero.

2 Idempotents and subgroups. The fundamental tool in our an-
alysis is the following extension of WendePs Lemma 4.

LEMMA 2.1 For μ and v in S,

carrier μv — (carrier μ) (carrier v) .

Proof. Let A and B be the respective carriers of μ and v. Since
each is compact so is A B, which in particular is then a Borel set.
Thus by the regularity of μv, for ε > 0 we have an open U containing
A B for which μv{U) ^ μv(A B) + ε. Since S is normal Urysohn's
lemma applies to yield an F in C(S) with ψA.B ^ F ^ φu (where μE is
the characteristic function of E), i.e., 0 ^ F ^ 1 and F — 0 on IT, = 1
on A ΰ . But it is clear that ψA{x)φB{y) ^ î («2/) for all a?, ?/ in S, and thus

= μ(A) v(5)

= [F(x)μv(dx) ^ μv(U) ^ /̂ v(A B) + ε ^ 1 + ε

Since ε > 0 is arbitrary, μv{A J5) = 1. Moreover if Z7 is now anopen
set with (A B) Π Ϊ7 Φ φ then we can find open sets F and W for which
F Π A Φ φ, W Π B Φ φ, and F" W~ c Z7 choosing an î 7 in C(S) with
Ψv-'w' ^ F ^ Ψυ again yields μ(V~) v(TF~) ^ ^(17), and this combines
with μ(V~) ^μ(V)> 0, v{W~) ̂  v(T )̂ > 0 to show MZΌ > 0. Hence
A S is indeed the carrier of /*v.

If /̂  is now an idempotent in S,

(carrier μf — carrier μ2 — carrier μ .

In the group situation this guarantees the carrier is a group [4, 7], but
in the case of an abelian semigroup S we must go further.

THEOREM 2.2 Let S be abelian or a group, and μz = μ e S. Then
carrier μ is a subgroup of S and μ is its Haar measure2.

Proof (Following Wendel). For completeness we shall include both
cases in our proof, although in the group situation we have WendeFs
Theorem 1. Let H = carriers, so H* = H. For / in CR(S) (the space

2 For non-abelian S this and our subsequent results fail in general. For take S =

[0, 1] under 9, where # o y = y. Then ^ v = v, for μ, vs S and each element of S is an
idempotent.
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of real valued elements of C(S)) let f\x) — \f(yx)μ(dy)f x e S, so that

/ ' 6 CR(S). Since H is compact / ' assumes its supremum over H at
some xQ in Hy and

/'(3b) = \fx<v)μ(dy) = μ(f*o) = μ\f*ή

since / ' ^ f'(x0) on (carrier μ) - χQ — HxQ c JEP = iϊ. Consequently /'(a?0)

= l/ '^o)/"^) and, since / ' is continuous and H = carriers, / ' assumes

its supremum over H on all of HxQ in particular then on the least ideal

I of the subsemigroup H of S.
(In case S is a group our proof is complete: for H is a group,

/ = H, and / ' constant on / = i?=> μ is right invariant).
Now suppose H\IΦφ. Then we can find an xλ in H and non-

negative / in C(S) vanishing on I for which / r i does not vanish on all
of H otherwise for each / ^ 0 in C(S) with /(/) = 0 we have fx(H)
= f(Hx) - 0 for all x in H, and thus f(H) = /(iϊ2) = 0. Hence for this

/ and x1 we have μ(fzή > 0 while, for y in /, f'{y) = \/(^2/)/"(^) =
\ 0//(c?α;) = 0 since Hy c / and / vanishes on /. But since / ' assumes
its supremum over H on I, 0 >̂ fr{xλ) — μ(fxή > 0, the desired contradic-
tion, and H — 2, a subgroup (of i ϊ and thus) of S. Moreover since / '
is constant on I = H, μ is invariant and our proof complete.

For a subset £ of S we shall refer to (Uμe^carrier μ)~ as the carrier
of E, which is obviously consistent with our former use of the term.
It should be noted that if E is a subsemigroup of S then carrier E is a
subsemigroup of S. For by Lemma 2.1 (Jμe farrier μ is closed under
multiplication, and therefore its closure is also. Moreover carrier E' =
carrier E; for if carrier μ ς£ carrier/? then there is a n / i n C(S) vanish-
ing on carrier E with μ(f) Φ 0. But then v(f) = 0 for y in E and
therefore for v in 2?~ as well, and μ $ E~.

THEOREM 2.3 Let S be either abelian or a group, and let Γ be a

subgroup of S. Then the carrier G of Γ is a subgroup of S while the
carrier g of the identity η of Γ is a normal subgroup of G. If Tη de-
notes the map of {GjgY -^ S defined by

= \ \ f{xy)ri{dx)v(dyg) , f e C(S),

then Tv takes {GjgY onto the ω* closed convex hull ^(Γ) of Γ, the point
masses (Glg)p of Gig onto Γ, and in each case is a (topological) isomorphism
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between these semigroups.

COROLLARY 2.31. Γ is the set of G—translates of Haar measure on

g. For η is Haar measure on g by Theorem 2.2 and thus for v = mass 1

at gy e G\g we have ?V(/) = I f(xy)y(dx), which of course corresponds

to the Haar measure of g translated to the coset gy.

Proof of Theorem 2.3. Consider first the case in which S is abelian.
Let SQ — (Jiuercarrier μ, an algebraic subsemigroup of S with £0~ =
carrier Γ — G. Since μ — ημ for μ in Γ, carrier μ — carrier η carrier μ
= gcarrier μ by Lemma 2.1, and thus gSQ = So and therefore gG = G.

But for x in So we have x e carrier μ, μ e Γ, so x carrier μ"1 c
carrier μ/^1 = g and #G Π g Φ Φ. Further, since xyG c xG Π ?/(r for
x,y e So a G we conclude from the compactness of g that g meets
Πxe^^Gj the least ideal J of the compact semigroup G (cf. (1.11)). Con-
sequently g c / for i e g f] I implies g — ig a I since ^ is a group and
/ an ideal. Since gG — G we obtain G c I c G, and since / is algebraical-
ly a group, G is a subgroup of S.

Now evidently Γ,, maps {GjgY into S. Let / be in C(S) and vanish
on G. Then clearly Tvv(f) — 0, v e {GjgY, so that G contains the carrier

of any measure in the range of Tv. The subset M of 5 of elements
with carriers contained in G may be considered as a subset of either
C(S)* or C(G)* in each case we obtain the same ω* topology since by
Urysohn's lemma C(G) is exactly the set of restrictions to G of the
elements of C(S), and μ(f) = μ(f\ G) (where μ on the left is in C(S)*,
and on the right in C(G)*). For the same reason we may evidently
form the convolution of two elements of M in either place, i.e. M may
be considered as a subsemigroup of either S or G. Thus it will clearly

suffice to consider Tv as a map of (Gjgy into G.

But now we recognize Tv as (a restriction of) the adjoint of the map

/ - * / ' of C(G) -+ C(G!g) defined by setting f\yg) = [ f{xy)η{dx). Thus
Tη is (ω* -^ ω*) continuous, and since / - * / ' is onto [6, 9], Tv is one-to-
one, hence a homeomorphism on (GjgY. Further Tv is an isomorphism
since for / e C(G)

= I f(xyzw)η(dx)vidyg)η(dz)vidwg) ,
JGIg Jg JβlQ Jg

= \ I \
jGlg JGlg Jg

— \ \ \ \
JG/Q JGlg Jg J



CONVOLUTION SEMIGROUPS OF MEASURES 57

since rf — vn and thus multiplicativity follows from Fubini's theorem and
commutativity.

Now let p be the canonical homomorphism of G -» G/g and, for μ in
Γ define μ e (G/gy by μ(F) = μ(F o />), ί7 e C(G/(/). Then for/ e C(G),

= f(%y)v(dx)μ(dy) = 1 I f{xy)r]{dx)μ{dyg)

so Γa

Thus the (compact) preimage of F is a subgroup of (Gjgy whose identity
is the mass 1 at the identity # of G\g (for clearly this measure maps
onto η and T, is one-to-one). Since Gjg is a group, Lemma 2.1 implies
each element of the preimage is a point mass indeed the preimage
consists of just those obtained from a closed subgroup of Gjg since as is
well known the map from points to point masses (in the α>* topology) is
a homeomorphism [2] and trivially a group isomorphism. Hence we may
identify the preimage as (Golg)p, the point masses on Gjg where Go is
a subgroup of G containing g (Go is closed since GQ[g and g compact
imply Go is compact). But obviously the carrier of each element of
Ty,(Golg)p is contained in Go so that carrier Γ — G c Go, and Go = G,
T,(Glgy = Γ.

To complete the proof in the abelian case we need only note the
well known fact [2], that (Gjgy is the ω* closed convex hull of (G/^)p,
so that Tv\_(Glgy~\ = ^{Γ) follows from linearity and continuity.

Now suppose S is a (non-abelian) compact group with identity e.
Since we clearly have G = carrier Γ = G2, G is a subgroup of S [4, 7].
Moreover g is a normal subgroup of G. For α? e carrier μ, μ e Γ, im-
plies # carrier/*"1 c ^ by Lemma 2.1 so that if 2/ e carrierμ"1,

xy ~ z e g, x'1 = yz~ι e (carrier/*"1) g = carrier/*"1 .

Thus

x~λgx c carrier μ~ι g carrier μ — g ,

and α " 1 ^ c gr for a dense set of x in G if y e g then x'λyx e g for all
x in G, by continuity, and g is normal in G.

Now if we omit the first two paragraphs of the proof for the abelian
case, each step will apply here with one exception : the proof that Tv

is multiplicative. But (applying Fubini's theorem) this follows from the
fact that

i.f(xyzw)r]{dz) = 1 f(xzyw)η(dz)
J9 Jg

or equivalently

[ f%{yz)η{dz) = \ f%(zy)η(dz)
JQ Jg

and thus ultimately from yg = gy.
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2.4 REMARK. If Γ is an algebraic subgroup of S then Γ~ is a sub-

group of S so that Γ consists of the G—translates of a Haar measure,

where G is an algebraic subgroup of S. For if the net {μδ} c Γ con-

verges to μ 6 Γ~, then any cluster point v of {μ^1} must satisfy μv — rj

as a cluster point of {μ$μ&1} and clearly μ = μη.

3 Least ideals and carriers. Our next result gives the relationship

when S is abelian, between the least ideal of a subsemigroup of S and

the least ideal of its carrier : the carrier of the least ideal is the least

ideal of the carrier.

THEOREM 3.1. Let S be abelian and let Σ be a subsemigroup of S with
least ideal j? let Sλ — carrier Σ with least ideal I. Then I = carrier ^ .

Proof. We know that j ^ is a subgroup of Σ and thus of S. Hence
by Theorem 2.3 its carrier is a subgroup G of S. Let So = (Jμes carrier μ,
a dense algebraic subsemigroup of Sλ. Let x e So so that x e carrier μ
for some μ in Σ. For v in ^ , μv e ^y so # carrier v c carrier μv c G
by Lemma 2.1, and thus #SΌ Π G φ φ and 0?^ Π G Φ φ. Since / =
Dxes χS1 by (1.11) we conclude as in the proof of 2.3 that G Π / Φ Φ
and therefore G c /.

But the fact that x carrier v c G for # e So, v e ^ clearly implies
xG c G for a? e So. Consequently for y m G,xy e G for all x in Sl9

by continuity, and thus SλG c G, or G is an ideal in SL. Hence G con-
tains the least ideal / and I = G = carrier ^ " .

THEOREM 3.2. Let μ e S, with S abelian. Then N~ι Σ£=i/^
measure on the least ideal of the subsemigroup of S generated by carrier //.
// S is a (not necessarily abelian) group, N'1 Σ^i/^ -» Haar measure
of the subgroup of S generated by carrier μ.

Proof. Let Σμ. be the subsemigroup of S generated by μ, vN =
V̂""1 Yun^ί^i and let v be any cluster point of {vN} which of course must

lie in ^(Σμ). Since || μvN — vN \\ -± 0 we have μv — v and thus λv = v for
each /ί e ^(Σμ). Since C^(Σ^) is abelian this clearly implies ^ is the
unique cluster point of {vN} so that vN -> v by compactness. Moreover
v̂ = v, λ 6 ^(Σμ), says {ι̂ } is the least ideal of the subsemigroup ^(Σμ)

of S, and an idempotent, so that v is Haar measure of its carrier by
2.2.

Now if S is abelian the carrier of v is the least ideal I of carrier
c^{Σμ) by 3.1. Evidently the carrier of the algebraic convex hull of
Σμ, coincides with the carrier of Σμj and since carrier E~ = carrier E, we
have carrier ^(Σμ) = carrier Σμ. and our proof is complete in this case.

If S is a group with identity e, let G be the subgroup of S generated
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by carrier/Λ Since a subsemigroup of a compact group is a group,
carrier {μn : n ^ 1} is a subgroup of S and clearly must coincide with
G. Thus if f{G) = 0, / e C(S) we have / vanishing on carrier μn, hence
f^if) — 0> all w, and v{f) = 0 consequently carrier v a G. On the other
hand /̂ V = ^ so that by 2.1 carrier/^ carrierv = carrieru and thus

U carrier μn — \J (carrier μne) c (J (carrier μw carrier v) = carrier v

so G c carrier y and our proof is complete.

3.3 REMARK. More generally we can follow Alaoglu and Birkhoff [1]
to obtain a stronger assertion. Let E be a commuting subset of if, and
let Σ be the abelian subsemigroup of S generated by E. We can regard
C^{Σ) as partially ordered by μ < v <=) v e μΣ, and then C^{Σ) forms a
directed set {μv ^ μ, v). If we regard C^{Σ) as indexed by itself then
C^{Σ) is a net and the net converges to Haar measure on the least ideal
of carrier Σ. For given μ e r^(Σ) and ε > 0 there is a v0 in ^(Σ) for
which || μv — v || < ε, v ^ v0: simply choose v0 = iV"1 Σ»-i)"n f o r ^ l a r ^ e

enough to yield || μv0 — v01| < ε then v ^ vQ =^> v — vQλ, \\ μv — v || =
II /W — ̂  II ̂  ll^o — ̂ o II IUII < ε. Consequently we obtain a unique
cluster point v of our net to which the net must converge, with μv ~ v,
μ 6 r^{Σ) and the remainder of our proof applies.

3A. Our next result gives more explicit information about the least

ideal of a subsemigroup of S when S is abelian.

THEOREM 3.5. Let S be abelian, and Σ be the subsemigroup of S

generated by a subset E of S, with carrier Sλ. Let ^ and I be the
respective least ideals of Σ and Sλ with identities η and e respectively.
Then ^ is the set of I-translates of Haar measure η of the subgroup h
of I generated by {(e carrier μ)(e carrier μ)'1: μ e E}.

Proof. We already know from Theorem 3.1 and Corollary 2.31 that

,j^ is the set of /—translates of Haar measure η of some subgroup g

of / we have only to show g — h. But each subgroup gQ of I is deter-

mined by its orthogonal subgroup g^ — {a e I: a(g0) = 1} in the

character group I of /, so we need only show g-*- = h^. Moreover the

elements of g-^ are just those a in / for which ^{a) — \a(x)-η(dx) = 1

(for all others Ύ]{OC) — 0), hence g^ = {a e I: \μ(a) 1 = 1, μ e ^}.
Now for μ in Σ, e carrier μ c carrier TJ carrier μ = carrier ημ c I and

since ημ e ^ , carr ier^ is a coset yg c /. Thus

(e carrier μ)(e carrier μ)~ι c ygiyg)"1 = g ,

and a e g^ implies a e h^. To see that h^ c g^f note that each a
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in / has a continuous multiplicative extension α* to Sj: simply set

a*(x) = a(xe), x e SL. Further α* has a continuous extension a' to all

of S by Urysohn's lemma, and, for μ in Σ, μ{ccf) — μ{ρc*) thus if μ8 -» μ

in J , μδ(tf*) --> μ(a*). But since α* is multiplicative if we define the

(Fourier) transform μ e C(ϊ) of μ in 21 by setting ft(a) = ^(Λ*) =

lα*(^)^(c?^), we have (/^)Λ = /> C (ordinary product in C(I)), with μ(a)

= μ(a) for μ in ,X (since carrier μ is then c 2).

Let a e h-1-. Then

α((e carrier μ)(e carrier A')"1) = α(β carrier μ) α(β carrier μ) — 1

for μ in E which implies α is constant on the sets e carrier/Λ μ in
Thus

= \a*{x)μ(dx) = l

is a unimodular complex number. But then (μv)A — μ C implies that
1 μ(a) I = 1 for μ in the algebraic subsemigroup of S generated by E
since μδ -> // in Σ implies μB(a) = Λδ(^*) -> M< *̂) = />(α) the same must
be true for all μ in Σ. In particular for μ in , j ^ , \μ(a) \ = l^(α) | = 1
whence a e g-^ and (/-1- = Λ, u .

4* The semigroup S. When S is abelian the subgroups of S, the

convolution semigroup formed by the unit ball of C(S)*, can be deter-

mined from those of S.

Let Γ be a non-trivial (i.e. Φ {0}) subgroup of S, with identity rjm

Clearly 0 0 Γ and consequently H//|| = l for μ in Γ for | | / ^ | | < 1
implies ^w -> 0 and thus 0 e Γ. Now by the Radon—Nikodym theorem
we can associate with each complex measure μ a non-negative measure
I μ I and a unimodular Baire function p^ for which μ(dx) = pμ{x) \ μ \ (dx)
(we shall express this by writing μ — pμ | ^ | ) and H |//| II = 11̂ 11. For
write μ = μv — μ.z + i(μ3 — μ4) with μ3 ^ 0, and let v = ^ + ^ 2 + μ3 + //4.
Each ^ is absolutely continuous with respect to v so there are functions
fj in ί/L(v) (which we can take to be Baire functions since each v integrable
function is equivalent to a Baire function) for which μ5 = f5 v. Set

f = A-A + HΛ-A) , \M\(dx) = \f{x)\v(dx)

and Pμ{x) =f(χ)j\f(χ)\ unless f(x) = 0 when we set jθμ(^) = 1. Clearly
pμ, and \μ\ have the required properties.

Thus for μ and v in Γ we have

(4,1) 1 = III μv 11| = [ l I μv I (eto) = f -J*—.μ»(dx) = (f

= (t ̂ (--ί^lΛl(^)iv|(%) <: Γf
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Consequently we have a | v \ null set E for which y 0 E implies there
is a I A* I null set Ey for which x f Ey implies pμ(x)p*(y) ~ pμ*(xy). Hence
for / in C(S)

IMCO = \Λχ)—rrMdχ) = \\f{χy)~~~-μ{dχ)v{dy)

\μ\(dx)\v[(dy)

so that μ~*\μ\ is an (algebraic) homomorphism of Γ onto an algebraic

subgroup ΓQ of S, whose identity is obviously \y\. Let G = carrier ΓQ

= carrier Γo", so that Γ~ consists of all G-translates of Haar measure
I-η I of a subgroup g of G. We shall see later that μ~*\μ\ is also con-
tinuous, so that ΓQ is compact and coincides with Γ~.

Now each Baire function f on S has its restriction to g a Baire
function of g (for the set of real valued f'& for which this holds is a
monotone class containing CB(S)). Thus pv | # is a Baire function on #.
Applying (4.1) to the special case μ = v = 7 we conclude that there is
an I a? I null set E oί g for which y $ E implies there is an | η \ null set
Ey of s' for which x $ Ey implies pv(x)pr,(y) = pv(%y). For simplicity let
us now write pv — p, and, restricting our attention entirely to g, write
dx for I ?? I (dx), the element of Haar measure on g, and speak of \η\
null sets as null.

For / e L^g) (which we take as a Baire function of g) let M(f) =

I yfa)j°(#)d#- Since y - Ey is null by translation invariance, and x $ yEy

implies yιx 0 Ey and thus p{y~ιx)p(y) = p{y~~ιxy) = £(#) for i/φE1, we can

write (with / * & the usual convolution in

= \\f{y)h{y-ιx)p{x)dydx

J - M(f)

so that M is a multiplicative functional on Lx{g). Thus we have a

character β oί g for which ^ = βmod 1̂ 1 on the carrier g of l^|, and

clearly then rj(dx) = ^(a?)|^|(cte). Moreover since £ = G/g-*- we have an

a in G for which α |gr = β, so that 7(dα?) = a(x) \η |(d!a?)"as elements of

S, or y = a \y\. (Note that essential use is made here of the abelian

nature of S).

Now a'1 can be extended continuously to all of S since each element
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of Γ vanishes on subsets of Gr the map μ -» a~ι μ is clearly a one-to-
one continuous map on Γ, and therefore a homeomorphism. Further
it is clearly multiplicative, so μ ~> or 1 μ is an isomorphism of Γ with

a subgroup /\ of S. The identity of Γλ is | ^ 1 , and thus for v in A ,

= 1

whence

Consequently v(l) is a unimodular complex number β(v), and since
1^(1) = ^(1)^(1), β is multiplicative evidently β is continuous and thus

a character of Λ Moreover \(llβ(v))v(dx) = 1 implies (llβ(v))v ^ 0, so

the map r : y -» /?(v)"V is a continuous homomorphism of 7^ into a subgroup

of £?. Further the composition of τ with μ -» a r 1 /*, taking

μ -* a~τ μ -» ^(αΓ1 μyλarx μ =. λ

clearly must map μ-+\μ\ since μ = β(a~1μ)a λ with Λ ̂  0 and ̂ (α:*1 μ)a
unimodular on G. Thus our original map μ -» | μ \ was continuous and
τ: v ~> β{pYΎv maps ^ onto Γo, which now appears as the full set of
G-translates of Haar measure | η \ on g.

For v in Γo let r"V — (9V v where Θv is a closed subset of the circle
group T, and in particular Θ — Θ]Ύ]] is a subgroup of T. Since Γτ =
Uvero^v ^ it remains to find the Θv. But v e ΓQy t e T and ίv e /\,
imply β(tv) = ί since v ^ 0 and β{tv)-ιtv ^ 0 thus β(0v v) = Θv. More-
over since v -> 0V v maps ΓΌ (topologically and) isomorphically onto
/ y 0 17 1 and β (taking θ\η\ onto Θ) maps the quotient group ΓJθ \η \
of cosets into T\θ in a homomorphic fashion, and continuously (as is
easily seen), the composition v -> β(Θv v) = Θv e Γ/0 is continuous. We
now distinguish two cases: Θ = T so that, as we could have seen earlier,
Γi — TΓQ (clearly this occurs iff Γ is circular in the sense that TΓ c Γ),
or Θ is the group of %th roots of unity, n ^ 1. In the latter case we
may apply the natural isomorphism σ(: ξ -> ξn) of Γ/0 onto T to map 6>v

into T. Writing | ΎJ \x(eΓQ) for the translate to xg of | rj \ we thus have
φ(x) — σ(Θ^]J defining a character of G lying in g-^: for the map
# -^ IV \χ of G into Γo is a continuous homomorphism as the composition
of G->Glg, the map from Gig into (Glg)p (a G) (continuous by [2])
followed by 2% (cf. 2.3). Consequently Θlv{χ consists of just the nth
roots of φ(x) and we may express our general element of Γ1 as φ(x)λln\ ΎJ \x1

where x e G and <p(x)ιln denotes any root. In summary then, we have

THEOREM 4.2. Let S be άbelian and Γ any non-trivial subgroup of
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S. If Γ is circular in the sense that TΓ c Γ then there are subgroups

g and G of S, with g c G, and a fixed a in G for which Γ =

{ta μx : t e T, x e G) where μ is Haar measure on g, μx its translate

to xg. If Γ is not circular then in addition to g, G and a we have an

integer n>,l and a φ in g^ c G for which Γ — {<p(x)llna μx : x e G)

where φ(xfln runs over all nt\ι roots of φ(x). Conversely any such set of

measures forms a subgroup of S.
There remains only the last point which is fairly obvious in the

circular case. In the non-circular case any subset Γ of the type described
is algebraically a group, and one need only verify its closure. But if
φ(xB)

ιlna μx& -» v then by virtue of the compactness of G we can find a
confinal subnet for which xh, -* x, an element of G, whence a μx -»
a μx; since φ(x&,) -* φ{x) some ^th root <p(xyln of φ(x) is a cluster point
of <p(x8')

lln and ψ(xflna μx is thus a cluster point of our convergent net,
hence = v and v e Γ.

REMARK 4.3. The first portion of our proof identifies the idem-

potents in S when S is a compact non-abelian group. For the argument
shows μ1 — μ Φ 0 =φ I μ |2 = | μ |, so that 1 μ \ is Haar measure of a sub-
group g, while pμ again appears as a multiplicative character of g.

4A. It may be worthwhile to note the analogue for S of Theorem

3.2: for S abelian and μQ e S, N'1 Σί-iA'o "~* 0 unless there is an a in
C(S) which is unimodular and multiplicative on S,̂ o, (the subsemigroup
of S generated by carrier \μo\) satisfying μQ = a \μQ\, in which case
N'1 Σ^=1Λ? -± <* (Haar measure on the least ideal of S^Q{). For if Σ is
the subsemigroup of S generated by μ0 then as before iV"1 Σ^=i^o ~> ̂ ,
the unique element of the least ideal of the semigroup ^(Σ). Clearly
v = 0 if 0 e ^{Σ) if 0 φ ^{Σ) then

(4.41) μ e &>(Σ)=ϊ\\μ\\ = l ,

and

(4.42) the least ideal ^ of Σ is a non-circular subgroup of S as in
4.2 with n = l.

For otherwise, in each case, we may conclude that 0 e ^(Σ). Con-

sequently ^ — {β τjx : x e G} where β e G, G is a subgroup of S and

η is Haar measure of a further subgroup.
But just as in the proof of 4.2, μ-+\μ\ is an algebraic homomor-

phism of ^f{Σ) into S. Moreover the image of ^ — {rjx: x e G} is
closed and is easily seen to be the least ideal of the closure Σx of the
image of Σ. Thus by Theorem 3.1, G is the least ideal of SL = carrier Σ19
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and as in theorem 3.5 we can extend β to a continuous unimodular

multiplicative function βx on S1 by setting βτ(x) = β(xe), x e Sl9 where

e is the identity of the least ideal G of St. Since βΐ1 is multiplicative

on Sλ and all μ in Σ vanish on all Borel subsets of S'lf μ -> βΐ1 μ is

a homomorphism on Σ which in particular maps ^ into S. As a con-

sequence it must map all of Σ into S: for if v — β^λ μ is the image of

μ e Σ then, since (/? rj)μ e ^ we have ^ e S whence 1 = ψ(l) —

rj{l)v{l) = v(l), so [Ml = 1, v ^ 0. Evidently then /?Γ1 ^ = | ^ | . In

particular μ0 — βλ \ μQ \ and we may take a as any continuous extension

to all of S of βτ. Finally if such an a is available then

* I A 1" = (« I ft l)n so iv-1 Σ»-i/tf = <* (̂ v-1 Σ»-i I ft ln)
and the final assertion follows from theorem 3.2.

5. Application to C0(gf )*. Let gf be a locally compact abelian
group and CQ(&) the Banach space of continuous functions vanishing
at oo, so that C0(g?0* consists of the finite regular Borel measures on
&. Uniform continuity of each element of CΌ(Ŝ ) allows one to define
convolution just as in § 1, and C0(5f )* is easily seen to form an abelian
semigroup. However, the natural choice of the ω* topology of C0(S^)*
will not yield the unit ball a topological semigroup3 rather it is the
topology of pointwise convergence of Fourier—Stieltjes transforms (in

which μ8 -+ μ <=φ μ^(a) -> μ(a) for each a e φ*) which does, and it is
this topology we shall adopt.

The possibility of applying our previous results to the (topological)
semigroup we thus obtain from the unit ball of Co(2^)* arises from two
facts, both due to Eberlein [3]. Let g?* be the almost periodic com-
pactification* of gf. Then as Eberlein has noted there is an isometric
imbedding of C0(Sf )* into C(Sf *)* : for μ e Cl&Y let μ'(f) = \f(x)μ(dx)
for / almost periodic on g^. Since the almost periodic functions on g^
are isometrically isomorphic to C(gf *) we obtain μ' e C ( ^ * ) * . The
clearly linear map μ -> μ! then preserves norms by the following argu-
ment : select a compact K c ^ for which | μ \ (Kf) < e and an element

/ of the unit ball of Co(%?) for which | f/(a?H^) ^ II ̂ 11 - e> s o t h a t

1 f{%)Kdx) ^\\μ\\ — 2ε. Since ^ has sufficiently many characters the

f i * d h h h i i ίmap of into g7* is one-to-one and thus a homeomorphism on
Consequently5 we can find an Fm the unit ball of C(&*) which extends

3 For example take μn = mass 1 at the integer n £ R; then μw -> 0, and μ-n -> 0 in
the ω* topology of CQ(R)* as TZ -> + oo while μnμ-n = μo

ί It will be convenient to view g 7 asa dense algebraic subgroup of gf *, and the
almost periodic functions on g^as the restrictions, to 9/, of elements of C( ^ * ) , cf. [6, 9].

5 We can simply extend the real and imaginary parts of f\ K separately by Urysohn's
lemma to obtain an extension F', and set F(x) = F'(x) (1 Λ I Fr{x) \~ι) (= 0 of course if
F'(x) = 0).
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f\K, a continuous function on the compact subset K of gf*. Then we
have

and || μ' \\ ^ || μ || — 3ε. Evidently || μ' \\H\\μ \\, so μ -> μ' is an isometry.
Moreover it is clear that since both g^ and gf * have the same algebraic

group of characters, the underlying group of φ, we may write μ — μr

since both of these Fourier—Stieltjes transforms coincide as functions

on the set gf, and thus (since for measures μ, v on either group {μ»Y
= μ t>) (μv)r = μ'p'. Consequently the map μ -» // is an algebraic
isomorphism of the semigroup formed by the ball of Co(5^)* into that
formed by the ball of C(S^*)*, gf *. Further, our choice of topology
is just that which makes the map topological as well.

The second and crucial fact for our application which we obtain
from Eberlein is the following corollary of the main result6 of [3]:
Consider C0(S^)* as imbeded in C(gf *)*. Then its elements are just those
measures μ on &* with μ continuous on &. Thus we can easily identify
the range of μ -» μf.

Suppose then we are given a non-trivial closed subgroup Γ of the

unit ball of C0(S^)*, and let ΓQ be its isomorphic image in g^*. Then
ΓQ is a subgroup of g^* and thus by Theorem 4.2 each of its elements
is of the form ta ηx, where t e T, a is a character of a subgroup Go

of g^*, η is Haar measure of a further subgroup g0 of Go and ^ the
translate of η to the coset xgQ c Go indeed since each character of Go

extends to one of gf*, we shall take a e g7*", i.e. as a character of
^ . But the identity a ^ of Γo~ was already present in Γo and thus

has a continuous Fourier—Stieltjes transform on φ, whence η is con-
tinuous on φ. Since η = <pg±, the characteristic function of the sub-
group gt of ^ * A ( = g^ in the discrete topology) orthogonal to g0, we
obtain the fact that gf~ is an open and closed subgroup of φ y and
y\gf is discrete. But Φjgt i s the character group of that subgroup
g of g^ orthogonal to ô"1" consequently ^ is a compact subgroup of 5^.
If μ denotes its Haar measure then μ = ^ * = ^ * = ^ BO η ^ μf by the
one-to-one-ness of the Fourier-Stieltjes transformation.

Now consider a general element to ηx of /V The fact that its

6 Specifically Eberlein's result may be stated as follows: for μ 6 C( gf *), μ 6 Iίoo( gf)

(in the usual sense) implies there is a v in Co( gf )* for which C coincides with ^ in ί/«(

Since here our μ is continuous, as v must be, we obtain μ = v as functions and thus μ =
by the (one-to-one)-ness of the Fourier-Stieltjes transformation.
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transform is continuous implies {ηxY is continuous while

(v*Y(β) = β(χ)m = β^)ψ^(β)

thus as a function of β, β(x) is continuous on the open subset g^ of
5f, hence on all of φ. By duality we then have a ?/ in & for which
j9(a?) = β(y), all /9, and we may identify x as an element of gf Π (r0-
Conversely each a? in ^ Π Go gives rise to elements of Γό which already
lie in ΓQ (for such measures lie in the image of C o ( ^ ) * in which ΓQ is
relatively closed by hypothesis) thus Γo consists of just those elements
ta ηx of ΓQ arising from x's in 2? Π Go = G, algebraically a subgroup
of gf. But clearly G is closed in gf, and is thus a subgroup of <&,
since the map ^ -> S^7* is continuous.

Finally it is clear that if Γ (and thus Γo) is circular so is Γo~ con-
versely if ΓQ is circular then Ta η c Γo~ and thus Ta - η a Γo, whence
Γo and Γ are circular. We have proved

THEOREM 5.1 Let & be a locally compact abelian group and let
C0(S^)* be topologized by pointwise convergence of Fourier—Stieltjes
transforms. Then any closed convolution subgroup Γ of the unit ball of
Co(5^)* is determined as in Theorem 4.2 where g is a compact subgroup
of %?, G is a closed subgroup, and a and φ may be taken as elements

of Φ.

5.2. It should be noted that the convolution semigroup formed by
the ball of C0(S^)*, although not compact, shares some properties of
compact semigroups: the closure of an algebraic subgroup is again a
group, indeed a topological group in the relative topology (thus the last
applies to an algebraic subgroup). For if Γ is an algebraic subgroup
its image Γo in C(5f *)* is an algebraic group, so that Γo" is a compact
topological group. But of course Γ~ is just the preimage of the inter-
section of Γό with the image of C o ( ^ ) * .

Finally suppose Γ is a non-trivial algebraic subgroup of the ball of
Co(S^)* which in addition is ω* closed (compact). Then Γ is a closed
subgroup as described in Theorem 5.1 with G a compact subgroup of
& (and conversely). For, changing our notation, let G denote the sub-
group of <& produced via Theorem 5.1 for Γ~. Then the set H of x
in G corresponding to elements ta μx in Γ forms a dense algebraic
subgroup of G, as is easily seen. If G is not compact then we have a
net {x8} c H which tends to CXD, SO that the corresponding net of
measures {t5a μ } tends to 0 in the cυ* topology (g being compact).
But this implies O e f , which is clearly nonsense.

Consequently G is compact and, since the elements of Γ all vanish
off G, the ω* topology on Γ reduces to the topology of pointwise
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convergence of Fourier—Stieltjes transforms (by virtue of the Stone—
Weierstrass theorem and the existence of sufficiently many characters
of 2?'). Therefore the image of Γ in Cifg**)* is compact and closed,
whence Γ — Γ~.
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LINEAR OPERATORS AND THEIR CONJUGATES

SEYMOUR GOLDBERG

Introduction, In a paper of Taylor and Halberg ([3]), a complete
systematic account of the theorems about the range and inverse of
a bounded linear operator T and its conjugate T was presented. For
example, questions concerning T and the corresponding questions con-
cerning T such as the following were answered:

Does Tx = y have a solution x for each given yΊ If not, for which
2/'s does a solution exist?

Does the operator T have an inverse 27"1, and if so, is T'1 bounded?
These matters were considered for a bounded linear operator T

defined on all of a normed linear space X with values in a second normed
linear space Y.

The purpose of this paper is to investigate the same questions for
T and T', where now T is defined on a linear manifold 3ί dense in X,
and moreover, T need not be bounded. It is shown that most of the
theorems are still valid under these weakened hypotheses. Examples
are constructed to show which theorems no longer hold.

Next, by imposing the condition that T be a closed linear operator
on .£^ we show that we obtain the same results as for the case that
T be bounded on all of X.

1. The conjugate transformation. Throughout this paper we shall
use X and Y to denote normed linear spaces over the real or complex
scalar field. The space of all continuous linear functional on X will be
written as X'.

The following theorem is well known.

THEOREM 1.1. Let Y be complete. If T is a bounded linear trans-
formation on S$ c X to Y with norm \\T\\, then T has a unique exten-

tion t on W and | |Γ|| =

DEFINITION 1. Let T be a linear operator (not necessarily bounded)
with domain 3f dense in X and range & c Y. The conjugate trans-
formation Tf is defined as follows: Its domain 2£>{T') consists of the
sets of all y εY' for which y'T is continuous on 3ί\ for such a y' we
define T'yr = x' where x' is the bounded linear extension of y'T to X

THEOREM 1.1 assures the existense of such an xr which is unique.
Thus T is well defined. It is easy to see that £&(T) is a linear mani-
fold and that T is a closed linear operator. We refer to T as the

Received June 17, 1958. The author gratefully acknowledges the advice and counsel
of Professor Angus E. Taylor in the preparation of this paper.
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conjugate of T.
Unless otherwise indicated. T and T will be as in Definition 1.

DEFINITION 2. A set F contained in the space of all linear func-
tionals on X is called total if x'x = 0 for all x' e F implies x = 0.

The following theorem is due to Phillips [2, Theorem 2.11.9, p. 43].

THEOREM 1.2. If T is closed, then &{T) is total.

REMARKS. The converse of this theorem need not hold. For let £&
be such that *W = X but Sf Φ X = Y, and let T be tne identity opera-
tor on 2ϊ. However, we easily prove the following.

THEOREM 1.3. If £&(T) = X and S)\T) is total, then T is closed.

Proof. Let lim#w = x and \imTxn — y. All we need show is that
y = Tx. If this were not the case, there would exist a yr e &{T) such
that y'(y ~~ Tx) Φ 0. Since y'T is continuous on X, we have that

y'y = \imyrTxn = y'Tx

which is a contradiction.

2, The state of a linear operator and its conjugate. To discuss the
range of linear operator Γ, we consider the following three possibilities,
where &(T) will denote the range of T.

I. &(T)=Y,
II. &(T) Φ Y, but ^?(T) is dense in Y,

III. ^P(Γ) is not dense in Γ, that is ΊzFJT) φY .
If T has an inverse, then the inverse mapping T"1 is a linear opera-

tor from the normed linear space & (T) into the normed linear space
X. As regards the inverse of T, we consider the following three pos-
sibilities :

1. T has a bounded inverse,
2. T has an unbounded inverse,
3. T has no inverse.
By the various pairings of I, II, or III with 1, 2, or 3, nine con-

ditions can thus be described relating to & (T) and T~\ For instance,
it may be that &{T) = Y, and that T has a bounded inverse. This we
will describe by saying that T is in state Il9 (written T e IJ.

Since T is a linear operator from S$(T) into X\ we can use the
above classifications for &(T) and the inverse of T. To the ordered
pair of operators (T, T) we now make correspond an ordered pair of
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conditions which we call the " state " of (T,T'). Thus if T e l 3 and
T e IIIx, we say that (T, T) is in state (I3, Π^) (written (T, T) e (I,3 IΠO).

At times we shall use a notation such as (T, I7') e (I2, 3) to mean that
T e l 2 and T has no inverse.

The question arises as to whether (T, T) can be in each of the 81
states. It will be shown that only 16 states can occur if no additional
assumptions are made about X, Y or T. However, if we require that
X be reflexive, Y complete and T closed, the number of actually pos-
sible cases drops to 7.

We shall now exhibit several theorems which will enable us to
determine which states can or cannot occur for the pair (T, T).

THEOREM 2.1. // T has a continuous inverse, then &(T) is closed.
(T cannot be in II :).

Proof. Suppose there exists a sequence {y'n} from &(T') with
T'y'n-+xr. The sequence {yn} is a Cauchy sequence since \\y'n~ym\\ S
M\\Tyn — T'y'm\\ where M is the norm of (T)'1 as an operator on
&{T). But Yf is complete, therefore there exists a u ' e F such that
\\myn = yr. Hence yr e &(T') and Tyr = x' since T is closed.

Theorems 2.2 through 2.5 are due to Phillips [2 pp. 44-45].

THEOREM 2.2. A necessary and sufficient condition that &(T) = Y
is that T have an inverse.

THEOREM 2.3. // & (T) is w* dense in X\ then T has an inverse.

THEOREM 2.4. // &(T) = Y and T"1 exists, then (T~τy =
furthermore, T has a bounded inverse if and only if T has a bounded
inverse defined on all of X'.

THEOREM 2.5. &{T) = X' if and only if T has a bounded inverse.

The following theorem will show that three more states for (T, T)
cannot exist if we require that Y be complete.

THEOREM 2.6. // Y is complete and &{T) = Y, then T has a con-
tinuous inverse. (States (I, 2) and (I, 3) cannot exist if Y is complete).

Proof. If T did not have a continuous inverse, there would exist
a sequence yn in Y such that \\y'n\\~* co and || T'y'n\\ -> 0. Since ^ ( Γ ) = Y,
it follows that | |ώ/| |~>0 for each y e Y. Hence we can conclude
that the sequence {||2/wl|} is bounded, by a theorem due to Banach
[1 p. 80, Theorem 5]. We have thus reached a contradiction.

3. The state diagram of pairs (T, T). In order to present system-
atically which states can or cannot occur for pairs (T, T), it will be
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convenient to construct a "state diagram" conceived by Taylor [3 p. 100].
This diagram is a large square divided into 81 congruent smaller squares
arranged in rows and columns. We label each column at the bottom
denoting a given state for T7, and each row by a π state " symbol placed
at the left, denoting a certain state for T'. The square which is the
intersection of a certain column and row will thus denote the state of
the pair (T, T). A square is crossed out by its diagonals if the corres-
ponding state is impossible without requiring X or Y to be complete.
As regards the remaining squares, we place the letter Y in a square to
indicate that the state cannot occur if Y is complete.

First State Diagram

Ills

πi 2

IΠi

Us

π 2

Hi

Is

u

X
X
X
X
X
X
X
X

X
Y

X
Y

X
X
X
XX

X
Y

X
X
X
X
X
X

X
X
X
X
X
X
X
X

X

X

X
X
X
X

X

X
X
X
X
X
X

X
X
X
X
X
X

X
X

X
X

X
X
X
X
X

X
Γx
X
X
X
X
X
X

I2 Is Hi Πa Us Ilia Ills

Y: Cannot occur if Y is complete

4* Example of states which can occur. Excluding (I2, IΠO, all of
the examples in this section will be taken in the space x2 with
X=γ— /*. The sequence space x is defined to consist of all sequences
{ξn} = x such that Σ Π f J 2 < °°. The norm in x2 is defined by

It is well known that the conjugate space (z2)' of / 2 is congruent to /2,
whence / 2 is reflexive. In fact, every element in (x2)' is representable
in one and only one way in the form
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1

where the sequence a = {αw} is an element of /\ The correspondence
between x' and α is a congruence between (V2)' and / 2 . We shall write
x' — α.

The set of vectors uk, where uλ = (1, 0, •), u2 = (0, 1, •)> e t c

will frequently be used.
As the domain 5^ of each linear operator T in the examples to

follow, excluding (I2, IΠX), we take the linear combinations of the uk.
Clearly 31 is a subspace dense in X — /*.

Taylor and Halberg [3 pp. 102-104] have shown that the seven states
(I,, 10, (I3, ΠIi), (Π2, II2), (Us, III,), (ΠI19 I3), (III,, Us), (ΠI3, Ills) are all
possible even when Y — X = £21 — / 2 and T is continuous.

We shall now demonstrate that the conditions corresponding to the
6 blank squares still unaccounted for in the state diagram can also
occur.

(Πt, 10: It is clear that if we let Y = X and T be the identity
operator on ^ , then (Γ, T) has the state (IIX, Ix).

(II2, III,): L e t F = X If x - (ξlf ξ%, , ξn, 0, . . . ) ,

define

Tx = &&,£*, •• ,f»,0,
1

Suppose

From formula (1),

\y'Tuk\ = \ajc + ak\ ^ \a,\k - \ak\ ^ l ^ l f e - | | ^ | |

for jfc > 1. But \\uk\\ = 1 and y'T is continuous on <3ί, therefore
must be zero. We now wish to determine the operator T. If T'yf

(βi, β*> "-)e/\ then from formula (1),

βk = Tyfιιk = 2/T%fc = α:fc

whence we see that TV = y'. Since αx = 0, it is clear that
X = / 2. Thus T e I Π L NOW TX = 0 implies that 0 = £2 = £3 = =
fw = fx + 2fa + + wfn or that x = 0, that is T" 1 exists furthermore
& (T) Φ Y. An inspection of the state diagram shows that Γ must be
in II2. For the state (I2, Illi), we present two examples for the cases
where X is reflexive and Y is not complete or where X is complete and
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Y is reflexive. We do not have an example for (I2, IIIO where X is
reflexive and Y is complete.

(I2, IΠi): Take Y = 3ί and let T be the operator in the above
example. If y = (τjl9 y2, , ηp, 0, •), then Tx = y where a? =
(ft - Σ?&ft> %, ,Vp, 0, •)• Thus ^ ( ϊ 7 ) = & = F. The above dis-
cussion now shows the existence of state (I2, IΠi).

In [3 p. 108] it is shown that (T, T) is in state (I2, ΠIO where T is
a bounded linear operator from a normed linear space Z, which is not
complete, into a reflexive normed linear sapce Y; for example, Y — /'\

Let X be the completion of Z. Thus Z = X and (Γ, ϊ1') is in state
(I2, IΠi) with respect to X and Y".

(II8, IΠO: Let Y = X if α? = (£, 62, , ξn, 0, . ), let

Γ is clearly in II 3 . Suppose y' = (αx, α2, . - . ) e ^ ( Γ ' ) and t h a t Ty'

(βuβ*, -')e/\ Now

βk = Tfy'uk = y'Tuk = j/(kuk^) = tofc_! if & >

Hence ^ > ( 2 V ) Φ X! = /\ Moreover

I I W = Σ|to.-il 2 ^ Σ \*3V = \\y'\\2.
2 1

Thus Γr e ΠIx.

(II,, III,): Let Γ = X If a? = (flf , £n, 0, ), let

where

if w is even

in if n in odd.

Clearly T~ι exists; however T~ι is not bounded since

and [|%a]fc|| = 1. Furthermore, if # = (n, r2, > TN, 0, •), then Tx •= y
where

α = ( n - Σ r j , 2r2 , i V r ^ o , •••)
2

which shows that
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,<9?(T) = S), hence Te II2. Let xk = (1, 1/2, , 1/fc, 0, •)• Then

Txh = (1 + 1/23 + H + &,/&, 1/22, , 1/P, 0, •) .

Set Bk = 1 + 1/22 + 1 + + 6J&. Obviously

5 t -> oo. If y' = («„ α2, . ) e 3> (T), then

WTxk\ = \a,Bk + Σ«j/ίΊ ^ K l # * - Σ K / . f I

But

II^IKΣΛ- Σ! °^\^\\y'\\t\
i % J a J" i n

and y'T is continuous on ^ Since Bk -* oo, it follows that α:x = 0. If
y r^ = (A, &,-••)£ ^2, then A == T V ^ = 2/T^ = 0 whence we see that

We shall now show that T does not have a bounded inverse.

Let y'k - μk for k > 1. If α? = (flf f2, , ξn, 0, . •) and ||α?|| ^ 1,
then |i/;Γaj| = \ξk/k\ ^ 1. Hence 2/; e &(T). Now

Γv 1 1 Γv J

or ||Γ'2/fc|| = ll̂ fc/̂ H = I/A:, which shows that T is not in state 1. This
together with the fact that T e III and T e II2 enable us to infer from
the state diagram that (I7, T) is in state (II2, IΠ2).

(ΠL2, IΠ3): Let Y — /'\ Similar to the preceding example, we
define

Tx = (0, ξx + l/2ξ3 + + bjn, ξJ2, , ξjn, 0, . •) .

By the same procedure as above, we see that T e Π I ^ also if yr —
(al9 a2, •,) 6 ^(T), it follows that a,, = 0 and therefore βτ = Ty'uι —
y'u.2 — 0 Hence T e III. From an inspection of the state diagram, it is
clear that T e III3.

We have now shown that twelve of the thirteen states are possible
with X and Y reflexive. State (I2, III^ is also possible with X complete
and Y reflexive or with X reflexive and Y not complete. The state
diagram assures us that no other states are possible as long as Y is
complete. If X is complete and Y is not required to be complete, then
it is shown in [3] p. 106 that states (I2, IL), (I2, III2) and (I3, IΠ2) can
occur; i.e. the squares which have the letter Y become blank. Thus
we have the justification of the entries is state diagram.

The question now arises as to whether in considering the same type
of hypotheses on X and Y, that is reflexivity and completeness, we can
show that certain additional states are impossible if we put futher
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"reasonable" hypotheses on T, for example T closed. The answer to
this query is in the affirmative as we show in the next section. An as-
sumption that X be reflexive played no part in Theorems 2.1 through
2.6.

5. The State of a closed operator and its conjugate.

LEMMA. If T has a continuous inverse, then for each a > 0, 0 is

an interior point of TSΛ where Sa = {x\xe &r,\\x\\ ^ a}.

Proof. An inspection of the first part of the proof of Theorem 6
[3 p. 97] will exhibit the proof of the lemma. It is to be noted that
the argument does not depend on the hypothesis that T be bounded.

THEOREM 5.1. Suppose that X is complete. If T is closed and Tr

has a continuous inverse, then <^P(T) = Y. Moreover, if T~ι exists, it
is continuous.

Proof. Define Sn = {x\xe .&, \\x\\ g 1/2W, w = l ,2, . . . } . By the
lemma, we can choose a sequence of positive numbers {en} such that

ΣΓ £« < °°, and Vn = {y\y e Y, \\y\\ < en } c ~TSn. The existence of these
Vn and the arguments used in proving Theorem 2.12.1, p. 46.2 [2] will
also prove this theorem. If, in the above theorem, T were continuous
on X, that is & = X, one could conclude that Y is complete, (cf. [3
Theorem 6 p. 97]) However, we cannot conclude that Y is complete in
Theorem 5.1 even if & = X. The following example illustrates this
assertion.

EXAMPLE. Let X be any complete normed linear space of infinite
dimension and let H be a Hamel basis of X with all elements he H such
that \\h\\ ̂  1. To each xeX there corresponds a unique finite set
hlfh2, ,hn in H and unique scalars al9a2, , h n such that # = Σ ? α Λ .
We now define another norm \\x\\t on X by letting \\x\\τ = Σf | α £ | . Taylor
and Halberg [3, p. 109] show that X with this norm, which we desig-
nate by Xu is not complete. Define T as the identity mapping from X
onto Xlm T has a bounded inverse, since

\\Tx\l = \\χ\V = Σ l * * l ^ Σ l l t f Λ I I ^ ll»ll
1 1

In addition, T is also closed, for suppose xn -» x and Γίrw -> 2/. Since
||a?n - 2/11 ^ l|a?» - 2/Hi = \\Txn - 2/II1 and ||Γa?n - 2/|K~>0, it follows that
Tx = x = y. An inspection of the state diagram shows that T has
a bounded inverse. Thus the hypotheses of Theorem 5.1 are satisfied,
but &(T) = Xx is not complete.
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This example also serves to illustrate that in the hypotheses of the
'' closed graph theorem '' it is essential that the closed operator map
into a complete normed linear space.

DEFINITION 3. If E is a subset of X, define

E° - {χT\x'eX; x'x = 0 for all xeE} .

DEFINITION 4. If S is a subset of X, define

° S = {x\x'x = 0 for all x'e S} .

The following known lemma is easy to prove.

LEMMA. Let X be reflexive. If M is a closed linear subspace in X,
then M= (°I)°.

THEOREM 5.2. Let Xbe reflexive. If T'1 exists and ^(Tr) is total,

then &(T) = X.

Proof. We first show that °^{T) = (0). If xe°^(T), then
y'Tx = T'y'x = 0 for all y' e &(Γ); but then Tx = 0 since &(Tf) is total.
The fact that T'1 exists implies that x = 0. Clearly Oε O ^ 3 (Γ / ) . hence

Γ/) = (0). Applying the preceding lemma, we see that

= (0)° = X .

COROLLARY. Lβέ X 6e reflexive. If T is dosed and T"1 exists, then

Proof. Theorems 1.2 and 5.2.

6. The second state diagram* The two theorems just proved as
well as the state diagram in §3 enable us to determine the state diagram
for a closed operator. We place X-R-t in a square to indicate that the
state cannot occur if X is reflexive and &(T) total. An X-c in a square
will indicate that the state cannot occur if X is complete and T is
closed.

This diagram is a generalization of the Taylor-Halberg state diagram
for T bounded on all of X

7, The spectrum of an operator and its conjugate. In the present
section we consider a linear transformation T, not necessarily bounded,

with 7# = X and &(T) c X, where X is a normed linear space. In
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this case, Tλ = λ — T is well defined on ^ where λ is a scalar.

DEFINITION 7.1. The values of λ for which Tλ has a bounded inverse
with domain dense in X form the resolvent set p(T) of T; that is
Tλ e Iχ U Π1# The values of λ for which 2\ has an unbounded inverse

Second State Diagram

Ii
T>

Y:
X-c:

X-R-t:

IΠ2 His

Can't occur if F is complete.
Can't occur if X is complete and T is closed.
Can't occur if X i s reflexive and £J (Tf) is total (in
particular if T is closed).

with domain dense in X form the continuous spectrum Cσ(T)y that is
Tλ e I3 U Π2. The values of λ for which Tλ has an inverse whose domain
is not dense in X form the residual spectrum Rσ(T)y that is Tλ 6 IΠi U ΠI2.
The values of λ for which no inverse exists form the point spectrum
Pσ{T), that is I3 U Π3 U IΠ3. The spectrum σ(T) is defined to be the set
of scalars not in p(T).

These definitions can also be applied to T. We would like now to draw
inferences about the relationships between the above defined point sets
for T and T. Since λ - T = (λ - T)', an appeal to the state diagram
in §3 easily verify the following.

THEOREM 7.1. (a) p(T) = p(T) or equivalent^, σ(T) = σ(T').
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(b) Pσ{T) C Rσ{T) U Pσ{T) .

(C) P(σT) C Rσ(T) U Pσ(T) .

(d) Cσ(T) C i ^ Γ ' ) U Cσ(T) .

(e) CσίΓ) C Cσ{T) .

(f) 2&r(Γ) C Pσ(T) .
(g) ifc(T') C Cσ{T) U Pσ(Γ) .

Suppose we now require that T be closed, in addition to the other
hypotheses mentioned at the beginning of the section. It is easy to see
that λ — T is also closed for λ any scalar. Hence we can obtain the
following theorem together with Theorem 7.1 by referring to the
second state diagram in §6.

THEOREM 7.2. If T is a closed operator and X is reflexive, then
Cσ(T) = Cσ(T) and Rσ{T) c Pσ(T).

REMARK. Let X and Y be Hubert spaces. If T* is the adjoint
of T, then T* may be put in place of T in using the first and second
state diagrams. This is easy show by considering the fact that a Hubert
space is isometric to its conjugate space.
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MEAN PLAY OF SUMS OF POSITIONAL GAMES

OLOF HANNER

1. Introduction* In 1953 Milnor studied certain positional 2-person
games and defined what he called sums of such games [1], He investi-
gated the optimal strategies for these games and gave some information
about them in terms of properties of the individual games.

In this paper we shall consider some other strategies for these sum
games. They are in general not optimal. However, the difference
between what a player gets when playing one of them instead of playing
an optimal strategy can be estimated. For the sum of n copies of the
same game this difference is bounded for all n. Hence, in mean this
difference is small for large n.

2. Description of the games. Essentially following Milnor [1] we
describe the games as follows.

Each game contains a finite set of positions P. There are two players,
Aλ and A2. For each p e P and each player Ai9 i — 1, 2, there is a set
of possible moves M^p) c P. For each p either both M^p) and M2(p)
contain at least one move or they are both vacuous. In the latter
case p is called an end position. For any chain po,Pι, ,pt with
pj+ι 6 M^pj) U M2(pj), we shall have p5 Φ pk for j Φ k. The maximal
number I of steps in all such chains starting with p0 — p will be denoted
by l(p). Then

(2.1) pλ 6 Mlp) U M2(p) implies l{pλ) < l(p).

Note that a pass, p e M(p), is never possible. The positions with l(p) = 0
are just the end positions.

For each end position the payoff functions kλ(p) = —k2(p) are defined.
They shall satisfy a condition given below. The players start with some
position and move alternatively until an end position is reached. Then
each player collects his payoff.

For each player At and position p, let vt(p) be the value of the
game for At when it is his turn to move at position p. It is given by

vί(p) = kt(p) for l(p) = 0,

(2.2) vt(p) = max {-v^^p,) \ pλ e Mt(p)} for l(p) > 0.

Because of (2.1) these formulas define v^p) by induction on l(p).
The numbers kt(p) are defined when p is an end position. We require

that they shall be given in such a way that
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(2.3) vx(p) + v2(p) ^ 0 for every p e P.

Since the value at p for Ah is v^p) if he has the move and —v^^p) if
the other player has the move, the amount vx{p) + v2(p) is the gain for
a player of having the move. Inequality (2.3) therefore says that it is
at least as good to move as to pass (if this would be allowed).

3. Sums of games• We now define the sum of two games G and
G'. A position in the sum game G + Gr is a pair (p, pf) e P x P'. A
move in G + Gf is a move in one of the games G and G' and a pass in
the other. JΊius the moves in position p + p' = (p, p') are

We notice that

(3.1) l(p + p') - l(p) + l(p') .

In particular the condition is still satisfied that in a chain of successive
positions all positions are different. The position p + pf is an end posi-
tion if and only if p and p' both are end positions. For the end positions
we define kt(p + pf) by

(3.2) UP + p') = Up) + Up').

It is not obvious that the sum of two games satisfying condition
(2.3) also satisfies this condition. That this is the fact was proved by
Milnor [1]. It will also be proved in §8 below as a consequence of
Theorem 1.

It is clear that game addition is an associative and commutative
operation and that the formulas corresponding to (3.1) and (3.2) hold for
the sum of any finite number of games. A move in the sum of several
games is a move in one of them and a pass in all the others.

4* The main problem* The problem for us will be to give good
strategies for sums of games in terms of properties of the individual
games. Then we must decide what kind of strategies we shall consider
to be good.

One way to attack this problem is as follows. Consider n copies of
a game G and take their sum nG. Let them all be started in the same
position p. Then the value of the sum game is Vi{np)f where we have
written np instead of p + + p. Now, what happens to the mean
value Vi(np)ln when n tends to infinity? In fact this number tends to
a limit m^p) which will be called the mean value of the game G at p.
In later sections we shall prove that m^p) satisfies

(4.1) mL(p) + m,(p) = 0 ,
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(4.2) mt(p) ^ Vt{p) .

If we change i to 3 — i in (4.2) and apply (4.1) we get

(4.3) -v,-lv) ^

Thus m^p) lies between Vι(p) and —v3-i(p) which represent the values
for At when the game is started at p by him or by A3-t respectively.

Of a good strategy we now require that it guarantees at least
We see from (4.3) that though such a strategy may not guarantee
At will nevertheless get more by playing it than by passing (if this
would be allowed).

That the limit of vi{np)jn exists can be proved directly by an in-
equality given by Milnor [1, p. 294]:

p') ^

We get

Vi((m + n)p) <^ vamp) + vt{np),

and the existence of the limit of Vi(np)ln follows (cf. [2], Erster Abschnitt,
Aufgabe 98).

Another way of attacking our problem also leading to the number
nhi(p) will be used below. When a player shall move in a sum of games
he chooses one game, say G, and there makes a move. Thereby he loses
the possibility to make the move in one of the other games. If the value
of this possibility is put equal to t it is natural to compare the situation
with the case when the player has to move in G and pay the amount t
to the other player when moving. This will lead to the games Gt and
Gf given in the next section. In this approach the value m^p) is defined
by induction on l{p), thus by a finite procedure and not by a limit process.

Conventions for the figures. When giving examples of games by
figures we use the following conventions. The positions are given by
points and the moves indicated by segments joining them. A move by
Ax is a segment going down and to the left, a move by A2 a segment going1

down and to the right. At an end position we put the value kλ{p) and
at any other position we put the two numbers (m, σ), where m = m^p)
and σ = σ(p) defined in the next section. Unless anything else is said,
the game shall be played with the highest point as starting position.

EXAMPLE 1. Let G be the game in Figure 1, and consider the sum
of n copies of G. First let us start at p.z in all games. Then of course
in about half of the games Aγ will get 7 and in the rest of them 3.
Hence the mean value mχ(p2) is (7 + 3)/2 = 5. Analogously we get
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P,(2,3)

= — 1. If all games are started from pu it can be proved that
an optimal play by both players is to choose the moves from pu p2, and

p3 in this order of preference. Thus
when both play optimally one move
will first be made in all games.
After these n moves the players start
attacking the positions p.z in the
games where A1 made the move from
pλ. At last the remaining games
with positions p3 are played. About
1/4 of the games will end in each
of the four end positions. Hence the
2)/4 = 2. The order of preference

Figure 1

mean value m^p^) is (7 + 3 + 0
between p19 p.z, p3 is to be compared with the numbers σ{p^, σ(p2), σ(p3)
which are defined in the next section. As given in the figure, σ(p1) = Sf

σ(p.z) = 2, σ(p3) = 1. The number σ(p) is in a sense the value of the
move from position p.

EXAMPLE 2. We change one of the payoff numbers in Figure 1 and
get the game in Figure 2. Let us again consider the play of the sum of
n copies of the game. If all the
games are started from pl9 the opti-
mal play is now to choose the moves
from pl9 p2f p3 in the order of prefer-
ence : p29 ply p3, in accordance with
the fact that σ{p.z) = 5, σ(px) = 4, and
σ(p3) = 1. Thus if Aι moves from pi

to p.z in a game, A2 will immediately
move in the same game. Thus all
games with only one possible excep-
tion will end in the position with payoff kx{p) = 3. Thus m^Pi) — 3. Only
if A2 has the first move one game will end in another end position, the
one with k^p) = 0.

5Φ The games Gt and Gf Let G be a game satisfying as usual the

condition (2.3). Let t be a real number ^ 0. When l(p) = 0 put for

i = 1, 2,

vt(p t) = ki(p) ,

Figure 2

σ(p) = 0 .

For each p with l(p) > 0, we define four functions in t: uλ(p ί), u.λ(p t),
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v^p t), v2(p-,t) and three numbers raα(p), mλ{p), and σ(p). They shall
satisfy (5.1)—(5.7).

(5.1) Each function ut(p t) and vL(p t) is a continuous function for £ 1Ξ> 0
with a derivative for all but a finite number of ί-values. In each interval
between these exception values the function is linear with derivative 0
or — 1 . For t greater than the exception values the function ut(p t) has
derivative —1 and v^p t) has derivative 0,

(5.2) Vi(p 0) - vt(p) ,

(5.3) Ut(p ί) = m a x {-v^^p, t)\p1e Mt(p)} - t ,

(5.4) nip 0) = vt(p) ,

(5.5) σ(p) = min {ί I ί ^ 0, u,(p ί) + u2(p t) = 0} ,

(5.6) mt(p) = %t(p σ(p)) ,

(5.7) vlp ί) = u,{p ί) for 0 ^ ί rg σ(p),

= mt(p) for ί > σ(p).

We shallv see below that these conditions are related to two games
Gt and Gf. Let us first show, however, that they define our functions
and numbers by induction on l(p).

For l(p) = 0 the function vt(p t) is constant and equal to v^p), hence
it satisfies (5.1) and (5.2). Let l(p) > 0 and suppose that for each px

with l{p{) < l(p) and in particular for each p1 e Mt{p) we have Vι(px t)
defined satisfying (5.1) and (5.2). Then ut(p ί) can be defined by (5.3).
By (5.1) for each v^^ ί) we get immediately (5.1) for ut(p ί) and by
(5.2) for each v^ip, t) and by (2.2) we get (5.4). By (5.4) and (2.3)
we have uλ{p 0) + u.z(p 0) ^ 0 and by (5.1) for u^p t) we have
Ui(p ) t) + Uzip \t)-> —oo when t -> oo. Hence, since n%{p t) is continu-
ous, the set in (5.5) is not vacuous and σ(p) is defined and ^ 0. Then
(5.6) and (5.7) will define mt(p) and vt(p;t). That vJip\t) satisfies (5.1)
and (5.2) follows from the corresponding facts for ut(p ί). Hence the
induction will work.

EXAMPLE 3. We give in the diagram in Figure 4 the functions
uτ(p t), vx{p t), —uz(p ί), —v2(p t) for the game in Figure 3 and also
the values mx(p) and σ{p) for the same game.

Properties (5.1)—(5.7) give some further formulas. Since (5.1)—(5.7)
are only known to be true for l(p) > 0, we have to verify separately the
case l(p) = 0 each time we get a formula which has a meaning even in
this case. Note that ut(p t) is not defined when l(p) = 0,
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p(2,4)

(6,3)

uι(p t): ACF, - u2(p t): BCD,
vi(p t): AGE, - v2(p t): BCE.

Figure 4

Since by (5.1) ut(p ί) is a decreasing function, (5.6) and (5.7) give

(5.8) vlp ί) = max {u^p ί), mt(p)} .

Hence, in particular

(5.9) vt(p ί) ^ mt(p) .

By (5.5) and (5.6)

(5.10) mip) + mlp) = 0 .

Both (5.9) and (5.10) are true also when l(p) = 0 as is easily verified.
For any p they imply

(5.11) vλ(p ί) + v2(p t) ^ 0 .

By (5.2) and (5.9) we obtain

(5.12) vHp) ^ mt(p) .

Since vt(p; t) has derivative 0 or — 1 , we have for tτ < ί2

0 ^ v,(p ί3) - ^ ( P ί2) ^ ίa - ί: .
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Apply this for ί, = 0 and ί, = σ(p). Then by (5.2), (5.6), and (5.7)

(5.13) vt(p) £ mt(p) + σ(p) .

Both (5.12) and (5.13) are also true when l(p) = 0. For any p they give
a lower and an upper bound for v%(p).

We are now ready to define the two games Gt and Gf mentioned
above. Both are defined for each t ;> 0. They are played with the posi-
tions in G. The players play alternatively. But each time a player
makes a move into a new position in G he has to pay ί to the other
player. Thus for large ί it will be expensive to make a move. Therefore
we introduce a new possibility. When At has the move in Gt he is allowed
to stop the game instead of moving. In Gt the same possibility is open
except in the starting position, where the player who begins really must
move (and pay ί). When A stops at p he collects m^p). Then As-*
gets m A-iip) by (5.10). The value of Gt at p is v^p ί) and the value of
GT started at p is ut(p ί). This is seen by induction from (5.3) and (5.8).

For large ί it is a disadvantage to have to start in Gf. The starting
player will make a move and pay t and the other player will then im-
mediately stop the game. Thus if ί is great enough the starting player
will always lose. Thus GT does not satisfy (2.3). The game Gt, how-
ever, satisfies (2.3) as is seen from (5.11). In fact we have introduced
the number m%(p) and the possibility to stop just in order to save this
property. The number m4(p) is defined by (5.5) and (5.6) as the value
of Gf with starting position p, when ί has become so large that it is no
more an advantage to have the first move in GT. The lowest ί-value of
this kind is σ(p).

6. The ί^optimal moves* We will call a move in G a ί-optimal move
if it is optimal in Gt. Thus pL e M^p) is ί-optimal if

(6.1) vi(p;t)= -v,^(Pl;t)-t .

There is a ί-optimal move at p for At if v^p ί) = Uι(p ί). Thus
we get from (5.7) the following important fact: If σ(p) > t and if
p is not an end position there always exist ί-optimal moves for both
players.

If σ(p) ^ ί we have vt(p t) — m^p), and an optimal play of Gt is to
stop the game at p and collect m^p).

Now study a sequence pQ, pl9 pΛ, ,pt of positions that develop
when the players play alternatively and make ί-optimal moves. If
σ{pz) > t, there are ί-optimal moves at pτ. Therefore the sequence can
be continued and we can go on in this way until we reach a position p
with σ(p) ^ ί. We suppose this already done, so that σ(pι) g ί.

We want to get some formulas for m^^), 0 <£ Jc <* I. Since all moves
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in the sequence are ί-optimal we know that a player cannot get more
when playing Gt by stopping at a position pk9 k < I, than by moving into
pk+1. Thus if Aι makes the first move and if we put vt(pd t) — v, we get

(6.2)

(6.3) V + t

if 0 ^ 2k < I,

if 1 g 2k + 1 < I,

where the term +t in (6.3) is the amount A% shall have when the game
is stopped after an odd number of moves as a compensation for the fact
that he has made one more move than A^u each player paying t when
moving in Gt. Since σ(pί) ^ t, an optimal play at pι in Gt is to stop
the game. Hence

(6.4)

(6.5)

™>i(Pι) = V

™>i(Pι) = V + t

if I is even ,

if I is odd.

Formulas (6.2)—(6.5) could also have been deduced from (6.1). Since
all moves are ^-optimal we get vt(p0 t) = — v3-i(Pi t) — t — Vi(p.z t) =
-Vτ-iiPs ί) - t = and (6.2)—(6.5) follow if we apply (5.9) and (5.10)
and the fact t h a t since σ(pt) ^ ί, we have by (5.7), m / ^ ) — ^X^ ί) for
3 = 1, 2.

EXAMPLE 4.

Poll. I)

P,13,31

The game in Figure 5 shows that strong inequality may
hold in (6.2) and (6.3). All the moves
which lead from pQ to pδ are 1-optimal and
v = v(p0 1) = 1.

Let now only one player make t-
optimal moves when playing Gt. He will
get at least as much as when also the
other player makes ί-optimal moves. Thus
we can get some formulas corresponding
to (6.2)—(6.5). We put them together
into two lemmas.

LEMMA 1. Let pQ, ply , pt be a se-

quence of positions in G such that p 2 f c + 1 e
Mi(p2k), where p2k+ι is a t-optimal move at
p2k, and such that p2JC+2 6 M3-i(p2k+i). Then
if Vi(pQ ;t) = v, we have

(6.6)

(6.7)

^) ^ v + t ,

^ v

if σ(pL) < t and I is even.
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LEMMA 2. Let pQ, ply , pι be a sequence of positions in G such that

p,k+ι e MiiPw) and p zk+2

 e M3^ι(p2k+1)f where p2k+2 is a t-optimal move at

pιk+ι. Then if Vi(pQ t) = v we have

(6.8) m^J ^ v ,

(6.9) mJLVi) ̂  v + t if σ(Pι) =

7. The mean strategies for sum games. We now go to our main
subject, sums of games.

THEOREM 1. Let us start the games Gιy , Gn in positions ql9 , qn.
Put

mi = mfa) + +

σ — max {σ(qr) \1 ^ r ^ n} .

Then the value Vi{qx + + qn) for A% when he starts at qι + + qnin
Gλ + + Gn satisfies

mi ^ v^q, + + qn) ^ mi + σ .

Proof. We proceed by induction on l(qλ + + qn). When
Z(g2 + + qn) — 0, all gr are end positions and our theorem follows
directly from m4(gr) = ki(qr) and σ(gr) = 0. By (2.1) we know that if one
or several moves are made from q{ + + qn

 w e come to a position, say
Pi + - + Vn, with

l(Pi + •- +Pn)< l(Qι + + g») .

Hence when proving our theorem we may assume that it is true for all
positions obtainable from qλ + + qn by one or several moves.

By symmetry we may specialize in the proof so that i = 1, i.e. Aλ

makes the first move. We then want a strategy for him that secures
the amount mι and a strategy for A2 such that Ay cannot get more than
my + σ . These strategies can be formulated together.

(a) Always make a σ-optimal move in one of the games Glf , Gn.

(β) Except for the first move, play in the game, in which the other
player has just played.

In general it will not be possible to follow this strategy through the
whole play of the game, since there are not σ-optimal moves in all
positions. The strategy shall therefore be used during a period in the
beginning of the play. In the position at the end of this period the
induction hypothesis will be used. The length of the period depends upon
the moves made. We give two possibilities to end the period.
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(rL) The other player plays in a game Gr and there leaves a position
pr with σ(pr) ^ σ.

(r2) Positions p r, 1 ^ r ^ %, are reached for which σ(pr) ^ σ .
We have to show that a player can follow (a) and (/?) until (?Ί) or

(r2) occurs. We first see that Aγ always can make his first move. In
fact, by the definition of σ there is a qr with σ(qr) = σ. Thus there is
a σ-optimal move in Gr. For all later moves the player following the
strategy shall play in the position pr which the other player has just
left. Then if (ji) does not occur, σ(pr) > σ and there is a σ-optimal
move at pr. Hence the game can be continued until (γτ) occurs or until
the player following the strategy ends the whole sum game by playing
into an end position. Then σ(pr) = 0 for all games Gr and (γ2) is satisfied.
Hence it is possible to follow (a) and (β) until (γt) or (γ2) occurs.

In order to be able to use the induction hypothesis we have to
compare mι with

m&Pi) + + rai(Pn) ,

where pr is the position in Gr at the end of the period. Therefore we
first compare mx(gv) with m^p,) for each r. Hence we are interested in
those moves in the period that are made in Gr. Note that when at least
one player follows the strategy, (β) implies that these moves are played
alternatively by the players. Thus for each Gr we are able to apply
Lemmas 1 and 2 of the preceding section with t — σ. Since σ ^ σ(qΊ),
the number v = vt(qr σ) in these lemmas is =mt(qr).

Let first Aλ follow the strategy. Denote by pr the position in Gr at
the end of the period. Then if the move into pr is made by A2, we
know, since Aτ follows (β), that this move is the last move in the period,
and whether the period ends with {γτ) or (γ2) we get σ(pr) ^ σ in this
game Gr. Using the fact (5.10) for qr and pr, 1 ^ r ^ n, we apply
Lemma 1 with i = 1 and Lemma 2 with i = 2. Then (6.6), (6.7), (6.8),
and (6.9) imply respectively the following four formulas, depending upon
who makes the first move and the last move in Gr.

(7.1)

(7.2)

(7.3)

(7.4)

We add the trivial fact

Tfiχ{qr) + σ

: m^q,)

: »»,(?,)

Λ first

Λ first

A2 first

A2 first

and last

move, Az

move, Ax

and last

move,

last move,

last move,

move.

(7.5) mi(Pr) — m^Qr) if n o move is made in Gr.

Formulas (7.1)—(7.5) can be taken together in one formula
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(7.6) ™>ι{Vr) ^ Wife) + kr<Γ ~ kr* ,

where llr is the number of moves made by At in Gr during the period.
Let us take the sum of the inequalities (7.6) for all r. Then

(7.7) m^Pi) + + m^Pn) ^ m ^ lλσ - ltσ ,

where li is the number of moves made by At during the period.
Jί the number of moves m the period is even we have lt = lf, At

who makes the first move in the period shall also make the first move
after the period (if there is any move to be made). Aτ can play so after
the period that he secures vΎ(px + + pn). By the induction hypothesis
this is > m^Pi) + + mL(pw) which by (7.7) is ^ mx. Hence we have
shown that Aλ has been able to play from qλ + + qn so as to secure
mu and the left-hand inequality of our theorem is proved in this case.

We also have to consider the case that the period contains an odd
number of moves. Then since A{ makes the first move he also makes
the last move and the period is not ended by (7 )̂, hence by (γ2). Thus
<r(Pr) ^ σ f ° r e a c h Gr' We have now lτ — l2 + 1. Aτ can play so after
the period that he secures —v2(pL + ••• + Bypn). the induction hypo-
thesis, by σ(pr) ^ σ, and by (7.7) we get

! + + pn) ^ —mJiPi) - . . . " m2{pn) - max {<r(pr)}

^ —mlpi) - . . . - m2(pn) - σ

^ m1 .

Hence the left-hand inequality of the theorem is proved even in this case.
In order to prove the right-hand inequality of the theorem we let

A2 follow the strategy. Then by (β) A1 makes the first move in each
Gr (if there is any move in Gr during the period). Lemma 2 with i = 1
gives now depending upon who makes the last move in Gr

(7.8) wh(pr) ^ mi(Qr) A3 last move,

(7.9) niiiVr) ^ w&ife) + σ Aλ last move.

Proceeding as above we get a formula like (7.7), namely

(7.10) m1(pι) + + rnfan) ^ mλ + lτσ - l2σ .

If the period contains an odd number of moves, lx — l2 + 1. A2 makes
then the first move after the period (if there is any move to be made).
He can therefore play so that A1 gets at most ~v^px + ••• + pn). By
the induction hypothesis and by (7.10)
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-v2(Pi + + Vn) ̂  -mlv,) - . . . - m2(pn)

so that the right-hand inequality is proved in this case.
Finally if the period contains an even number of moves, lx — l2, and

the period ends by (7-3), so that σ(pr) ^ σ . Then Aλ gets at most
fli(Pi + •*• + Vn) and by the induction hypothesis and by (7.10)

ViiVi + + Vn) ̂  ^i(Pi) + + mlvn) + max {σ(pr)}

^ rrh(vι) + + mx{pn) + σ

^ mx + σ ,

and the right-hand inequality is proved even in this case.
This completes the proof of Theorem 1.
In the proof just completed the strategy given by (a) and (β) is used

only in a period in the beginning of the play. When this period is ended
we have used the induction hypothesis in the proof of the theorem.
This means, however, that we shall start counting a new period and then
again apply (a) and (β). Continuing in this way we get the following
consequence of the proof of Theorem 1.

THEOREM 2. Make the same assumptions as in Theorem 1. Suppose
one player, Ak, follows a strategy satisfying (a)—(d) below. Then At, the
player making the first move, will get at least m { when k — i and at most
mi + σ when k = 3—i.

(a) Divide the moves made by the two players into periods.
(b) For each period let τ be the maximum of σ(pr) for the positions

pr at the beginning of the period. With this τ defined for a period, always
make τ-optimal moves in the period.

(c) Except for the first move in a period play in the game in which
the other player has just played.

(d) Start counting a new period when one of the following two situa-
tions occurs,

(d:) the other player plays in Gr into a position pr with σ(pr) ^ τ,
(d2) positions pr with σ(pr) ^ τ are reached in all Gr, 1 g r <̂  n.
We call the strategies that satisfies (a)—(d) of this theorem mean

strategies.

8. Properties of m4(p) and σ{v). By Theorem 1 we easily prove the
fact that the sum of games satisfying (2.3) also satisfies (2.3) (proved by
Milnor [1, p. 294]). In fact by Theorem 1

+ + qn) ^ mt .
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Since mx{qr) + nh(Qr) = 0 f ° r e a c h r> w e have mι + m% = 0. Hence

i>ife + + Qn) + ^ f e + + qn) ^ 0 ,

which is (2.3) for Gι + + Gn.
Thus Gι + + Gn is a game of the kind described in §2. We can

therefore apply § 5 and define e.g. z^feH \-qn',t), m1(q1

J\ \-qn)>
and σ(q1 + + qn).

THEOREM 3. Let us start the games Gu- , Gn in positions qlt , qn.
Then

(8.1) πiiiq, + •••+(?») = m4fe) + + ra<(<7n) ,

(8.2) σ(gt + . + qn) ^ max {σ(gr) 11 ^ r g rc} .

The right-hand side of these formulas is just m2 and σ respectively
defined in Theorem 1.

Proof. We need the following lemma.

LEMMA 3.

wβfe + " + qn <r) = m4 wfeen (̂g2 + + gw) > 0.

Before proving the lemma let us see that Theorem 3 follows from it.
If l(q,+ +qn) = 0, (8.1) and (8.2) are certainly true. If l(qλ+ + g n ) > 0
we get from Lemma 3, since mι + m2 = 0,

Wife + ' β + ^ σ) + Maί̂ i + * ' * + Qn cr) = 0 .

Then (8.2) follows from (5.5). We also see from (5.5) and the fact that
Wife + * * + Qn t), i = 1, 2, are decreasing functions in ί, that they are
constant in the interval (σfe + + qn), σ). Then (8.1) follows from
(5.6) and Lemma 3.

Proof of Lemma 3. The proof will be somewhat similar to that of
Theorem 1. Without losing generality we put i = 1. We make the in-
duction hypothesis that Theorem 3 is true for all pL + + pn obtainable
from qt + + qn by one or several moves. We will prove

(8.3) ufa + - + qn <r) > m, ,

(8.4) uι(qι + + qn σ) ^ mL .

Of course they together will give Lemma 3. The number wxfe+ +g w σ)
is the value for Aλ in the game (Gx + + Gw)ί. To prove (8.3) and
(8.4) we define strategies for Aτ and A2 in this game: Follow (a) and (/5)
of the proof of Theorem 1. Unless the other player stops the game in
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some position, continue until (j2) occurs and then stop the game. When
the game is stopped at pλ + + pn, A{ collects mι(pL + + pn). If
then A1 has made lλ and At l2 moves {lλ = lt or lλ — l.λ + 1), Ax has paid
lλσ to Aλ and got l2σ from him. Hence the result will be that Aι gets

Since by the induction we may apply Theorem 3, this is equal to

+ mn(pn) - lxσ + l2σ .

Thus in order to prove (8.3) and (8.4) we only need to verify that (7.7)
and (7.10) are true when Aι and A2 respectively use the strategy de-
scribed above.

Let Ax follow the strategy, and let pr be the position in Gr when
the game is stopped. Then if the move into pr is made by A,, we know
since A1 follows (β), that this is the last move made before the game is
stopped by Ax. Hence (γλ) is true, and we have σ{pr) ^ σ for this game
Gy. The proof of the formulas (7.1)—(7.4) now follows as in the proof
of Theorem 1, and (7.7) will again be a consequence of these formulas.
Hence we have given a strategy for Aλ in (Gj + + Gn)^ which secures
mi. Thus (8.3) is proved.

Similarly if A2 follows the strategy, we verify (7.8) and (7.9) thereby
proving (7.10). Thus we have given a strategy for A2 in (GL-\ \-Gn)t
such that Aλ gets ^ mλ. This proves (8.4). Thus Lemma 3 is proved
and also Theorem 3.

Theorem 3 can be looked upon as a sharper form of Theorem 1. In
fact we get Theorem 1 from Theorem 3 simply by applying (5.12) and
(5.13) for p = qτ+ ••• + Qn.

Let now the games Gl9 , Gn be n copies of one and the same
game G and let ply , pn correspond to ίϋ in G. We write np for
Pi + + Pn By Theorem 1

nniiip) ^ vt(np) ^ nm%{p) + σ{p) .

Divide by n and let n~> c». Then, because of (5.10), we get the follow-
ing result.

THEOREM 4. The two expressions

vt(np) and - (-v^inp))
n n

which represent the mean value for Ai in the sum of n equal games when
he or the other player has the first move, both tend to the same limit
πii{p) when n —> CXD .

This theorem justifies the name mean value for the number mt(p).
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The name mean strategies for the strategies described in Theorem 2 is
chosen, since it secures the mean value for the player who makes the
first move.

We know by Theorem 3 that

(8.5) m4(p! + + pn) = rriiip,) + + ra4(pn)

and get from (5.10) and (5.12)

(8.6) -v,^(p) :g miv)

Let us show that the two properties (8.5) and (8.6) determine
uniquely. Let m{p) be given for all p satisfying (8.5) and (8.6). We get

—v^^np) ^ nm(p) g vt(np) .

Divide by n and let n~~> co. Then, by Theorem 4 we get m(p) = m«(p),
showing the uniqueness of

9, Both players use mean strategies.

THEOREM 5. Let in a sum Gx + + Gn both players follow a mean
strategy, such as described by (a)—(d) in Theorem 2. Then

(1) the players will count the same periods,
(2) in each period both players will make all their moves in only one

of the games Gr,
(3) the number τ defined by (b) of Theorem 2 is a decreasing function

of the period,
(4) if to niiiQi) + + mt(qn), where qr is the starting position of

the game Gr, 1 ^ r fg n, we add τ for each move Ax makes and —τ for
each move A3_i makes, where τ is defined by (b) for the period containing
the move, then the result will be A^s payoff.

Proof. Here (1) will follow by induction if we show that the first
period ends at the same moment for both players. When both players
play in their first periods (c) implies that they both move in the same
game, say in Gs. Then for r Φ sf pr = qr for all positions p1 + + pn

that are reached in the period and therefore since σ(qr) ^ σ by the de-
finition of σ (see Theorem 1), we get σ(pr) ^ σ, r Φ 8. Thus when (dx)
occurs for one player (d2) also occurs and since (d2) is symmetric with
respect to the two players the first period will be the same for both
players. This proves (1).

When we know that the players count the same periods, (2) is a
simple consequence of (c). (3) follows from the fact that each period
ends with (da).

To prove (4) it will be sufficient to show that if in Gr9 qr is the



96 OLOF HANNER

position at the beginning of a period and pr is the position at the end of
the same period then whether A% or A3-t starts the period,

(9.1) m^p,) + + mt(pn) = m^q,) + + mc(gn) + kτ - k-tτ ,

where lt is the number of moves by A% in the period. Since pr — qr for
r φ s, where Gs is the game in which all moves are made during the
period, (9.1) reduces to

(9.2) niiiPs) = m>i(Qs) + kτ ~ h-%τ -

If Ai makes the first move in the period, (9.2) follows from (6.4) and
(6.5). In fact these two formulas are proved for the case when both
players make ^-optimal moves until a position pz is reached with σ(pι) fg t.
But putting ί = r w e get in our case by (d2) that for the final position
ps of the period, σ(ps) <̂  r.

If A^-i makes the first move in the period, (9.2) is just proved with
3 — i substituted for i. However, the formula thus obtained reduces to
(9.2) by the use of mt{p) + m3-i{p) = 0.

Thus Theorem 5 is proved.
Since r is decreasing we see by (4) of Theorem 5 that At's payoff

is the sum of mέ = m^) + + m4(gw) and a sequence of terms with
alternating signs and decreasing modules. If At starts playing, the first
term is positive and equal to σ — max {σ(qr)} and the sum of the terms
in the sequence is therefore ^ 0 and ^ σ , and At will get at least mi

and at most mέ + σ. This last result is of course contained in Theorem
2. Theorem 2 says even more, since it says that a mean strategy always
guarantees a certain amount even if used against a player which plays
any strategy, e.g. an optimal strategy.

10. Some examples. Conditions (a)—(d) of Theorem 2 do not in
general determine a unique strategy. There are still some choices which
the player may use to get as good result as possible. Thus there may
be different r-optimal moves in the same game and, when the first move
of a period shall be made, there may be several games in which there
are τ-optimal moves. In this connection it may be worth while to notice
that there may be a r-optimal move even in a position p with σ(p) < r.
The number τ is determined as the maximum of σ(pr), 1 g r ^ n when
the period starts, but it is not necessary to start the period in one of
the games for which σ(pr) reaches this maximum. There may be r-optimal
moves even in other games.

EXAMPLE 5. Let us study the game given in Figure 3. The move
Pi e M2(p) is ^-optimal for Aλ even when 4 < t ^ 5. In fact for these
ί-values u2(p t) — v2(p t) = mjj>) so that there must be a ί-optimal
move for A .
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If a position has to be played in optimal way it is unimportant if
this position is the starting position of the game or if it is a position
which has developed during the play. This is not the case when mean
strategies are used.

EXAMPLE 6. Compare the game in Figure 6 started by Az and the
game in Figure 7 started by Aλ, When Az has moved into p1 in Figure
6 the situation for Aλ will be the same as when he starts in pι in Figure

p,iθ,6)

7. However, playing a mean strategy he will handle the two cases in
different way. In Figure 6 A1 plays in a period with τ = 1. He will
therefore make a 1-optimal move, the one into p3. In Figure 7 he just
starts a period with τ = 6 and moves into p2.

This difference may be explained thus. The move recommended by
a mean strategy shall be a good move when played in the sum of n
copies of the game. We see readily that in n copies of the game in
Figure 6 the move into p3 is the correct answer to Aa's move into p1#

- n nIf A1 always moves into p2 he gets only about 5— + 1— = 3n though
Δ Δ

m^p) = 4. In n copies of the game in Figure 7 the move into p2 is
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correct. If Ax always moves into p3 he gets about ( — 6)— + 7— + 3— =
n 2 4 4

— — though m^pj = 0.
LA

In a sense (4) of Theorem 5 means that the value of making a move
is equal to the number τ for the period containing the move, where -
is max {σ(pr)} at the beginning of the period. One may try to change
the rules for a mean strategy by requiring each move to be played at
the position p where σ(p) is highest. The following example shows,
however, that such a play does not guarantee the mean value.

EXAMPLE 7. Consider the sum game given in Figure 8. Suppose
that A1 starts and plays in the left game and that A2 answers in the
right game. Then σ(p) = 7 in the left game and σ(p) = 6 in the right

(4,2) (5,1)

(7,7λ (0,6)

Figure 8

game. But if Aλ plays in the left game, where σ(p) is highest he will
get only 14 + ( — 6) = 8 which is less than the mean value 4 + 5 = 9. In
fact AiS second move is made in a period with τ = 2. Hence if he
follows (a)—(d) he shall play a 2-optimal move in the game where the
other player has just played, i.e. he shall play in the right game.
Then he will get at least 6 + 4 = 10 which is more than the mean
value 9.

Let us in a final example show that an optimal move in a sum game
need not be ί-optimal for any t in the summand G in which it is made.
Hence this move can never be recommended by a mean strategy.

EXAMPLE 8. The optimal move for At in the sum game in Figure 9
is the move into p1 in the left game, the mean strategy move is the
move in the right game. The move into px is never ί-optimal in the
left game for any t.
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Figure 9
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ON ONE-TO-ONE HARMONIC MAPPINGS

ERHARD HEINZ

In this paper we shall prove the following:

THEOREM. Let z — z(w) (z — x + iy, w — u + iv) be a one-to-one
harmonic mapping of the disc \w\ < 1 onto the disc \z\ < 1 such that
z(0) = 0. Then we have for \w\ < 1 the estimate

(1) KI 2 + k l 2 ^ -£ •

As an improvement of an earlier result established in [1] J. C. C.
Nitsche [4] showed that under the above conditions the inequality

(2) (KI 2 + kl%=o^ -o

is satisfied1. In contrast to (2) the estimate (1) holds throughout the
unit disc \w\ < 1, but the constant involved is smaller than that of
Nitsche.

In order to establish (1) we shall make use of a known result on
harmonic functions (the analogue of the Schwarz Lemma)2. For the
sake of completeness the proof of it will be given here.

LEMMA. Let z = z(w) = x(w) + iy(w) be a complex-valued harmonic
function in the disc \w\ < 1. Furthermore, let z(0) = 0 and \z(w)\ < 1
for \w\ < 1. Then we have the inequality

(3) \z(w)\ ̂  — arc tan \w\ \w\ < 1.
π

Proof. Let θ be an arbitrary real number, and f{w) be the func-
tion, which is regular-analytic in the disc \w\ < 1 and satisfies the rela-
tions /(0) = 0 and

( 4 ) y\f(w) — x(w) cos θ + y(w) sin θ .

On account of our hypotheses we have

(5) | 9 ΐ / ( w ) | < l

hence,

1 For further references see [2].
2 See Polya-Szego [5], p. 140.
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( 6 ) 3ft (exp [ *2-/(

Consequently the function

> 0 \w\< 1.

( 7 ) g(w) =

exp - _ + 1

satisfies the inequality

( 8 ) \g(w)\<l \w\<l,

and we have g(0) = 0. Applying now the Schwarz Lemma and the
elementary inequality

( 9 )

we obtain

(10)

hence, by

the

(4)

β ί - 1

estimate

tan— \3if(w
4

^tani-|$Rζ

(11) [ x{w) cos 0 + y(w) sin θ \ ^ — arc tan | w \

for |w| < 1.
Since this holds for every real value of θ the inequality (3) follows,

which proves the lemma.

Proof of the theorem. (I) We first prove (1) under the additional
hypothesis that the function z{w) and its first derivatives are continuous
in the closed disc \w\ ^ 1. Since the mapping w -> z(w) is one-to-one

and harmonic, its Jacobian \zw — \z^ cannot vanish, in virtue of a
theorem of H. Lewy [3]. Furthermore, since hypothesis and conclusion

of our theorem remain unchanged, if z(w) is replaced by z(w), we may

assume without loss of generality that

(12) K l 2 - | ^ I 2 > O H<1.

Consequently, the function zw does not vanish in the disc \w\ < 1.
Furthermore, because of zw-υ — 0, it is regular-analytic. From these
facts it follows that for \w\ ^ 1 the inequality

3 Here and in the following considerations =
dw 2

i-
du dv

and

_ — 4-̂ ~~~ are the complex derivatives.
dw 2 V du dv J
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(13) \zw\ ^ min \zw\

holds.
We shall now estimate the right-hand side of (13) from below by

using our lemma. Let <p and r be two real numbers and 0 < r < 1.
Since by hypothesis the equation |;φ#)| = 1 holds for \w\ = 1 we have

(14) z(eiφ) - z{rβiφ)
1 - r

1 -\z(relφ) 4/π arc tan r
1 -r

If we let r tend to 1, we obtain

(15)

Furthermore, on account of (12) we have

(16)

dz{reiφ)
dr

0 ^ φ < 2π.

dz(reίφ)
dr

^ \zw\ + \zτ\ ^ 2\zw

for 0 < r ^ 1. Combining this with (15) we infer that for \w\ = 1 the
estimate

(17) 1_
π

holds.
Hence, by (13) we obtain for \w\ sS 1 the inequality

1 <!* l - 1

(18) _ _ «> I < O-1/2/ 2\1/2

which yields (1).
(II) Now let the mapping z = z(w) merely satisfy the hypotheses of

our theorem. Obviously there exists a sequence of numbers {Rn} (n^2)
such that the following conditions are satisfied:

( i ) We have 0 < Rn < 1 for all n ^ 2, and

(19) limien = l .
71-*°°

(ii) The disc \z\ < Rn is mapped by the inverse transformation
z -> w onto a simply-connected domain Dn such that

(20) M S 1 - —

Since the mapping 2; -> w is analytic in α? and y, it follows that Dn

is bounded by an analytic Jordan curve. By the Riemann mapping
theorem there exists a uniquely determined function w — Φn{ζ), which
maps the disc \ζ\ < 1 (C = £+iy) conformally onto Dn such that Φn(0) = 0
and Φr

n(0) > 0. Furthermore, Φn(ζ) is analytic for \ζ\ ^ 1. Consequently,
the function
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is harmonic for | ζ \ < 1 + δ, where δ is a positive number, and satisfies
all the hypotheses of the above theorem. From the facts established
in (I) we conclude

I ^ p H . ( | z u Y + \zυ|
2) = IZ ίI

2 + IZ n | 2 Ξ> A

Hence we have for iv — Φn(ζ) (ICl < 1) the inequality

Furthermore, on account of (20) the estimates

(24)
v n

hold for n ^ 2 and \ζ\ < 1. Applying the Schwarz Lemma it follows
from (24) that there exists a sequence of integers {nk} such that the
relations

(25) C f c ( C ) - * l (fc->oo)

hold uniformly in every closed disc \ζ\ ^ p < 1.
Now let w* be a fixed complex number with |w*| < 1 and let us

determine two positive numbers k0 and p such that the inequalities

(26) . J^!L.<£p<i

are satisfied for k Ξ> &0. On account of (20) the point w* belongs to Dnjc

for k ^ kQ. Hence there exists a sequence of complex numbers {ζk}
with |Cfcl < 1 such that the equations

(27) w* = 0WA:(Cfc)

hold for & ^ &0. By (24) we have

(28) ICfcl^ ί 7 - ^ P < l

for ^ ^ fc0. Applying now (23) and (25) we conclude

(29) (|sj» + | ^ | 2 ) w ^ ^ _ _ ^ * 2_ ^ J>

for k—>oo. Since w* is an arbitrary point in the disc \w\ < 1, our
theorem is established.
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ON FINITE-DIMENSIONAL UNIFORM SPACES

J . R. ISBELL

Introduction* This paper has two nearly independent parts, con-
cerned respectively with extension of mappings and with dimension in
uniform spaces. It is already known that the basic extension theorems
of point set topology are valid in part, and only in part, for uniformly
continuous functions. The principal contribution added here is an
affirmative result to the effect that every finite-dimensional simplicial
complex is a uniform ANR, or ANRU. The complex is supposed to carry
the uniformity in which a mapping into it is uniformly continuous if
and only if its barycentric coordinates are equiuniformly continuous.
(This is a metric uniformity.) The conclusion (ANRU) means that when-
ever this space μA is embedded in another uniform space μX there exist
a uniform neighborhood U of A (an ε-neighborhood with respect to some
uniformly continuous pseudometric) and a uniformly continuous retrac-
tion r : μU -> μA,

It is known that the real line is not an ARU. (Definition obvious.)
Our principal negative contribution here is the proof that no uniform
space homeomorphic with the line is an ARU. This is also an indication
of the power of the methods, another indication being provided by the
failure to settle the corresponding question for the plane. An ARU has
to be uniformly contractible, but it does not have to be uniformly locally
an ANRU. (The counter-example is compact metric and is due to Borsuk
[2]). It does have to be uniformly locally connected, which is enough to
give us a grip on the real line.

Smirnov has defined the δ-dimension dd of a uniform space as the
least dimension of a cofinal family of finite uniform coverings and has
shown that δd has many of the properties of topological dimension
functions and some novel ones [9, 10]. The large dimension Δd is defined
in the same manner, using arbitrary uniform coverings, in [6], where it
is shown that Ad is ^> δd and is (like δd) invariant under completion.
The central result of the second part of this paper is that when δd(μX) — n
there are precisely two possible values for Δd(μX), namely w and c».

Two applications are made, the principal one being a considerable
simplification of the proof of the main theorem of [10] (characterization
of the ^-dimensional uniform subspaces of En). Also there are two side
conditions either of which implies Δd{μX) — δd(μX): every uniform
covering has a finite-dimensional uniform refinement (μX) is, so to speak,
weakly finite-dimensional), or μX is locally fine in the sense of [5]. The
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first of these includes the case of a weak uniformity induced by a family
of real-valued functions, and the second includes the case of the finest
uniformity compatible with the topology.

1* Extension, Most of the simplicial complexes considered in this
paper will be finite-dimensional, largely because we do not have a con-
venient uniform structure for infinite-dimensional complexes. In any
simplicial complex X, the points x are determined by their barycentric
coordinates (xΛ). The function d(x, y) = max \xa — ya\ is a distance func-
tion inducing a uniformity and topology on X; with this uniformity, X
is called a uniform complex. We recall from [7] that a finite-dimensional
uniform complex is a complete space, the stars of vertices from a unifom
covering {St*}, a mapping into X is uniformly continuous if and only if
its coordinate projections are equiuniformly continuous and every finite-
dimensional uniform covering of a uniform space has an equiuniformly
continuous partition of unity subordinated to it, which then induces a
canonical mapping into the nerve.

In fact, we can show the following.

1.1. Every uniform covering has an equiuniformly continuous parti-
tion of unity subordinated to it.

Because of the difficulty with infinite-dimensional complexes, we
shall not get any use out of 1.1 excepting a very special application in
the second section of the paper.

Proof of 1.1. Let {UΛ} be a uniform covering of a uniform space
μX. Let ί be a uniformly continuous pseudometric on μX such that
every set of d-diameter 2 or less is contained in some U^ [7]. Well order
the indices a. For each a, we define a real-valued function gΛ : ga(x) is
the smaller of the numbers 1 and sup[d(#, X— Uβ)\β < a]. The func-
tions gΛ increase monotonically to the pointwise limit 1 (continuously at
limit ordinals), and each of them is uniformly continuous with respect
to d, with modulus of continuity δ(ε) = ε; that is, d(x, y) < ε implies
\g«(χ) — 9*(v)\ < ε Therefore the functions foϋ — gΛΛ.1~golι form an
equiuniformly continuous partition of unity and if x e X — Z7rt, then
gΛ+ι(x) = gΛ(x) and fa{x) = 0.

A partition of unity {fa} will not yield a function with values in
the nerve unless at each point all but finitely many/Λ vanish. An obvious
sufficient condition for this is that {Ua} is point-finite. We can rearrange
the statement of this condition by using the following (essentially known)
construction. A covering {Va} with the same indexing set as {Ua} is
called a shrinking of {UΛ} if VΛ c UΛ for all a; let us call {FΛ} a
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strict shrinking if there exists a uniform covering w such that
St(Va,w)a UΛ for all a.

1.2. Every uniform covering has a strict shrinking which is uniform*
If a uniform covering w is a star-refinement (or merely a refinement) of u,
then u can be strictly shrunk (or merely shrunk) to a uniform covering
v whose elements are unions of disjoint families of elements of w.

Proof. Well order the elements U* of u and define VΛ as the union
of all elements of w whose stars (or merely whose selves) are contained
in UΛ but not contained in any preceding Uβ.

At the moment, we want the following applications of 1.2. Every
point-finite uniform covering has a uniformly locally finite uniform
refinement (any strict shrinking); and if a covering has a uniformly
locally finite refinement then it has a uniformly locally finite shrinking.

Note specifically that the nerve of the covering v constructed in 1.2
is a subcomplex of the nerve of u and is the image of the nerve of w
under a simplicial mapping. The dimension of v is no greater than the
dimension of w.

In normal topological spaces 1.2 is valid for coverings having locally
finite refinements, and leads to the conclusion that such a covering
admits a canonical mapping into the nerve for any reasonable topology
on the nerve [3]; for continuity is easily deduced from the fact that a
neighborhood of each point is mapped into a finite complex. A uniform
space is called locally fine if every uniformly locally uniform covering
is uniform [5]; it follows that every uniformly locally uniformly con-
tinuous function is uniformly continuous, and also that every uniform
covering has a uniformly locally finite uniform refinement. Accordingly
we have

1.3. Relative to any uniformity for simplicial complexes which makes
every finite subcomplex a uniform complex, the following is true: Corre-
sponding to every uniform covering of a locally fine uniform space there
is <x canonical mapping into the nerve.

We shall want to apply this with some structure on the nerve of
{XJa} making {StΛ} a uniform covering. It will suffice to use uniform
Whitehead complexes (UW-complexes) defined as CW-complexes bearing
the finest uniformity compatible with the topology.

We obtain also, from 1.1 and 1.2, certain mappings of any uniform
space into the nerve (regarded as a uniform complex) of any covering
having a point-finite uniform refinement. The mappings take Ua into
StΛ, but when {StΛ} is not uniform, this is of little value.
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1.4. LEMMA. Every bounded uniformly continuous pseudometric on a
subspace of a uniform space many be extended to a bounded uniformly
continuous pseudometric on the whole space.

Proof. Suppose e is a bounded pseudometric on μA c μX. We show
first that there is a pseudometric d on μX satisfying d(x, y) > e(x, y) for
all x and y in A. For each integer n (positive or negative) there is a
uniform covering un of μX such that if x and y are in A and in a common
element of un then e(x, y) < 2n; and there is a pseudometric dn on μX
such that dn(x, y) < 2n+1 implies x and ?/ are in a common element of un,
but cZw(#, 2/) < 2W+1 for all a? and y. If 2* is a bound for values of e,
then Σ(d w 1 & > % > — o o ] i s a pseudometric d uniformly continuous on
μX, and d(x, y) < 2n+1 implies e(x, y) < 2n, so that d > e in A. Finally
define m on X by m(x, y) — min (d(x, y), inf [d(x, a) + e(α, b) + d(δ, ?/)|α
and b in A]). Examination of cases shows that m is a pseudometric.
Since m < d, m is uniformly continuous. Then m is the required extension
of e.

1.5. COROLLARY. For every uniformly continuous mapping f of a
subspace μA of a uniform space μX into a metric space vB, there exist
a metric space vY containing vB and a mapping g: μX -» vY extending f.

For every metric is equivalent to a bounded one.

1.6. COROLLARY. For every uniformly continuous mapping f of a
subspace μA of a uniform space μX into a uniform space vB, there exist
a uniform space vY containing vB and a mapping g: μX-> vY extending f.

For every uniform space is a subspace of a product of metric spaces.
The definitions of absolute retract and absolute neighborhood retract

write themselves, except that one must notice that uniform neighborhoods
should be specified. If A c U c μX, U is a uniform neighborhood of A
provided U contains the star of A with respect to some uniform covering.
μX is an ARU provided μX c μY implies the existence of a uniformly
continuous retraction μY -> μX; μX is an ANRU provided μX c μY
implies the existence of a uniformly continuous retraction onto μX of
some uniform neighborhood of X in μY. One point to be noticed is

1.7. Every ANRU is complete; moreover, an incomplete space can
be embedded as a closed subspace of a space in which there is no retrac-
tion of a uniform neighborhood.

Proof. Given any incomplete space μA, let πμA be its completion
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and / a well-ordered space, in the order topology, having a last element
ω such that every sequence converging to ω has a greater cardinal
number than that of A. Embed μA in πμA x I, a e A going to (a, ω),
and remove from the product the points (x, ω), x not in A; evidently
μA becomes a closed subspace on which there is no continuous retrac-
tion of a neighborhood.

Among topological spaces one distinguishes between the property
of being an absolute retract (or an ANR) and the stronger property of
being an absolute (neighborhood) extensor: Y is an absolute extensor
for a class of spaces if when A is a closed subspace of a space X in
this class, every continuous mapping of A into Y can be extended over
X. From 1.4 and its corollaries we have the following: Among uniform
spaces, every absolute retract is an absolute extensor, i.e. every uniformly
continuous mapping of a subspace of any space μX into an ARU may he
extended. Similarly for ANRU's. Further, for a metric space to he an
ARU or ANRU, it suffices that it is a retract or neighborhood retract
whenever it is embedded in a metric space. Moreover, if we choose any
convenient bounded distance function, we may assume the embedding
is an isometry.

The reduction to the isometric case simplifies matters considerably,
but there still remains some computation. We shall have to consider
moduli of continuity explicitly. Recall that a modulus, in this context,
is any function on the positive reals to the positive reals.

1.8. LEMMA. For every modulus of continuity δ and every natural
number n, there exists a modulus λ such that every mapping of a sub-
space of a metric space into a uniform n-simplβx, having the modulus δ,
can be extended to a mapping of the whole space into the simplex having
modulus λ.

Proof. The ^-simplex T is an ARU because it is uniformly equivalent
to a product of intervals, each of which is an ARU by Katetov's ex-
tension theorem [8]. Now suppose the lemma is false, i.e. there exist
δ and n such that for each modulus λ there exist metric spaces Aλ c Xλ

(with distance dλ) and mappings fλ: Aλ-> T, each having modulus of
continuity δ but having no extension over Xλ with modulus λ. Let X
be the union of disjoint copies of all Xλ, with the following distance
function d : d(x, y) — 1 unless x and y are in the same Xλ and dλ(x, y)<l,
in which case d(x, y) = dλ(x, y). Then with A = [J Aλ,f: A-+T defined
by the values of the fλ, f is uniformly continuous with modulus of con-
tinuity min (δ, 1). Therefore / has an extension over X which has a
modulus of continuity λ. But min(Λ, 1) is a modulus of continuity μ,
and the restriction of / to Xμ has modulus μ, a contradiction.



112 J. R. ISBELL

1.9. THEOREM. Every finite-dimensional uniform complex is an
ANRU.

Proof. Suppose the ^-dimensional complex N is isometrically
embedded in X with distance d; on N, d(x, y) = max \xΛ — ya\. We
shall need the product of all the odd numbers up to 2n + 1; for typo-
graphical convenience we take (2n + 1)! Then let Nk denote the
^-skeleton of N, and Ck the set of all x in X which satisfy

Any x in Co is within distance 1/6 of a unique vertex, which we define
to be fo(x)', thus f0: Co -> No is a retraction with modulus of continuity
δ = 2/3. Suppose the retraction fk: Ck-> Nk has been defined and has
a definite modulus of continuity δk. Now if x is within distance θ of
points p, q, in different (k + l)-simplexes, σ, r, of JV, then p and g are
within 20 of each other. If (2k + 4)/? < 1, define barycentric coordinates
of a point r by deleting those non-zero coordinates pΛ of p for which
gΛ = 0 (whose sum is at most (k + 1)2/9) and increasing accordingly one
of the non-zero coordinates of p which must be left. Then r is common
to σ and τ and hence is in Nk; also, d(x, r) < (2k + 3)0. Thus if x is
in Ck+1 and not in Ck, then there is a unique (k + l)-simplex σ such that

d(x,σ)<^±^-d(x,N) and d(x, σ) £ —±—
(2k + 3)! (2k + 5)1

Let C(σ) denote the union of the set of all such x and /V(σ); let A(σ)
denote (Ck Π C(σ)) U σ; and define a retraction ^ : A(σ) -> σ to agree
with fh on Cfc (Ί C(σ). For pairs of points in Ck, ψ has modulus of con-
tinuity δk; for pairs in σ , the identity function δ(e) = ε; and for p in
Cfc, g in σ — Cfc = σ°, we have

d{p, Nk) < ί^-tAJUp, ?) f
(Z/c + 1)!

which yields a point of Nk near both p and q and establishes a modulus
of continuity here also. By 1.8, fk can be extended over each C(σ)
separately, as a retraction with a definite modulus of continuity λ. Then
dk+1 = ̂ /(6A + 12) is a modulus of continuity for the whole mapping
fk+u since two points at distance θ from each other in different C(σ),
C(τ), are within (3k + 6)0 of a point r of σ Π r, as above. Therefore
the induction runs, and fn becomes defined on the entire 1/(2% + 3)!
neighborhood of N.

It should be noted that the theorem as stated is trivially false for
arbitrary uniform complexes, since some of them are incomplete. It is
false for many complete ones also. It seems likely that strong results
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might be gotten by using some suitable uniformity for a complex, dif-
ferent from the one defined by max|α?Λ — 2/Λ|, though not necessarily
different for finite-dimensional complexes. UW-complexes are different
in the finite-dimensional case, and I do not know whether they satisfy
1.9.

One gets the homotopy extension lemma and the theorem ARU =
uniformly contractible ANRU just as in the topological case. Precisely,
if / is the interval [0,1}, the cylinder over μX is the product μX x /,
and the cone over μX is the quotient space of the cylinder obtained by
collapsing {(#, 1)} to a point. Homotopy and related concepts being
defined as usual, we have

1.10. // μA c μX, vY is an ANRU, h: μA x I-+vY is a homotopy
between h0 and hιy and g0 is an extension of hQ over μX, then h can be
extended to a homotopy of gQ.

Proof. Define / on (μA x /) U {(a?, 0)} by f(a, t) = h(a, ί), /(#, 0) =
go(x). Let / ' be an extension of / over a uniform neighborhood U, and
let p be a uniformly continuous real-valued function on μX x I vanish-
ing outside U and equal to 1 on the domain of /. Then g(x, t) =
f'(x, tp(xy t)) defines the required extension.

1.11. A uniform spaces is an ARU if and only if it is a uniformly
contractible ANRU.

Proof. An ARU is an ANRU by definition, and retraction of the
cone over it defines a uniform contraction. Conversely, every mapping
into a uniformly contractible ANRU is homotopic to a constant and
therefore extensible.

1.12. The cone over an ANRU is an ARU.

Proof. Let vY be an ANRU, C the cone over vY, μA a subspace
of μX, and/ : μA-+C a uniformly continuous function. The construc-
tion of C as a quotient space of vY x / gives each point of C a second
coordinate in /, and each point except the vertex v has a first coordinate
in Y. Let/2: μA->Ibe the second coordinate of/, which is uniformly
continuous. Let / : A — / ^ ( l ) - * Y be the first coordinate of/, and note
t h a t / is uniformly continuous on each of the sets An = / ; 1[0,1 — 2"w].
Let g2: μX->I be a uniformly continuous extension of/2. Let gλ be a
function with values in Y, defined on a subset U of X, such that for
each n, U contains a uniform neighborhood of An on which gλ is a
uniformly continuous extension of / . (The construction of gx requires a
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little care. Define B1 = A2, jx = gx\Bι. Inductively let hn be an exten-
sion of j n over a uniform neighborhood of Bn, and in the restriction of
hn to a uniform neighborhood Un of Bn which is contained in
flTΐO, 1 - 2"71-1]; let Bn+1 = An+2 U Ϊ7n, define j n + ι : Bn+1-+Y by the values
of in and &, and continue.) If Un is such a neighborhood of An, there
exist uniformly continuous pseudometrics dn on μX relative to which
Un is an εw-neighborhood of An; we may assume dn is bounded by 1 and
form d = X 2~W(ZW, so that relative to d, Un is a ^^-neighborhood of Any

for a sequence of positive numbers δn. Let gQ be a monotone decreasing
continuous function on / to /, vanishing only at 1, but satisfying
gQ(l — 2rn) < δn+1. Now define g[ on μX to / as follows. For p in A,
we have g[{p) =fi(p). If d(p, A) > go(g^(p)) then ^(ί>) = 1. For all other
p we have

05(P) - ΰlv) +

One readily verifies that g'2 is uniformly continuous. Since g[ takes the
constant value 1 on the complement of Z7, we may define g: μX"-> C by
9(B) = (flΊ(«)> ^K^)) where ^(a?) ^ 1, flf(a?) = v where ^(a?) = 1. Then g is
a uniformly continuous extension of / .

1.12 shows that many ARU's exist. Also, a product of arbitrarily
many ARU's is clearly an ARU. On the other hand, the product of a
sequence of copies of the real line is not an ANRU; it is not a retract
of any uniform neighborhood in the product of cones over the lines.

In the other direction, we have the following.

1.13. There is no ARU homeomorphic with the real line.

Proof. An ARU, and even an ANRU, must be uniformly locally
connected; for it can be embedded in a product of metric spaces, and
thus in a product of Banach spaces, where retraction of a uniform
neighborhood establishes the assertion. Now since the only connected
subsets of the line are intervals, a uniformly locally connected structure
on the line is either incomplete or uniformly locally compact. In view
of 1.7 and 1.11, the proof will be completed when we establish

1.14. Every uniformly locally compact uniformly contractible space
is compact.

In turn 1.14 will be deduced from

1.15. Every uniformly locally compact space has a basis of star-finite

uniform coverings.
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Proof of 1.15. Observe that a uniformly locally compact space has
a uniform covering u such that the closures of the stars of elements of
u are compact; and the same is true for any refinement of u. There
is a uniform refinement v which has the property that no proper sub-
family of v is a covering of the space. To see this, take a pseudometric
d so that every set of cZ-diameter 2 or less is a subset of an element
of u; choose a maximal family of points p* with mutual distances ^ 1/2;
and define Va as the set of all points within distance 1 of pΛ except the
other pβ. Now each spherical neighborhood of radius 1/4 is contained
in one of the VΛ. If x is a point within distance 1/4 of some pΛ, Va

contains the 1/4- neighborhood of x. For any other x, there is some
pΛ within distance 1/2 of x, and since the 1/4- sphere about x contains
no other pβ by hopothesis, it is a subset of Va. Finally, the covering
{VΛ} must be star-finite since the closures of the stars are compact.

Proof of 1.14. Every uniformly contractible space is finitely chain-
able in the sense of [1] that is, for any uniform covering {Ua} there
exist finitely many indices aL, , an and a natural number m such that
every £7* can be joined to one of the UΛ% by a chain of m or fewer
intersecting sets Z7β. (In fact, we may take n = 1.) If the covering is
also star-finite, it is finite. Since a uniformly locally compact space is
always complete, we have 1.14, and with it, 1.13.

It is not true that every ANRU is uniformly locally an ARU at
least, not in the sense that there are arbitrarily fine uniform coverings
consisting of ARU's. The trouble is that a subspace which is an ARU
must be closed, by 1.7. But Borsuk has exhibited [2] a compact 2-
dimensional AR in E* in which no closed 2-dimensional proper subset is an
ANR. (For compact spaces, AR = ARU and ANR Ξ= ANRU, since these
spaces can be embedded in cubes.)

The converse is not true either. If Sn denotes the finite complex
which is the boundary of an ^-simplex, then the uniform complex which
is the separated sum of all Sn is uniformly locally an ANRU but not
itself an ANRU. With a little more care the same effect can be de-
monstrated with a metric space which is a discrete sum of ARU's (e.g.
arcs In in Sn coming within distance \\n of every point of the sphere).

An ARU considered as a topological space is an absolute extensor
for paracompact spaces and similarly for ANRU's. 1.18 seems to rule
out any reasonable converse to the first part of this remark.

2# Dimension* The d-dimension or uniform dimension dd(μX) of a
uniform space μX is defined as the least n such that every finite uniform
covering has a (finite) uniform refinement whose nerve is ^-dimensional
if there is no such n, we write δd(μX) = co. (In view of 1.2, it does
not matter whether the parenthesis " (finite) " is included or not. If it
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is included, we have the original definition of Smirnov except for irrele-
vant changes in the concept of equivalence of two spaces—Smirnov speaks
of proximity spaces—and we may quote his results [9, 10] freely.) Simi-
larly the large dimension Ad(μX) is the least n such that every uniform
covering has an ^-dimensional uniform refinement [6]. The inequality
δd(μX) <£ Ad(μX) is a trivial consequence of 1.2.

2.1. A finite-dimensional uniform complex is uniformly equivalent to
its first barycentric subdivision, by the identity mapping. The stars of ver-
tices in successive barycentric subdivisions form a basis of uniform coverings.

Proof. The first statement is a consequence of the second. For that,
it is well known that the meshes of these coverings approach zero, and
it remains to show that each is uniform. It is certainly uniform on a
uniform neighborhood of the O-skeleton and the proof may be finished
by an induction using the fact that the (k — l)-skeleton separates all
the fc-simplexes from each other.

2.2 LEMMA. A uniform covering has a finite-dimensional uniform re-
finement if and only if it has a uniform refinement which is a union of
finitely many uniformly discrete subcollections.

Proof. Evidently if a covering u is a union of n subcollections
which are uniformly discrete (or even merely collections of disjoint sets)
then u has dimension at most n — 1. For the converse, consider the
nerve N(u) as a uniform complex, and let / be a canonical mapping of
the space μX into N(u). The stars of vertices in the first barycentric
subdivision of N(u) form a uniform covering w which is a union of n+1
collections of disjoint sets, namely the collections of stars of vertices
which are centroids of i-dimensional simplexes of N(u), for i = 0, , n.
If wr is a uniform strict shrinking of w, then wf is a union of n + 1
uniformly discrete subcollections, and the same is true of f~\w'), which
is a uniform refinement of u.

2.3. THEOREM. // δd(μX) = n then either Ad(μX) = n or μX has a
uniform covering which has no finite-dimensional uniform refinement.

Proof. We have observed already that Ad(μX) ^ n. It remains to
show that every finite-dimensional uniform covering u has an ^-dimen-
sional uniform refinement. By 2.2 we may suppose u is the union of
uniformly discrete collections u°, ---,up.

Let Ui be the union of uK Then u is a refinement of }Ut}, which
is thus a finite uniform covering. By hypothesis {Ϊ7t} has an %-dimen-
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sional uniform refinement, and therefore (by 1.2) it has an ^-dimensional
uniform shrinking {Vt}. Let vι be the restriction of uι to the subspace
Vt. Each vι is a disjoint collection covering Vt hence their union v is
an ^--dimensional covering of the space which is finer than u. To show
that v is uniform it suffices to show that each v* is uniform on F< (since
{Vt} is uniform and finite). But with respect to some uniformly con-
tinuous pseudometric, the different elements of uι are at mutual distances
> ε, and then in the subspace V% each element of vι is an ε-neigborhood
of itself.

2.4. EXAMPLE. There are uniform spaces μX for which Δd(μX)~ co
and δd(μX) has any desired value. Here is an example homeomorphic
with a countable discrete space, and having a basis of star-finite uniform
coverings. For the description of the structure of X, consider the metric
space K which is a union of cells In, each isometric to the unit ball in
En, with the distance between two points is different cells defined to be
1. Identify the countable set X with a countable dense subset of K,
for the purpose of stating : a covering of X is to be uniform on μX
provided it has a refinement of the form {Uia}, where the sets Xt —VJJicil

are finite in number, and on each Xi9 considered as a subspace of K,
{Uίa} is a uniform covering. One easily sees that this family of cover-
ings satisfies Tukey's axioms and thus defines a uniformity the associ-
ated topology is discrete, since some of the sets Xt may be single points
(lying in no other X5).

Every finite covering of X is uniform and may be refined by a finite
partition, so that δd(μX) = 0. On the other hand, if {Va} is a uniform
covering of K which has no finite-dimensional uniform refinement (e. g.
the covering consisting of all sets of diameter < 1), then {V* Π X} is a
uniform covering of μX. If it had a finite-dimensional uniform refine-
ment, we should have X partitioned into sets Xlf , Xn, each Xt covered
by a finite-dimensional covering {Uiβ} which is uniform on Xt considered
as a subspace of K. Using 2.2, we may as well assume each {Uiβ} is
uniformly discrete. Moreover, we may assume {Uiβ} is a strict shrinking
of {F Λ ΠX}, so that for some ε > 0 the ε-neighborhood of each Uiβ is
contained in some VΛ. If ε is small enough, any two sets Uiβ, UiΊ, are
3ε apart. Then the ε-neighborhoods of the sets Uiβ form a finite-dimen-
sional refinement of {Va} and a uniform covering of the ε/2-neighborhood
of a dense subset of K, that is, a uniform covering of K: a contradic-
tion.

Let us record the last construction for later use.

2.5. If' u is a uniform covering of μX and, {Viβ} a uniform covering of
μA c μX which is a union of n uniformly discrete families, and a strict
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shrinking of u, then there is a uniform covering {Wiai} of a uniform neighbor-
hood of A having these two properties and satisfying Wicύ Π A = Vta.

The proof is just as above except that one must introduce a suitable
pseudometric.

Dowker's proof [3] that the same covering dimension is obtained for
a normal topological space from its finite, star-finite, or locally finite open
coverings goes by way of mappings into spheres and depends on (a)
constructing canonical mappings and (b) modifying them to be essential
onto each simplex. In uniform spaces, of course, the construction is im-
possible, since the conclusion is false. This need not mean that useful
canonical mappings cannot be constructed. The other part of the con-
struction, the removal of inessentiality, is definitely impossible, even in
finite-dimensional spaces. This is easily verified for the subspace of the
plane consisting of the vertical line segments x — n, — 1 ^ y ^ 0y and
x=n,lln^y^l. In a sense, the construction of 1.15 yielding arbitrarily
fine uniform coverings which have no proper subcoverings, is the best
one can do in general.

In the case of locally fine uniform spaces, Dowker's argument goes
through step by step. One has canonical mappings by 1.3 every uni-
form covering has a uniformly locally finite uniform shrinking and
modifications preserving uniform continuity uniformly locally preserve it
in the large. Thus we have

2.6. For locally fine uniform spaces, δ-dimension coincides with large
dimension.

Note that the result applies to the topological dimension of non-normal
completely regular spaces, provided the definitions are framed in terms
of normal coverings these are the uniform coverings in the finest uni-
formity compatible with the topology, which is always a locally fine
uniformity. [5] Smirnov has established some of the properties of the
dimension defined in this way by finite normal coverings and also, for
general uniform spaces, the dimension defined by extension of mappings
into spheres is δd [9].

2.7. A uniform space which is a finite union of subspaces of large
dimension <̂  n has large dimension <̂  n.

Proof. The ^-dimensions of the subspaces coincide with the large
dimensions then from the sum theorem for ^-dimension [9] we know
δd(μX) — n. From 2.3, Δd(μX) is w or ω, However, every uniform
covering of μX may be refined by a union of finitely many finite-
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dimensional uniform coverings of the given subspaces, and hence, as in
2.5, by a finite-dimensional uniform covering of μX.

In this manner one can choose finite or infinite coverings according
to convenience whenever the large dimension is known to be finite. This
occurs for example in questions concerning subspaces of finite-dimensional
spaces, such as

2.8. (Smirnov) A subset S of Euclidean space En has δ-dimension n if
and only if there exists r > 0 such that for every ε > 0 there is a solid sphere
of radius r in which S forms an e-net.

Proof. The conditions are sufficient, in view of 2.5, for they imply
that any uniform neighborhood of $ contains a sphere of radius r. On
the other hand, suppose the conditions not satisfied thus for eachr>0
there is ε > 0 such that every r-sphere contains a point distant by ε from
S. Consider the cell complex K the walls of which are formed by the
lattice hyperplanes x% = p, p integral. The first barycentric subdivision
Kι of K, and all successive barycentric subdivisions Km, are simplicial
complexes, with meshes approaching 0. Moreover, each is a uniform
complex. In particular, on the (n — 1) skeleton of Km, the stars of ver-
tices form a uniform covering u. To see this, observe that u is an open
covering on any compact portion of space (say, all | x.t | 5j 2), hence has
a Lebesgue number there, and every point has a spherical neighborhood
of radius 1 on which the restriction of u is congruent to a part of u
contained in the specified portion.

To construct a uniform (n — l)-dimensional covering of S of arbitra-
rily small mesh 2a, choose m so that the mesh of Km is a or less. Let
{Sti} be the covering of the (n — l)-skeleton of Km by stars of vertices,
and θ a Lebesgue number for this covering (relative to the (n — l)-skele-
ton). Now there exist, first, r > 0 such that every ^-simplex σ of Km

contains a sphere of radius r therefore, by hypothesis, ε > 0 such that
each σ contains a point distant by ε finally, if 2δ = min(r, ε), each σ
contains a point Pσ distant by δ from both S and the frontier of σ. For
each vertex i of Km, let Uι consist of Sti together with all open line
segments (p, pσ) such that p is a point of Stt and a boundary point of
σ (thus i is a vertex of σ). Relatively on the complement of the union
of the spheres of radius δ about all pσ (a set which contain S), {Ui} has
a Lebesgue number, specifically Θδ2/a2. To see this, observe that if x is
in the frontier of σ , and y is an interior point of σ within θδfa of x, we
may construct two similar right triangles in the plane determined by x, y,
and pσ, as follows. Drop a perpendicular from pσ to the hyper plane of
a face of σ containing x, extend the ray from pσ to y until it meets some
face of σ in a point q, and drop a perpendicular from x to the line qy.
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A sketch shows that q must be within θ of x and thus in this case some
Ut contains both x and y. In the case of two interior points y, z, of one
^-simplex σ, with d(y, z) < Θδ2/a2 and both y and z distant by δ from pσ,
draw lines from pσ through y and z until they meet faces of σ, and
observe that the distance between these lines measured parallel to yz
cannot increase beyond θδ/a before one of the lines hits a face. The
remaining case, that y and z are in different %-simplexes, σ, τ, is similar
use the facts that y and z are nearer to the (n — l)-skeleton than to each
other and that δ <Ξ α/2 (since r ^ a). Finally a point common to w + 1
or more sets UΊ would have to be interior to some ^-simplex σ but pro-
jection from Pa. would give a point common to the corresponding sets Sti9

which is absurd.

Let us conclude with a few further remarks. As the statement of
2.3 exhibits, we do not need to know that the Δ-dimension is actually
finite to know that Ad and 3d are the same. In particular, they are the
same in any space whose uniformity is the weak uniformity induced by
a family of real-valued functions. I do not know whether Δd and 3d
coincide for all metric uniform spaces.

Dowker and Hurewicz have shown [4] that the covering dimension
dim for a metrizable space coincides with the sequential dimension ds
defined as the least n such that there exists a sequence of locally finite
open coverings, each of dimension <̂  n, of mesh converging to 0, each
a closure-refinement of the preceding one. (In particular, the theorem
shows that ds is a topological invariant, though the concept of mesh con-
verging to 0 is not invariant.) Examination of their proof shows that
one can replace the closure-refinements by star-refinements, and conclude:
For metrizable spaces, the covering dimension is the same as the least
uniform dimension in any metric uniformity compatible with the topology,
I do not know whether the word " metric" can be omitted.
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ON THE RADIUS OF UNIVALENCE OF THE FUNCTION

exp zι \
Jo

ERWIN KREYSZIG AND JOHN TODD

1. Introduction. We shall determine the radius of univalence pu of
the function

(1.1) E(z) = A
Jo

rt2dt .

We shall write E(z) — iv — u{x, y) + iv(x, y). On the imaginary axis we
have u ~ 0 and v, regarded as a function of y, has a single maximum
at the solution y — p of

2yv(0,y) = 1 .

The value of p to eight decimal places has been determined by Lash
Miller and Gordon [1] and is

(1.2) p = 0.92413887 .

It is evident that pu ^ p. We shall prove the following theorem.

THEOREM. The number p is the radius of univalence of E(z).
Recently, the radius of univalence of the error function

erf(z) = I e~
Jo

t2dt

was determined [2]. It is interesting to note that when proceeding from
βrf(z) to E(z) we meet an entirely different situation. In the case of
orf(z)9 points zi9 zz closest to the origin and such that erf(zL)=erf(z2) are
conjugate complex and lie far apart from each other. In the case of
E(z) points of that nature can be found in an arbitrarily small neigbor-
hood of the point z = ip.

The actual situation is made clear by the diagram and tables given
below. In Fig. 1 we show the curves R = | E \ = constant and γ =
arg E = constant in the square 0^a;^1.5,0gί/^1.5 of the z- plane. The
table shows the values of Έ for z on the curve C (defined below). The
values given were obtained by summing an adequate number of terms
of the power series on the Datatron 205 at the California Institute of
Technology some were checked by comparison with the tables of Karpov
[4, 5] from which values of E(z) can be obtained.

Received September 3, 1958.
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2. Idea of proof. Since

(2.1) E(z) =
+ 1)

0 05 10

Fig. 1. Curves R = \ E \ = const, and 7 =

15
X

1= const, in the z-plane.

a?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1007

0.2054

0.3187

0.4455

0.5923

0.7671

0.9805

1.2473

1.5876

0°

10°

20°

30°

40°

50°

60°

70°

80°

90°

1.6837

1.4957 + 0.6121i

1.0573-f-0.9759i

0.6079 + 1.0473i

0.2919+0.9463i

0.1189 + 0.8024i

0.0401 +0.6817i

0.0099 + 0.6003i

0.0011 + 0.5553Ϊ

0.5410i

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Eiiy)

0

0.0993Ϊ

0.1948i

0.2826i

0.3599i

0.4244i

0.4748i

0.5105i

0.532Π

0.5407i

we have E(z) = E{z) and E{—z) — — E{z) and may restrict our considera-
tion to the first quadrant x ^ 0, y ^ 0 in the z-plane.
In the subsequent section we shall prove the following lemma.

LEMMA.

(2.2) E{zx) Φ E(z2)

for any two points on the boundary C of the open sector S of the circular disk

[ z I < o in the first quadrant.
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From this it follows, since E(z) is entire and thus regular in S u C
that E(z) maps S conformally and one-to-one onto the interior of the
simple closed curve C* corresponding to C in the w-plane [3, p. 121].
This establishes our theorem.

3, Proof of the lemma. Let z = reίφ. The curve C consists of

the segment S1: y — 0 , 0 < x < p ,

the circular arc K: \z\ = p , 0 < φ < π/2 ,

the segment S z: x = 0 , 0 < y < p .

and the three common end points of these three arcs.

(A) On S19 E(z) is real and increases steadily with x.
(B) On S29 E(z) is imaginary, and v increases steadily with y.
(C) v Φ 0 on If.
(D) On iί, I E(z) I decreases steadily with increasing φ.

(A) is obvious from (2.1), and (B) follows from the definition of p.
Proof of (C). Integrating along segments parallel to the coordinate

axes we have

S y 2

eΎ cos 2xrdτ
o

f 2ΪX 2 Γ y 2 )Ί

+ sin2xy βxΊ e'1 dt + I eτ sm2xτdτϊ .

In {x > 0, y > 0} n {\ z \ <: p} we have cos 2xy > 0, sin 2xy > 0. There-
fore v > 0 on K.

Proof of (D). Integrating along a radius φ = constant from 0 to p
we have

Jo

where

Λ(r, φ) = α(r, φ) + i6(r, φ) ,

α(r, φ) = (JO2 - r2) cos 2φ, b(r, φ) = (p2 - r2) sin 2Φ .

Therefore

\E\*= [\hdr[9ehdr .
Jo Jo

Differentiating with respect to φ and setting

h* = α* + «*, α* = α(r*, φ), 6* = 6(r*, φ),

/ = cos (&* - 6) - i sin(6* - b)

we obtain
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E I % = Γ ehhφdr [ e*dr* [ [
Jo Jo Jo Jo

+ΓhΦ}drdr* .
Jo Jo

Now

αφ = -2(iθ2 - r 2) sin 2φ, δφ = 2(pz - r2) cos 2φ

and therefore

fhφ +WΦ = 2Mfhφ = 2 [cos (6* - b)aφ + sin (6* - 6)6Φ]

where

a(φ) = 2φ + 6 - 6* = (r*2 - r2) sin 2φ + 2φ .

This yields

(3.1) (I # |% = - 4 ( P [ V + α V - r2) sin (a(φ))drdr* .
Jojo

Since from (1.2) we have | r*2 — r21 < 1, we obtain

a'(φ) = 2 + 2(r*2 - r2) cos2φ > 0 .

Hence a(φ), 0 ^ φ ^ π /2, has its maximum at φ = τ/2. Therefore
0 ^ α(φ) < 7r when 0 ^ φ < τr/2 and sin(α(φ)) > 0 when 0 < φ < τr/2. This
means that the integrand in (3.1) is positive in the region 0 ^ r ^ p,
0 ^ r* ^ p for all φ in the interval 0 < φ < τr/2. Thus (1 J& |% < 0 when
0 < φ < π/2. This proves (D).

We note that (D) remains true if K is replaced by quadrants of circles
of radii somewhat larger than p this, however, is of no interest here.

For zλ e if, 3a e S3, or ^ e JK", 33 e iΓ, equation (2.2) holds, as follows
from (D). For zγ e K,zz e Sx the same is true because of (C). In the
other cases, zι e Slyz.z e S19 etc., the validity of (2.2) is obvious. This
proves the lemma.
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AN INTERPOLATION THEOREM IN THE
PREDICATE CALCULUS

ROGER C. LYNDON

1. Introduction. In studying the formal structure of sentences
whose validity is preserved under passage from an algebraic system to
a homomorphic image of the system, we have had occasion to use a
lemma from formal logic. A proof of this lemma, our Interpolation Theo-
rem, can be given within the theory of deductive inference, as formalized
by Gentzen. Gentzen's theory is rather complicated and perhaps not
generally well known. Moreover, the use of any formalized system of
deductive logic seems to an extent alien to the primarily algebraic nature
of our intended application. Therefore we give here a proof of the Inter-
polation Theorem that lies entirely within the theory of models : our
arguments are as far as possible in the spirit of abstract algebra, and,
in particular, borrow nothing from formal logic beyond an understanding
of the intended meaning, herein precisely defined, of the conventional
symbolism.

The Interpolation Theorem deals with sentences of the Predicate
Calculus. Roughly, these are sentences that can be build up using the
usual logical connectives, symbols denoting operations (or functions),
symbols denoting relations (or predicates), and variables whose range is
individual elements of the systems under consideration, but no variables
ranging over operations, relations, or sets. The theorem takes the same
form whether or not we admit a predicate denoting identity, with suita-
ble axioms, to the predicate calculus. For technical reasons we admit
as sentential connectives only the signs for negation, conjunction and
disjunction (regarding " if then " asa defined concept), together with
signs 0 and 1 for truth and falsehood. For each occurrence of a relation
symbol in a sentence S, there is a unique maximal chain of well formed
formulas, all containing the given occurrence and each occurring as a
proper part of the next. The given occurrence of the relation symbol
will be called positive if the number of formulas in this chain that begin
with the negation sign is even, and negative if this number is odd. If
S is in prenex disjunctive form, this criterion takes the simpler form
that an occurrence is negative if and only if it is preceded by the nega-
tion sign.

INTERPOLATION THEOREM, Let S and T be sentences such that S im-
plies T. Then there exists a sentence M such that S implies M and M

Received October 22, 1958. Work supported in part under grants from the National
Science Foundation,
1. See [5] and [9], Chapter XV.
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implies T, and that a relation symbol has positive occurrences in M only if
it has positive occurrences in both S and T, and has negative occurrences
in M only if it has negative occurrences in both S and T.

This theorem is a generalization of a result of W. Craig [3, 4]
Craig's lemma is obtained from it by suppressing the distinction between
positive and negative sentences. As indicated, our first proof of the
Interpolation Theorem used the Gentzen calculus it did not differ es-
sentially from Craig's proof, at that time unpublished, of his lemma.

The leading idea of the present proof is to interpret £ implies T to
mean that T holds in every model for which S holds we express this
relation by writing S=$T. By Godel's Completeness Theorem [6], this
semantic interpretation is equivalent to the interpretation S \-T, that T
is a formal consequence of S in a deductive axiomatization of the pre-
dicate calculus. The crucial point in our argument is the Main Theorem,
which serves as a substitute, under this interpretation, for results in
the theory of proof due to Her brand [8] and to Gentzen [5].

A theorem of the theory of proof may be taken, in general, as
saying that if there exists any derivation of one set Δ of formulas from
a set Γ, then there exists a derivation with certain special-properties.
A semantic counterpart of such a theorem will take the form of an
'interpolation theorem': if Γ' =>Δ, then there exists a chain Γ = Γ\
Γ2, , Γn = Δ of sets of formulas, with certain special properties, such
that Γ1 =Φ Γ2, , Γ91'1 =φ Γ\ Theorems of this sort will ordinarily require
the occurrence in the Γk of additional symbols (for the ' Skolem func-
tions') that do not appear in Γ or Δ, although this is not true of the
Interpolation Theorem. Our arguments abjure any formal use of the
concept of deductive derivablilty, hence of the Completeness Theorem.
In various special cases, where Γ\-Δ would be immediate, that Γ^Δ
follows directly from our definitions. The more difficult half of the Com-
pleteness Theorem, that if Γ =φ Δ then Γ h- Δ, is implicit in the Main
Theorem, which guarantees the existence of a chain Γ = Γ1, , Γn — Δ
such that at each step the relation Γ% \- Γfc+1 is immediately evident.

I have profited much from discussions related to the present topic
with A. Tar ski and L. Henkin2 in particular, Tar ski has emphasized the
desirability of establishing the Interpolation Theorem by methods in-
dependent of the theory of proof. The idea of providing semantic proofs
of results from the theory of proof is not new : a proof by E. Beth [l,
2], in a quite different formalism, of Craig's Lemma would certainly
serve as well to prove the Interpolation Theorem and A. Robinson has
likewise provided semantic proofs of closely related results [10]. Un-
published results similar to those presented here have recently been

2 In particular, while the author was visiting at the University of California, Berkeley.
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obtained by A. Grzegorczyk, A. Mostowski and C. Ryll-Nardzewski, and
by R. Vaught.

2. Basic concepts.3 A language L is determined by an ordered
quadruple, V, W,R,p, where F, W, R are disjoint sets, V infinite, and
p is a function from W U R to the natural numbers. The elements of
V will be called variables, those of W operation symbols, and those of R
relation symbols for w in W, r in R, ρ(w) is the rank of w and p(r) the
rank of r. The logical symbols are 0,1, ~ , Λ V, V, 3. The expressions
of L will be made up of these symbols together with parentheses and
commas. A term is, recursively, any variable, and any expression
w(tι, * * , ̂ p(w)) where w is an operation symbol and tlf , tp (» are terms.
An atomic formula is any expression r(tlf • β,£P(r)) where r is a relation
symbol and tl9 , ίp(r) are terms. A formula is, recursively, any atomic
formula, and any expression 0, 1, **-> F, (F Λ G), (F V G), yxF, jxF where
F and G are formulas and x is a variable. Formally, we define L to
be the set of its symbols, terms and formulas.

We introduce the abbreviations F Z) G for ( ^ F v G ) , ΛΓ^ f° r

ί Ί Λ Λfn with the convention A ^ = 1, and V ΓΉ f or Fx V V Fn

with V K — 0, and write y# t xn for y/xx γa;w. A matrix is a for-
mula that does not contain y or 3. A normal matrix is a matrix of the
form Vΐ-i A *ΐ -̂ u where each FtJ is either Ao or ^Aijy for Aυ an
atomic formula. A prenex formula is one of the form QLxx QkxqM
where each Qt is y or 3, each xi is a variable, and ilί is a matrix the
formula is normal if the matrix M is normal. An occurrence of a varia-
ble x in a formula F is /rββ in the formula F if it is not part of a
subformula of the forms yfxG or ^xG. A sentence is a formula without
free occurrences of variables.

It is easily shown by induction that if G is any part of a formula
F, then there is a smallest part of F that is a formula and contains G.
It follows that there is a unique maximal chains of formulas Hu , Hn=F,
each a proper part of the next, and all containing G. The part G is
positive in JP if the number of Hi+1 — ~ Hi is even, and negative if it is
odd. In what follows, G will always be an occurrence of a relation
symbol in F.

An interpretation of a language L is determined by a set A and a

function μ, defined on V\J W[jR, such that μxe A for xe V, ^ e A i P ( w )

for w e W, and /*r 6 2 l P ( r ) for r e i2. We regard 2 as the two element
Boolean algebra with elements 0, 1 and operations ~ , Λ, V, s o that /^
is a function with values (μr) (al9 , αp(r)) equal to 0 or 1 but in practice
we indulge in the harmless ambiguity of treating μw as a subset of AKw)+1
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and μr of Ap(?0, and accordingly using such notation as μw g μw', μrξΞkμr'.
Putting aside the trivial case that L contains no relation symbols of
positive rank, μ unambiguously determines its domain A.

The function μ determines a unique extension mapping all terms of
L into A, by the recursive definition

μ[w(t, , ίp(u0)] = (μw) (μt, , μtpM) .

A further extension mapping all formulas of L into 2 is determined by
the conditions.

( I ) Λθ = 0, μl == 1, /i(~F) - - μF, μ(F A G) = μFΛμG,

μ(F V G) = μFV μG ,

and

( 2 ) /<V^) = 1 if and only if JF = 1 for a l i i ) s u c h t h a t

() if d l if F 1 fμ(3xF) = 1 if and only if AF = 1 for some
λz — μz for all « in V U W U R — {x}. Formally, we define an inter-
pretation to be a function μ thus extended in practice we shall say that

μ and λ agree except on x when we mean that μ and λ agree for all
z in V U TF U i? - {a?}.

A model of L is the restriction 21 of an interpretation μ to the
operation and relation symbols of L. The model 21 may be regarded as
a 'relational system Ji consisting of a set A, its domain, together with
a set of operations %w indexed by the operation symbols w of L, and a
set of relations 2ίr indexed by the relation symbols r of L. If 21 is the
restriction of μ, we call μ an interpretation in the model 21. If μF=lf

we say that F holds for the interpretation μ. Evidently μF depends only
on the domain A of μ, the values of μ on the operation and relation
symbols that occur in F, and the values of μ on the variables that occur
free in F. In particular, if S is a sentence, μS depends only on the
model 21 to which μ belongs, and if μS = 1 we say that S holds in the
model 21.

If Γ and Δ are sets of formulas of L, we say that Γ implies Δ in
L if μΔ = {1} for all interpretations of L such that μΓ = {1}. This
interpretation is evidently independent of L, provided only that Γ and
Δ belong to L we say simply that Γ implies Δ, and write Γ =φ J. We
write μΓ = 1 for μΓ = {1}, and employ such notation as Γ1? Γ2=^F
with the obvious meaning. If Γ =^ Δ and J = ) Γ , then Γ and J are βgwi-
valent and we write Γ^^Δ. That l ^ F expresses that JP is a theo-
rem. A set Γ is called consistent if there exists an interpretation μ such
that μΓ = 1 thus Γ=φO expresses that the set Γ is inconsistent.

See [11], [12].
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3* Preliminary propositions. The set Φ = Φ(L) of all formulas of
L constitutes, in an obvious sense, an algebraic system with operations
0, 1, ^ , Λ, V in fact it is a ' word algebra ', a free algebra without
axioms. The relation F<^G is a congruence on Φ, and the quotient
system Φ is a Boolean algebra, the Lindenbaum algebra of L. If K is
the canonical map of Φ onto Φ, then every interpretation μ of L, when
restricted to Φ, can be factored uniquely in the form μ — fttz where ft is
a homomorphism of Φ onto 2.

The set Φo of all matrices of L constitutes a subalgebra of Φ, and
its image Φo = /c<P0 is a subalgebra of Φ. Every homomorphism θ of Φo

onto 2 can be extended to a homomorphism 0' of Φ onto 2 such that θ'κ
is an interpretation. To prove this we construct the special interpreta-
tion μ induced by θ. For the domain A of μ we take the set of all
terms of L. For a variable x, define μ# — x. For an operation symbol
w and terms ίj, , ίp(w), we define /w by assigning to (μw)(tu , ίP(W))
as value the term w(tu •• ,ίP<»). For a relation symbol r and terms
ίi> ">ίpθ) w e define μr by assigning to (μr)(tly , £p<») the value
#/c[r(£i, , ίpCr))] in 2. By virtue of the last definition, μF = 0/c.F for all
atomic formulas F. Since the images ΛJP of the atomic formulas F
generate Φo, and fticF = 0/c.F for atomic F, it follows that ft = θ on ΦQ

and μ is an extension of θ.

PROPOSITION 1. If Γ is a set of matrices, and J the dual ideal in the

Boolean algebra ΦQ generated by tcΓ, then Γ ^ 0 if and only ifOeJ.

Proof. Assume 0 6 J . Then 0 = ιcF1Λ ΛtcFn for some Fl9

 m ,Fn

in Γ. If μ is an interpretation such that μΓ = l, then each ~μκFι =μFi = l,
whence 1 = ~ftκ j \ Ft = ft A &Ft — P® — 0> a contradiction. Assume 0 ψ J.
Then J Φ ΦQ and J g K for some maximal dual ideal K in 0O If θ is
the canonical map of ΦQ onto 2 with kernel the maximal ideal ΦQ — K
complementary to the dual ideal K, then ΘKΓ g W g fe = 1. If // is
the special interpretation of L induced by the homomorphism θ, then
μΓ — ftkΓ = ΘKΓ = 1, whence Γ is consistent.

COROLLARY 1.1. If Γ is a set of matrices, then Γ =φ 0 if and only if
Γ0=^0 for some finite subset ΓQ of Γ.

Every map σ of the atomic formulas of L, as free generators of Φo,
into Φo, extends to an endomorphism of Φo, which in turn induces an
endomorphism ψ of ΦQ. It follows that if Γ =$> 0 then σΓ ^ 0. Every
map σ of the variables of L into terms of L extends in an obvious way
to a map of the terms of L into terms of L, hence of formulas of L
into formulas of L a transformation induced in this fashion will be
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called a substitution.

PROPOSITION 2. Let Γ be set of sentences S of the form yxL xnM

where the M are matrices, and Γf the set of all formulas σ M where σ is a
substitution and M is the matrix of some sentence S in Γ. Then Γ ==> 0 if
and only if Γr =>0.

Proof. Suppose that Γ' is consistent. Then λΓf — λtzΓ' = 1 for some
interpretation λ. Let μ be the special interpretation induced by the
homomorphism λ of ΦQ onto 2. Let F = yxL xnM be in Γ, and v be
an interpretation that agrees with μ except on x[y •••,#„. Since the
values vx for variables x are terms, we may define a substitution by
setting σx = ιx. Since μx = x for all variables x, vM — μσM— IσM= 1.
This establishes that μF — 1. Suppose Γ1 is inconsistent. Then for all
interpretations μ there is some F = yxL xnM in Γ and some substitu-
tion σ such that μσM = 0. Then setting ^ = μσxl9 i = 1, •••, n defines
an interpretation λ that agrees with μ except on xlf , xn, and such that
λM=0. It follows that μF = 0.

COROLLARY 2.1. //" /̂  is α ŝ ί o/ universal sentences, of the form
F — \fxi xnM, where M is a matrix, then Γ => 0 if and only if Γ0^Q
for some finite subset I\ of Γ.

A prenex sentence S of the language L may be written in the form

S = γα? n X,mi 32/x V#nl ..-XnmβVnM

where w, m1? ---,mn are natural numbers, the xpq and 2/r are variables,
and M is a matrix. The Skolem matrix of £ is the result σM of sub-
stituting σyr = sr(xll9 , a?rmr) and σz = z for all other variables z here
the slf , sn are new and distinct operation symbols which we may sup-
pose uniquely associated with the pair consisting of S and L. The Skolem
form of £ is the sentence γxn xnm σM. The Skolem form belongs to
the language L' obtained by adjoining the symbols slt * ,s n to L.

LEMMA 3. Let S be a sentence of the form

S = \fxu α?Imi32/χ xnl v xnmn3vF ,

where the xpq and yr are distinct variables and F is a formula in which
all occurrences of these variables are free. Let Ff result from F by sub-
stituting for each yr a term σyr that contains no variables other than
#π> * "> χrm. Let S' be the sentence

O = ^fXii ' * * Xim.X-zi ' * ' %nm -F
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Then Sf =φ&

Proof'0. We proceed by induction. For n — 0 the assertion is trivial.
For n — 1 it suffices to observe that if μ is an interpretation such that
μFf = 1, then defining an interpretation λ to agree with μ except on yl9

and setting λy1 — μσyiy gives λF — μF}', hence λF = 1. For n > 1, form
JF"' from F by substituting σ?/r for yr, all ?/r except yn, and let $" =
\fxn ••• α?nm jyF". Then the case % = 1 applies to give Sf =^S", and
the case % — 1 to give S" => S.

PROPOSITION 4. Lei Γ 6β a set of prenex sentences of a language L,
and Γ1', i% cm extended language L', ^ β sβί 0/ αM Skolem forms of the
sentences in Γ. Then Γ holds in a model 21 of L if and only if Γ' holds
in some extension 2t' of % to a model of L\

Proof. By an induction it evidently suffices to establish the con-
clusion under the assumption that Γ1 results from Γ by replacing a
single sentence £ by its Skolem form S'. If Γ* holds in an extension
3ί' of Sϊ to L', it follows by Lemma 3 that Γ holds in 21', and, since Γ
belongs to L, that Γ holds in 91. For the rest, by a second induction it
suffices to establish the conclusion for S=yx19 , xm3yF, Sf=\fx± -xmσF,
F a formula, σxt — xi9 i = 1, , m, and σy — s(x19 , %m), where s does
not belong to L and U is obtained by adjoining s to L.

Assume now that Γ holds in 21. For any al9 « , α m in the domain
A of 21, there exists an interpretation μ in 2Ϊ such that μx, = aiy i — 1, , m.
Since μS = 19 it follows that μ(3yF) = 1, and there exists an interpre-
tation Λ that agrees with /̂  except on y such that λF — 1. By the axiom
of choice we may define a function / from Am into A by choosing for
all a , , am interpretations μ and λ as above and setting f(al9 , αw) =^2/.
Extend 2ί to 2ί; by defining 2I's = / . If μf is an interpretation in 2ί',
then μf agrees with some μ9 λ as above on the variables xl9 •• ,a?m.
Moreover, μ'σy = /(^'a?j, , ̂ 'a?OT) = /(α^ , am) = 2̂/, whence ^ V F =
ΛF= 1. It follows that /^'S' 1 for all interpretations μr in 2Γ, whence
Γ holds in 2ΐ\

COROLLARY 4.1. // Γ is any set of prenex sentences, then Γ =φθ if
and only if ΓΌ φ 0 for some finite subset ΓQ of Γ.

Every sentence is equivalent to a prenex sentence, and, indeed, a
normal sentence. This follows by induction from various immediate con-
sequences of the definitions, of which ^(F A G) <==Φ {~F V ~G) and
yx(F A G)^>(yxFA yxG) are typical. In fact, it is easily seen that

5 C. C. Chang pointed out to me a gap in an earlier version of this proof.
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every sentence S is equivalent to a normal sentence Sf such that a re-
lation symbol occurs positively (negatively) in S' only if it occurs posi-
tively (negatively) in S.

In view of this, Corollary 4.1 yields the Compactness Theorem.

PROPOSITION 5. If Γ is any set of sentences, then Γ = ) 0 if and only
if Γn^Ofor some finite subset ΓQ of Γ.

4. The main theorem* Let S be a prenex sentence, of the form

A second sentence So will be said to arise from S by duplication if
( i ) πu , π are substitutions such that all πtxpq = xι

m, ntyr = y\,
where the xι

m and y\ are distinct variables and
(ii) SQ results from πτM Λ Λ πaM by prefixing quantifiers γα?Jg

and ^yl

r in some order such that, for p <̂  r, γa£β precedes 32/*.

PROPOSITION 6. If SQ arises from S by duplication, then S=^> So.

Proof. Let £ have Skolem matrix σM, in the language U, where
σxm = xpq and σyr — sr(xn, xrm). By Proposition 4, if & holds in any
model 31, then its Skolem form Sr holds in some extension SI' of 3ί to
U. If μ is an interpretation of Lr in SI', then every substitution in-
stance of σM holds in μ in particular, all π^M hold in μ, whence
A πtσM holds in μ. But A πi<Wkf results from A πM by substituting
sr(xu, •• ,4m ) for each y\, whence, by Lemma 3, So holds in 31', and
therefore in SI.

For S as before, a second sentence So will be said to arise from S
by specialization if

(iii) θ is a substitution such that θyr = yr, while each θxpq is a term
in certain new variables ux ,ua together with the yr for r < p and

(iv) So results from ΘM by prefixing quantifiers yuh and 3 ^ in
some order such that γu7 i precedes 3 ^ if uΛ occurs in any θxpq for
p ^ r, and 3?/s precedes 3 ^ if ?/s occurs in any θxpq for p rg r.

PROPOSITION 7. IΓS 0 arises from Sby specialization, thenS^>SQ.

Proof. Let S have Skolem matrix σM in U as before. Define a
substitution ^ by setting pz = 2; for all variables 2 other than the 2/r> and,
by recursion on the order of quantification of the yr in So, defining
pyr — pθo yr = sr(pθxn, , pθxrπlr). Since all 2/β that occur in ^σ?/r occur
in some &£p(i for p ^ r, all such ys precede 2/r i

n So, and the recursion
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if legitimate. Since θyr — yr, pθyr ~ pyr = pθσyr by the above definition,
while for all other variables z, σz ~ z and again pθz — pθσz. Suppose
now that S holds in a model 21 of L, and hence, by Proposition 4, that
the Skolem form Sf of S holds in an extension 2Γ of 2ί to U. Then, for
every interpretation μ in 2Γ, all instances of σM hold, and, in particular,
pOσM holds. Since pθσ = pθ, pOσM = pθM. Now / tfΛf results from ΘM
by the substitution /?, and puh — uh, while ρyr contains only those ulh

that occur in the pβxpq for p <. r by induction, using (iii), these are
among the uh that occur in θxpq for p ^ r, and hence among the uh

that precede yr in So. Therefore Lemma 3 applies to establish that SQ

holds in 2X; and thus in 21.
Let Sι, S2 be prenex sentences of the form, for 5 = 1,2,

with Skolem matrices σMs in a language L', where σ^ g = x8

pq, σyl =
s? (ίcϊi, a#m.r). Then Sι and S 2 will be called propositionally inconsistent
if there exists a substitution ^ in U that is one-to-one on all atomic for-
mulas of each σM8 SUCh that ησM1,ησM*=$>0.

PROPOSITION 8. If S1, S* are propositionally inconsistent, then Sι S2==>0.

Proof. Suppose S\ S 2 were consistent, hence both held in some
model 2ΐ of L. Using Proposition 4, all instances of σM1 and σM2 would
hold for all interpretations in a certain extension 2ί' of 2ί to a model of
ZΛ Then ησMx and ^σ-Λί2 would hold for all such μ, and μθ = 1, a con-
tradiction.

In propositions 6, 7 and 8 we have attempted to isolate the chief
ideas that underly the Main theorem the proof of this theorem can
now be accomplished by easier and more natural stages, although at
the cost of a small amount of repetition.

MAIN THEOREM. Let S1 and S'2 be prenex sentences such that Sι, S2=>0.
Then there exist prenex sentences T\ T\ Uι and U2 such that (1) T1 arises
from Sι, and Tλ from S2, by duplication) (2) Uι arises from Tι, and U2

from T\ by specialization and (3) Uι and U2 are propositionally incon-
sistent.

Proof. Let S\ S\ M\ M\ σ and L, Ώ be as above. (There is clearly
no loss of generality in taking common values of n and the mr} and a
common substitution <r, for Sι and S\) By Proposition 4, S\ S2 =^> 0 im-
plies that their Skolem forms are inconsistent. By Proposition 2, the
set of all instances of σM1 and σM2 is consistent. By Corollary 1.1
some finite set of these instances is inconsistent. Therefore there exist
substitutions ηl9 ---,ηa in the language U such that
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ηλσM\ , rjaσM\ ηλσM\ , ηaσM% =φ 0 .

Define substitutions πl9 •••, πa such t h a t all πtaή,q — afy and πty*=$t,

% and yf are new and distinct variables. Define σr such t h a t

σfx\\ = x% and σ'̂ /ί* = s*(x\l, , .τδ4r) thus σ'πtM* = τr,σilίδ for all π*.
Define 7; such that r ^ = ^ q then ησ'πjή8 = ηπ%σMι = η^μM1. Define
Mδ = A π*Λf then ?σ-'Mδ = A πtσM\ and yσ'ΛfJ, 7σ'Af|S=φO.

Let Sa be the sentence obtained from Mo by prefixing quantifiers
yaffq and ^yf in an order such that, if z and z' are two of these varia-
bles and the term ησ'z is shorter than the term ησ'z', then the quanti-
fication of z precedes that of zf. If p <J r, the term ^σ-'ar̂  = ηx% is a
proper part of the term τtσ

fφ = s*(^{, , ^<L r), whence y a ^ precedes
32/?* in S«. Thus Sυ arises from Sδ by duplication.

Let S\ have Skolem matrix σQMQ where σQx% = ^ and σo2/r =
s^i , x%, •••)> the arguments ranging, in order of occurrence in So,
over all a^ that precede yr in Sδ. One has ησ'x8jq = ^ σ 0 ^ , but
5?σ'ί/r = s δ ( ^ j , . , ^ f m?.) while the term ησύyf = s«*(..., 3 ^ , •) begins
with a different operation symbol and contains additional arguments.
To bring these into agreement, define a transformation χ on terms as
follows :

( 1 ) χz — z for a variable z
( 2 ) ^σ- '^ = χησ.yf

( 3 ) for any term t = ^(ί ! , , ίP(W)) not of the form rjσ'yf ,

χt = ^(χίi, •• ,χ£p(wo)

The clause (2) if legitimate, by an induction on length of ησ'yr. For
χησQyf — sf( , χη%%, •••) contains χησfylk only for those xησ 'y^ that
occur in some # ^ g for p ^ r, and it follows by an induction that for
all of these s < p. Let Ld be the language obtained from L by adjoin-
ing the symbols sfΛ Although neither χ nor χη is in general a substi-
tution, when applied to terms of Lo, which do not contain symbols s8

r,
the clause (2) is never invoked consequently the restriction % of χη to
Lύ is a substitution.

Since ησ'M\, rfσ
fMl =Φ 0, and 7 induces a transformation on terms, it

follows that χησ'Ml, χησ'Ml =Φ 0. Now tησ'yf — χησQyf by definition,
while σ'x% — x% = σox^ implies that χ^σ'a^J = Z^σo^

δJ; it follows that
fS = γj]σQMl = ηQσ QMl, the last since σQMl belongs to Lu. Hence,

Dropping the subscripts on Sjj, we now have the situation at the
beginning of the proof, but with a = 1, that is with a single substitu-
tion η such that ^σilί1, ^ M 2 = ) 0 . Prom the set of all terms that occur
in 7jσMB obtain a set J3δ by deleting successively any term that is ex-
pressible, by means of the operation symbols of L, in terms of the rest.
Since each ησy\ = s\(y}x\λ, •• , ^ L . ) where s\ does not belong to L, we
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can suppose that all the ησyl belong to B\ Let δj, •••,&£ be the re-
maining elements of Bδ. Then for each x\q (that occurs in M8) rμ^ is
expressible in terms of the ησyl and b\. More precisely, if u\y , u\ are
new and distinct variables, and r a substitution such that τyl = yσyl,
riι\ = δ*. then there exists in L a term θx\q in the variables y% and δi
such that τθx\q = ^ Q . We extend 0 to a substitution by setting θz = z
for all 2 other than the xι

pq, x2

m.
Let S8 be the sentence obtained from ΘM8 by prefixing the quanti-

fiers y/ul and 32/̂  in an order such that if z and zf are two of these
variables, and τz is shorter than τz\ then z precedes zr in S\. To verify
that So arises from Sδ by specialization, we observe that, for (iii), if yl
occurs in θxm then τyl — ησyl is a proper part of τθx\q = rtχ\q whence
r < v and, for (iv), if z is any y\ or u\ and 2; occurs in βx\q for p ^ r ,
then τz is a part of τjχ\q which is in turn a proper part of rtσy\ — τy\,
whence z precedes yl in SI.

Let So have Skolem matrix σQΘM8, where σ&m = z for all variables
z other than the yl and σoί/?

δ =sJr( , ^ L •••)> the arguments ranging
in order over all 24 that precede y\ in *S§. From ^σikί1, ησM1 =φ 0 it re-
mains to construct 0̂> one-to-one on the atomic formulas of σ^βM1, σ0ΘM'\
such that η0σoΘM1

yηQσoΘM'z=^O. For this define a transformation χ on
terms as follows :

( 1 ) χz — z for a variable z
( 2 ) χθτσyl = χτσoyl
( 3) for any term t = w(tu , ίpCw0 not of the form r#σ?/δ,

^ί = w(χtl9 ---,χtpW) .

As in an earlier situation, this definition is legitimate, and the restriction
ηQ of χτ to the language Ld obtained from L by adjoining the symbols
sir is a substitution. As before we conclude from yjσM\ ησM'1 => 0 that
%τθσM\ χτOσM* => 0,
Now

and

It follows that χτθσM8 = yQσQΘM\ whence

It remains to show that %σ-0 = χrσ-0 is one-to-one on the terms of
each #Mδ. We show first that r#σ is one-to-one on such terms. These
terms are terms in the variables u\ and yl, containing only the operation
symbols of L. Note that τθσui = τθu\ = τui = δj and r^σ j/J
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From the construction of B, it follows that, for two such terms t and
V', τθσt — τθσt' cannot hold for one of t, V a variable unless t = V. Sup-
pose now that t = w(tlf , tpM) and V = w'(^, , t'?W)). Comparing
the first symbols we conclude from τθσt = τθσV that w — w', and the
arguments agree :

r&r^ = τθσt[ i = l, , ρ(w) — p{wf) .

By induction on the length of the shorter of ί, £' we conclude that each
tι ~ t[, whence t — V.

Finally, χτσQyί = χτθσy* by definition, and χτσQu8 — χτui = γτθσu*.
Hence χτσ0 — χrθσ on terms of ΘM8. But χ is evidently one-to-one on
terms that do not contain the symbols s8

ύr. Hence, for terms t and V of
ΘM8, στσQt = tτσjt1 implies χτθσt = χτθσV', hence τθσt = τθσVy and, by the
property of τθσ established above, t — V. This completes the proof of
the Main Theorem.

5. The Interpolation theorem. Let S and T be sentences of a lan-
guage L such that S =$>T. Then there exists a sentence S° of the language
L such that S ==> S°, S° =Φ T, and that a relation symbol occurs 'positively
in S° only if it occurs positively in both S and T, and occurs negatively
in S° only if it occurs negatively in both S and Γ.

Proof. S is equivalent to a prenex sentence S1 such that a relation
symbol occurs positively (negatively) in S1 only if it occurs positively
(negatively) in S. And ~ T is equivalent to a prenex sentence S2 such
that a relation symbol occurs positively (negatively) in S'z only if it oc-
curs negatively (positively) in T. Since S1, S2 ==> 0, by the Main Theorem
there exist prenex sentencs U1 and U2 such that S1 =φ U1, S2 =φ U2, that
U1 contains the same kinds of occurrences of relation symbols as S1 and
U2 as S2, and that ησM1, ησM2=^0 where σM\ σM2 are the Skolem matri-
ces of Z71, U2, and η is a substitution that is one-to-one on the atomic
formulas of each of σM1, σM2. All this is not altered if we modify U1,
U2 by reducing Mι, M2 to normal form.

It will suffice to find S° such that Uι =φ> S°, and S°, U2 =φ 0, and a
relation symbol occurs positively (negatively) in S° only if it occurs posi-
tively (negatively) in Uι and negatively (positively) in U2. Write M8 =
V M\, each M\ = /\M\jy and each M\5 either A\} or ^Afj where A\3 is
an atomic formula. Define M° = y/M°t where MS = 0 if Λf J =Φ 0, and
otherwise Λf? results from M by deleting all M\3 such that ^ ^ I J j is not
equivalent to some τjσM\k. Let S° be the sentence obtained from U1 by
replacing its matrix M1 by the matrix M°. It is immediate that the oc-
curences of relation symbols in S° are related to those in U1 and U% in
the required manner. Moreover, since M1 =^> M° is immediate, it follows
easily that U1 =φ S°.
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It remains to show that S°, U2 => 0, and for this it will suffice to
to show that ψM\ ησM2 => 0. Since ησM1 A ?}(rM2=$0, then for all i, h,
ηvM\ Λ ησM\ =φ 0. We want to conclude that for all i, h, ^σMSΛ^
Since σ is clearly one-to-one on the terms of M1, so is ησ, and
implies ifcfl=φθ, whence by definition M\ = 0, hence σ̂ ΛfS = 0 and the
conclusion follows. If 3?σj|ί2A ==> 0 the conclusion is immediate. In the re-
maining case there exist j and k such that <^7jσM\jζ^ ησM\lc. But then,
by definition, M\ still contains the conjunct M\3, and again
Since ησMl Λ ησ-Ml ^ 0 for all i, h, it follows that
completing the proof.

It was stated in the introduction that the Interpolation Theorem
remains true for the predicate calculus with identity. Precisely, we
restrict the definition of a language to apply only to those that contain
a fixed relation symbol e of rank two, and the definition of interpreta-
tion to admit only those μ for which μe is the identity relation on the
domain of μ. The relation S^T then acquires a stronger meaning.
Nonetheless, the Interpolation Theorem as stated remains true in this
new sense. (It may be well to note that e is included among the re-
lation symbols mentioned in the conclusion of the theorem.) In fact, all
statements in this paper remain true in the new sense, apart from two
modifications. First, Proposition 1 must be modified by enlarging J to
contain (the coset of) each formula e(t,t),t a term, and to contain any
formula Ff obtainable from a formula F in J by replacing an occurrence
of a term ί by a new term V, provided that e(ί, V) is in J. Second, in
the proof of the Interpolation Theorem, the M\ as described above must
be similarly enlarged by adjoining to each the finite set of all M\5 of
the form A or ~A, A atomic, such that Ml^Mlj in the present sense.

The Interpolation Theorem can be refined in other ways. Condi-
tions can be imposed on the internal structure of the atomic formulas
r(ti> * * *>*W)) containing the relation symbol r. For example, define
an /-occurrence of r in S to be one in which each tif for i e /<= {1, p(r)}
is a variable universally quantified in S. Then it can be required that
r have Z-occurrences is S° only if it has /'-occurrences in $ and /"-oc-
currences in T, where J" c / c= /'. Alternatively, stronger conditions
can be imposed on the external context in which a relation symbol occurs.
For example, suppose all positive occurrences in £ of a relation symbol
r are in formulas A ' α A where A and A! are atomic formulas, and that
none of the relation symbols appearing in the parts A! of these formulas
have positive occurrences in S, except possibly in parts A then S° can
be required to contain no positive occurrences of r. Such refinements of
the Interpolation Theorem have proved useful in the study of homomor-
phisms and subdirect products of models, but because of their special
nature it does not seem worthwhile to give separately formal statements
and proofs of these results.
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PROPERTIES PRESERVED UNDER HOMOMORPHISM

ROGER C. LYNDON

l Introduction. The main result of this paper is a characteriza-
tion of those sentences of the predicate calculus whose validity is pre-
served under passage from an abstract algebraic system to any homo-
morphic image of the system. An algebraic system is here construed
to be a set together with certain operations and relations, including
identity, defined for elements of the set. The sentences under con-
sideration will contain symbols for these operations and relations, and
variables whose range is the set of elements of the system, together
with the usual logical symbols, but will contain no variables whose range
consists of sets, relations, or functions. Such a sentence will be called
positive if it contains the logical symbols for conjunction, disjunction
and quantification only, but not the symbol for negation. It will be
shown that:

(*) A sentence of the predicate calculus is preserved under homo-
morphism if and only if it is equivalent to a positive sentence.

An example is provided by the usual statement of the commutative
law for multiplicative systems:

\/xy - xy = yx .

This is a positive sentence, and indeed every homomorphic image of a
commutative system in commutative. As a second example, upon
eliminating the symbol for " if then ", the left cancellation law takes
the form

\fxyz ~-(xy — xz) V y = z .

This sentence is not positive, and, indeed, from the fact that the left
cancellation property is not preserved under homomorphism we conclude
that it is not expressible by any positive sentence.

It is not difficult to show that every sentence equivalent to a positive
sentence is preserved under homomorphism; although the converse seems
nearly as obvious intuitively, to prove the converse appears to be a
matter of considerable difficulty. That positive sentences are preserved
was noted by the author [6], and also by E. Marczewski [9], who raised
the question of the converse. A proof, by methods quite different from
those used here, was announced by J. Los [5], but such a proof has
not been published. The result has also been stated by A. I. Malcev
[8], who appears to indicate a method of proof.

Received October 22, 1958. Work supported in part under grants from the National
Science Foundation.
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The central result of this paper, Theorem 5, is in fact a stronger
form of the assertion (*) above. Some consequences and variants of
this theorem are given, and examples to show that it can not be
strengthened further in certain obvious ways.

The content of this paper lies within the theory of elementary
classes as formulated by A. Tarski [12, 13]1. We define and use here
numerous concepts due to him, and, in particular, that of elementary
extension, due to Tarski and R. Vaught [15]. We have tried to make
this paper self contained to the extent that the main line of reasoning
should be intelligible and convincing under any reasonable interpretation
of the concepts employed; for the technical definitions necessary for
rigor in the details of the proofs, we refer to an earlier paper [7].
Further, we borrow from that paper the relevant definitions and a proof
for the following theorem, which is the cornerstone of the present paper:

INTERPOLATION THEOREM. If S and T are sentences of the predicate
calculus, and S implies Γ, then there exists a sentence M such that S
implies M and M implies T, and that a relation symbol occurs positively
(negatively) in M only if it occurs positively (negatively) in both S and
T.

The author has profited from many discussions with L. Henkin and
A. Tarski.2 The relativization embodied in Theorem 5' was suggested
by A. Robinson.3

2* Sentences increasing in a relation symbol. Roughly, a property
of a relation may be called increasing if, whenever it holds for a given
relation it holds for any larger relation. Passing from properties to the
sentences that express them, we make a precise definition. Let Q be
a subset of the set R of all relation symbols in a language L, and let
Qr be a set of new and distinct relations symbols qf in one-to-one
correspondence with the symbols q of Q in such a way that q' has the
same rank as q. Let I be the set of all sentences

for all q in Q. Let /7 be a set of formulas of L, and Γ' the result of
replacing the symbols q in Γ by the corresponding q'. We call Γ
increasing in Q if Γ,

1 We use the word ' elementary ' in preference to 'arithmetical', and, by an ' elementary
class ', mean always what is commonly called an ' arithmetical class in the wider sense
(AC*)'.

2 In particular, while the author was visiting at the University of California, Berkeley.
3 At the American Mathematical Society Summer Institute, Ithaca, 1957.
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PROPOSITION 1. If a set Γ of formulas is positive in all the relation
symbols in a set Q, then Γ is increasing in Q.

Proof. It suffices to treat the case that Γ consists of a single
formula F. If F is an atomic formula or, vacuously, the negation of
an atomic formula, the conclusion is immediate. The general case
follows by an obvious induction.

The converse is contained in the following.

PROPOSITION 2. Let L, Q, Q' and I be as before. Let Σ, Γ, A be
sets of sentences L, and let Σ' result from Σ, and Δ' from Δ, by replacing
each q by the corresponding q'. If Σ, Σ', Γ, I=^Δf

y then there exists a
set Π of sentences P, positive in all the symbols of Q and not containing
the symbols of Q\ such that Σ, Γ ==> Π and Σ, Π =φ Δ.

Proof. It suffices to treat the case that Δ consists of a single
sentence D. By the Compactness Theorem (Corollary 4.1 of [1]), the
hypothesis will hold with Σ, Γ, I replaced by finite subsets, and hence,
taking conjunctions, by single sentences: S, S', C, J =$D', where C is
positive in all the q in Q, and J is a conjunction of sentences I(q, qf).
It follows directly that S, C==> J A S' ID D''. The symbols q' do not occur
at all in S or C. The symbols q occur only in the part J of J Λ Sf u Df,
and since each occurrence of a symbol q is negative in J, it is positive
in J Λ Sf z> Dr. By the Interpolation Theorem there exists a sentence
P, not containing the qf and positive in the q, such that S, C=$ P and
P^JASrZ)D\ FromS, C^P we have Σ,Γ^ P. From P^Jf\SfZ)D'y
replacing each q' by q, it follows that P =φ J* Λ S D D where J* is the
result of replacing each q' by q in J. In fact, J* is a theorem, whence

z) D, hence PfS^Df and Σf

COROLLARY 2.1. A set Γ of sentences is increasing in the symbols
of Q if and only if it is equivalent to a set Π of sentences positive in the
symbols of Q.

3. Q-maps If Γ is a set of sentences of the language L, let F* be
the set of all models of L in which all sentences of Γ hold. If K is a
set of models of L, let if* be the set of all sentences of L that hold
in all models in K. It follows that Γ** is the ' logical closure' of Γ,
the set of all sentences S such that Γ =φ S. The elementary closure of
K is ϋΓ**, and K is an elementary class if K — if**, that is, if K = Γ*
for any Γ. Two models 51 and S3 are elementarily equivalent if 31*=33*,
that is, if exactly the same sentences hold in 3ί as in 93.

A model 31 is submodel of a model 33 if the domain A of 31 is a
subset of the domain B of S3 and if each 3ίw, 3Ir is the restriction of
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the corresponding 35w, 35r to the subset A of B. If />« is any interpreta-
tion in 31, there is a unique interpretation λ in 95 such that μ and λ
agree on all variables of L. 35 is an elementary extension of 31 if for
all μ, λ as above, and F a formula of L, if F holds in μ then F holds
in λ. In particular, SI and 35 are elementarily equivalent.

If SI and 35 are models with domains A and B, a map# of A onto
B will be called a Q-map, for Q g ί a set of relation symbols, if, first
of all, θ ' preserves' all operations and relations:

)(aL, , αp(w))] - (35w)(ft*!, , 0αp(w)) , all w in T7 ,

(Sir) (αx, , αp(r)) =φ (35r) {θa,, , 0α,(r)) , all r in 22 ,

and, moreover, the implication in the last line is an equivalence for all
r not in Q. More concisely, θ(%w) = 35w, #(3Ir) E 35r, with #(3Ir) = 35r
for r not in Q. If 0 is one-to-one, we speak of a Q-isomorphism. An
O-isomorphism, for 0 the empty set, is an isomorphism in the usual
sense.4

If θ is any map of SI onto 35, its kernel k, defined by k(a, a') if
and only if θa = θa!, is an equivalence relation on A. If θ is a O-map
of SI onto 35, then k is a congruence relation on 31, that is, it is sub-
stitutive with respect to all the SIw and Sir. For any congruence k on
a model SI, the operations %w and relations Sir of 31 induce operations
%w\k and relations 3Ir/& on the set A\k of equivalence classes in A
under k; the quotient model 31/fc is defined to have domain Ajk, opera-
tions (3I/fc)w = Stw/fc, and relations (SI/fc)r = 3Ir//b. It is immediate that
the natural projection of A onto A\k is a O-map, and that if θ is any
O-map of SI onto 35, with kernel k, then θ induces a naturally an iso-
morphism of 2I/& onto 35.

We proceed to the statement of a proposition that contains all that
we require about elementary extensions. For 31 a model of the language
L, with domain Λ, define a language LA by adjoining to L new and
distinct constants (operations of rank 0) wa for all a in A, and a new
relation eA of rank two. Extend 31 to a model 31^ of LA by defining
Sl^α = α, that is, %Awa is the constant operation with value α, and
3 1 ^ to be the identity relation on A. Then 31^ is the set of all sentences
of LA that hold in 31A.

PROPOSITION 3. If 31 and 35 are models of L, and 58 has an ex-
tension 35' to LA in which all sentences of 313 hold, then 35 has an
0-image that is an elementary extension of 31.

4 The concept of Q-map and that of elementary extension, as well as various results
mentioned here, are special cases of more far-reaching ideas developed recently by H. J.
Keisler [4]. The use of constants wa, in the paragraph after next, derives from the
'diagrams' of A. Robinson [11]. Proposition 3 in contained in Th. 1.11 of [15].
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Proof. Let k = 33'e .̂ Since the sentences expressing that $lAeA, the
identity on A, is a congruence on UA are in SIJ, they hold in 33', whence
& is a congruence on SB'. The quotient system (£' = 33'/& then also
satisfies SI*, and &eA is the identity on the domain C of (£'. The
restriction © of (£' to L is 33/fc, an O-image of β.

Define a map 0 from A into (7 by setting θa = &wa. Now,
St^ίαx, - — ,ap(w)) = α' if and only if eA(w(wai, , wβp(fo)), wα,) is in SIA*,
hence if and only if this sentence holds in (£', that is, if

The same reasoning shows that SIAr(aly , αp(r)) holds in SI if and only
if fS,'r(θal9 , 0αp(r)) in E\ This establishes that is an O-map of 31̂  onto
a subsystem 02I4 of (£', and, in fact, taking r above to be eΛf a = α' if
and only if #α = #α', whence θ is an isomorphism.

Since θ$ίA is a submodel of (£', taking restrictions to L, #31 is a
submodel of (E. Let μ be an interpretation in #21, and Λ the interpreta-
tion in (E that agrees with μ on all variables. Let F be a formula of
L with free variables xl9 , a?n, and D the sentence that results from
F by replacing each xi by wα. where μxt — λx% — θat. If μ and /i are
extended to LI in such a way that each μwa. — λwa. — θaiy then μF = μD
and λF — W. Now, if μF = 1, /̂ D = 1, and, since D is a sentence, D
holds in 02I4, hence in 31 .̂ Then D is in SI,** and hence holds in (£',
whence λD — 1 and Λ.F = 1. This establishes that £ is an elementary
extension of ΘA.

It is now a trivial matter to construct © from (E by replacing each
element to in K by α. Then ® is an elementary extension of SI itself,
and the O-map of K onto 33 induces an O-map of ® onto 33.

We come now to the main result concerning Q-maps.

THEOREM 4. Let 31 be a model of the language L, and K an ele-
mentary class of models of L. Then the following are equivalent:

(1) all Q-positive sentences of L that hold in K also hold in 21;
(2) some elementary extension of SI is a Q-image of a model in K.

Proof. Assume (1). Let Γ = K* and Δ = SI*. Let Q, Q', and /
be as before. Let Δ' result from Δ by replacing each relation symbol
q in Q by the corresponding qf in Qr. Suppose Γ, I, Δ' inconsistent.
By the Compactness Theorem, Γ, I, Df => 0 where I) is a finite con-
junction of sentences from Δ, hence itself belongs to A. Then ΓfI^>
~Df, and, by Proposition 2, and Compactness, there exists a Q-positive
sentence P, not containing the symbols q'', wa, eA, that is, in L, such
that L =φ P and P =φ ~Zλ But Γ => P implies that P holds in K, and,
since P is a Q-positive sentence of L, that P holds in SI. Therefore P
holds in 31 ,̂ and P=φ~D gives a contradiction.
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It has been shown that Γ, 7, Δ' is consistent, hence holds for some
model (£ of the language LI obtained from L by adjoining the symbols
Qr, wa, &A- Let 3) be the restriction of (£ to the language UA excluding
the symbols g; since (£ satisfies Δ\ so does ®. Define a model 33' of
LA to agree with ® except that 33'g = ®g'; then 33' satisfies Δ. By
Proposition 3, some O-image 33* of the restriction 33 of 33' to L is an
elementary extension of 3ί.

Let © be the restriction of (£ to L; since & satisfies Γ, so does @,
and © is in K. Now @w = Sw = 33w for all w in W, and @r = (£r =
33r for all r not in Q, while, for q in Q, @g = &g while 33g = Φg' = Eg',
and, since (£ satisfies the seetences 7, @g £ 33g. It follows that the
identity map θ on the common domain C of @ and 33 is a Q-map of ©
onto 33. It follows that the O-image 33* of the Q-image 33 of @ is a
Q-image of @: the elementary extension 33* of 31 is the Q-image of @
in K.

To show that (2) implies (1), it suffices to show that if SI is a Q-
image of some 33 in K, and P in Γ is Q-positive, then P holds in 2ί.
Define a model (£ of the language Z/, obtained from L by adjoining the
symbols g', by taking as domain the common domain A of §1 and 33;
setting &w equal to the common value %w — 93w; for r not in Q, setting
g r = Sir = 33r; and defining Kg = 3Bg, Sg' = Stg. Since 33 is in iί, 33
satisfies P and so does (£. Since Si is a Q-image of 33, each 33g S SIg,
that is, each Kg g Kg', whence & satisfies the sentences /. Since P is
Q-positive, it follows by Proposition 1 that P,I=^Pf, whence P' holds
in K, and, since KP' = SIP, P holds in 31.

COROLLARY 4.1. An elementary class K is closed under Q-maps if
and only if it is the set of all models for some set of Q-positive sentences.

Proof. Assume K closed under Q-maps. Let K — Γ*, and let Π be
the set of all Q-positive consequences of Γ. If 31 is in /7*, some ele-
mentary extension 33 of 31 is a Q-image of a model & in K. But then
33 and therefore 3ί are in K. Thus 77* s Γ*; since 77 £ Γ implies
Γ* s 77*, if = Γ* = 77*. The converse is immediate.

COROLLARY 4.2. A seί o/ sentences is preserved under Q-maps if
and only if it is equivalent to a set of Q-positive sentences.

4. The Main Theorem* We now choose once and for all a relation
symbol e of rank two, and consider henceforth only languages L that
contain this symbol. A model SI of L will be called a relational system
provided Sle is the identity relation on the domain A of 31. We shall
speak of the set of all relational systems in an elementary class as an
elementary class of relational systems.
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The term homomorphism will be taken in the broad sense, for a
map that preserves all functions and relations, that is, an iϋ-map. The
term projection will be used for the narrower concept of O-map: S3 is
(the image under) a projection of 31 if and only if 33 is isomorphic to a
quotient system of 31. The other component of the concept of homo-
morphism in contained in that of enlargement, or iϋ-isomophism: S3 is
(the image under) an enlargement of SI if and only if S3 is isomorphic
to a system obtained from SI by replacing its relations by more ex-
tensive relations. It is easily ,seen that if θ is any homomorphism of
31 onto 33, then SI has an enlargement 31', defined by taking SIV = θ^f&r
for all r except, e, such that θ induces a projection of 31' outo 33.

THEOREM 5. Let SI be a relational system of the language L, and
K an elementary class of systems of L. Then the following are
equivalent:

(1) SI satisfies all sentences of L that hold in K and are
(positive in all relation symbols \
\ positive in the symbol e >
\positive in all relation symbols except e J

(2) 31 has an elementary extension that is
(a homomorphic image \
\a projection \ of a system in K.
mn enlargement >

Proof. Let Qx = R, Q2 = {e}, Q3 = R - {e}.
If 31 satisfies (2) it is a QΓimage of a system in K s ϋΓ**, and hence,

by Theorem 4, SI satisfies all QΓpositive sentences in i£*** = i£*.
For the converse, suppose that 31 is a relational system that satisfies

all the QΓpositive sentences in J5Γ*. By Theorem 4, there exists a model
K (not necessarily a relational system) in i£** and a QΓmap θ of (£ onto
a model 33 that is an elementary extension of SI. Since if is a class of
relational systems, iΓ* contains sentences requiring that e be interpreted
as a congruence, whence (Eβ is a congruence on (£. Since SI is a rela-
tional system, Sle is a congruence, and, indeed, the identity on the
domain A of SI. Since S3 is an elementary extension of SI, hence
elementarily equivalent to SI, S3e is a congruence on S3, and its restric-
tion to A is the identity on A. It follows that 33/S3β is an elementary
extension of SI.

The map θ induces a QΓisomorphism θ of (£/(£e onto 33/Ke. Since
Kβ g 33e, there is a canonical projection /c of 33/(£e onto S3/33e. Hence
KΘ is a Qj-map of the relational system (£/©e onto the relational system
33/33e. This completes the case of Qτ = R. For Q2 = {β}, (£ and S3
differ only in their values (£e and S3e, whence K/Ee = 33/(£e, and K is a
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projection of (£/(£e onto 33/33e. For Qz — R— {e}, (£e = 33e, whence
SS/(£e = 33/33e and θ is a Q3-isomorphism, that is, an enlargement, from
<E/(£β onto S3/93e.

It would be possible, by the same arguments, to generalize Theorem
5 to Q-maps, where Q g R may contain e or not, and indeed to maps
increasing in one set Q of relation symbols and decreasing in a second
set Q\ But, for simplicity, we shall rather restrict our attention to the
entirely typical case of homomorphisms.

COROLLARY 5.1. Let Kbe an elementary class of relational systems.
A sentence S is true for all homomorphic images of systems in K if
and only if S is a consequence of some positive sentence that holds for
all systems in K.

Proof. If S is a consequence of a positive sentence P that holds
for all systems in K, it follows by the theorem that P, and therefore
also S, hold for all homomorphic images of systems in K. Conversely,
if S holds for all homomorphic images of systems in K, and hence for
all systems having such images as elementary extension, it follows by
the theorem that S holds for all systems that satisfy the set 77 of all
positive sentences that hold for every system in K. Thus 77 =φ S, and
by the Compactness Theorem Plf , Pn => S for some finite set of
P19 , Pn in 77, whence P =φ S for P = Pτ Λ Λ Pn in 77.

COROLLARY 5.2. Let Kbe an elementary class of relational systems.
Every homomorphic image of a system in K itself belongs to K if and
only if K is the class of all systems satisfying a certain set of positive
sentences.

Proof. Let K= Γ*, and suppose that H(K) g K, where H{K) is
the class of all homomorphic images of systems in K. Let 77 be the
set of all positive sentences in Γ. Since 77 g Γ, it is immediate that
Γ* g 77*. By Corollary 5.1, every sentence S in Γ is a consequence of
some sentence P in 77, whence Γ* g 77*. It follows that 77* = Γ* = K.

COROLLARY 5.3. A sentence has the property that whenever it holds
for a system Si it holds for every homomorphic image of SI if and
only if it is equivalent to a positive sentence.

Proof. In Corollary 5.2, take K to be the class characterized by a
single sentence.

If a relational system SI satisfies the set of all positive sentences
true for a system 33, it follows from the theorem, with K = S3**, that
gome elementary extension SI' of SI is a homomorphic image of a system
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S3' that is elementarily equivalent to S3. In fact, by passing from the
originally given language L to the language LB, there is no difficulty
in establishing a stronger proposition, as follows: 31 satisfies all posi-
tive sentences true for S3 if and only if 31 has an elementary exten-
sion SI' and S3 an elementary extension S3' such that SI' is a homo-
morphic image of 33'.

Let H an elementary class of relational systems, and call a system
in H an H-system. The following relativized version of Theorem 5 is
contained directly in that theorem.

THEOREM 5'. / /SI is an H-system and K an elementary class of
H-systems, then the following are equivalent:

(1) 31 satisfies all positive sentences that hold in K;
(2) SI has an elementary extension that is a homomorphic image of

a system in K.
The relativized forms of the corollaries now follow as before, provided
the relation P=$T is replaced by that of H-implication: H,P=$>T,
and equivalence by H~equivalence. As an example, the relativized
version of Corollary 5.3 asserts the equivalence of the following pro-
perties of a first order sentence S of group theory:

(1) if SI and S3 are torsionfree groups, if S3 is a homomorphic image
of SI, and S holds for SI, then S holds for S3;

(2) there exists a positive sentence P such that, for each torsionfree
group 31, S holds if and only if P holds;

and hence, further,
(2) there exists a positive sentence P such that the equivalence of S

and P follows from the axioms for torsionfree groups.

5* Complementary examples* We first note that the conclusion of
Theorem 5 does not follow without the requirement that the class K be
elementary. For this, let L be the language of elementary identity
theory, without operation symbols and without relation symbols other
than e. The relational systems for this language are simply sets. Let
K be the class of all finite systems; clearly H(K) g K. It is well known
and easily seen that if* consists only of those sentences that are true
in all models. A fortiori, every system, infinite or finite, satisfies all
positive sentences that hold for K. But an elementary extension of an
infinite system is itself infinite, hence cannot belong to H(K).

Next we show that, even if K is elementary, the class H{K) of all
homomorphic images of systems in K need not be elementary; hence
the reference to elementary extensions in Theorem 5 can not be deleted.
For this, let L contain no operation symbols, and only a single binary
relation symbol r in addition to e. Let S be the following sentence:
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S = 3X3yyz3t: r(x, y) A r(x, z) z> r(x, t) A r{z, t) .

For n — 1, 2, •••, let Sn be the following sentence:

Sn = g a ^ i •••&»• r(ίc0, αJx) Λ r(x0, x2) A Λ r(a?0, αn)

Λ r ( ^ , x2) A r(x2, x3) A Λ r(xw_x, xn) .

We shall establish the following:

If S^P, and P is positive, then Sn=^P for some n = 1, 2, •••;

Λewce, defining K= S*, H{K)* = {S19 Si9 •••}**.

We use the Main Theorem of [7], with S1 = S and S2 = ~ p . The
Skolem matrix M 1 of S has the form

r(s0, sO Λ r(s0, z) D r(s0, s(«)) Λ φ , s(«)) ,

where s0, s1 are Skolem functions of rank 0, and s of rank 1, in an ex-
tension V of L. The Skolem matrix M2 of ^ P is negative. If N\ N2

are the Skolem matrices of U\ U\ as in the Main Theorem of [7],
evidently JVa is negative, whence Nι and hence U1 are positive. We
have that Uι ^ P, and, from the relation of U1 to S\ that U1 follows
from a universal sentence with positive matrix M, where M follows by
propositional calculus alone from a set Σ of instances of M1. Define a
sequence of terms ί0, tτ in L' by setting ί0 = s0, ίx = §i, and, induc-
tively, ίn+1 = s(ίn) for all n ^ 1. Define a substitution χ on the atomic
formulas F of L' by setting χF = F if .F is r(ίn, ίΛ+1) or r(ί0, ίΛ+1), for
some w = 0, 1, 2, , and setting χF = 0 otherwise. Since ikf is positive
and each χF=$>F, χM^M. Since I ^ i k f by propositional calculus,
χΣ =#> χikf. Thus χΣ =φ> M. Now χiJ is evidently equivalent to the set
of all formulas r(ί0, tn+1) and r(ίro, ίra+i), whence, by the Compactness
Theorem, M is a consequence of a finite set of them, and hence, for
some n, of

r(t0, tx) A Λ r(ί0, ίn) Λ rfo, ί2) Λ Λ r(tn-l9 tn) .

But now Z71, which follows from Λf, follows equally from the Skolem
matrix of Sn, hence from Sn itself, and Sn =φ P.

Let SI be a relational system for L. The sentence S evidently
requires that the domain A of 2ί contain an infinite chain of elements,
not necessarily distinct, α0, alf , such that SIr(α0, an) and 5Ir(αw_χ, αw)
for all n ^ l . Since the image of such a chain in any homomorphic
image of 21 is again such a chain, every 21 in H(K) contains such a
chain. On the other hand, each condition Sn requires of a system 21
that it contain a finite chain α0, αx , an related in this fashion, whence
a system 21 is in H(K)* if it contains such chains of unbounded lengths.
If 21 is a system with domain A = {α0, alf •••} and 2tr(α«, α,) is true if

only if j < i, evidently 21 contains chains an,an-u * ,α 0 for all w,
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but no infinite chain of the kind required by S, whence §1 is in H(K)*
but not in H(K).

We conclude by showing that it is not in general decidable whether
a sentence of a first order language is equivalent to some positive
sentence.5 A first order theory T may be taken as consisting of a
language L together with a consistent logically closed set Γ = Γ** of
sentences of Lf the theorems of T. The theory T is undecidable if
there is no effective method of deciding, for all sentences S of L,
whether S is a theorem of T, that is, if the set Γ is not recursive;
this concept is of interest primarily in the case that there exists a
finite, or at least recursive, set ΓQ of axioms, such that Γo** = Γ. We
shall confine our attention to finitely axiomatizable undecidable theories
that have the following additional property:

(*) every model in which Γ holds has as homomorphic image some
one-element model in which Γ holds.

Two important examples of such theories are the following:
(1) L contains at least one relation symbol (other than the identity

symbol) of rank greater than one, Γ empty;6

(2) L contains the identity symbol and an operation symbol w of
rank 2, and Γ is a set of axioms for group theory with e interpreted
as equality and w as the group composition.7

Let Σ be the set of all sentences S of L such that S holds in every
one-element model in which Γ holds. Clearly Γ £Ξ Σ, Moreover, it is
easily decidable, for C the conjunction of all axioms in Γ09 whether
C D S holds in all one-element models, and hence whether S is in Σ.
Consequently, it is not decidable whether a sentence in I7 is a theorem.

Let S be in Σ. Suppose first that S is a theorem. Then Γ =̂> S,
whence ^S is T-equivalent to the false sentence 0, which is positive;
that is, Γ =φ ~S D O Λ O D ~ S . Suppose now that S is not a
theorem. Then there exists a model δί in which Γ holds while S fails,
and hence ^ S holds. In view of the assumption (*) 21 has as homo-
morphic image some one-element system 33 in which Γ holds. Since S
is in Σ, S holds in S3, that is, ~S fails in S3. Since Γ and ^ S both
hold in 21, while Γ holds and ^S fails in the homomorphic image S3 of
21, it follows from Theorem 5' that ~S is not T-equivalent to any posi-
tive sentence. We have shown that, for S in Σ, ^ S is equivalent to
a positive sentence (and, indeed, to the positive sentence 0) if and only
if S is a theorem. It follow that there exists no effective method of
deciding, for sentences S such that ~ S is in Σ, nor, therefore, for all
sentences of L, whether S is T-equivalent to a positive sentence.

5 For the main concepts of this paragraph, see [14].
6 See Church [1].
7 For the undecidability of the elementary theory of groups, see [14, p. 84] and the

reference to Tarski given there; see also [10].
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PROPERTIES PRESERVED IN SUBDIRECT PRODUCTS

ROGER C. LYNDON

1. Introduction. A characterization is obtained of those sentences
S of the predicate calculus such that S holds for a subdirect product
of general algebraic or relational systems1 whenever it holds for each
component system. We consider formulas in a first order language
equipped with symbols for the operations and relations of the systems
under consideration, and, in particular, with a symbol for the identity
relation. An atomic formula is one obtained by inserting terms in the
argument places of a relation symbol. A positive formula is one that
can be built up from atomic formulas by means of conjunction, tdis-
junction, and of universal and existential quantification (but without
using negation). A special Horn formula is one of the from P Z) F
where P is a positive formula and F is an atomic formula, or any
formula obtained from such formulas by conjunction and universal quanti-
fication. A sentence is a formula without free variables. As a corol-
lary to our main theorem we obtain the following :

A sentence has the property that it holds for a subdirect product of
systems whenever it holds for each component system if and only if it is
equivalent to a special Horn sentence.

An example of a special Horn sentence is provided by the condition
for an associative ring to be semisimple in the sense of Jacobson [7,
Proposition 1, p. 9], which is expressed by the following sentence :

+ u = xzyu A uxzy — xzyu] ID z = 0 .
We admit among subdirect products the subdirect product of an

empty set of systems, which, from the definition, proves to be a trivial
system with a single element and all relations universal. The sole effect
of excluding this trivial case would be to admit in special Horn sentences
clauses ~ P along with the clauses P D F.

A. Horn [6] considered the more general class of all sentences
obtained by universal and existential quantification from conjunctions of
formulas of the type P ID F (or ~ P), where P is a conjunction of atomic
formulas and F an atomic formula. Horn showed that all such sentences
are preserved under (full) direct products, while C. C. Chang and Anne
C. Morel [4] showed that there are sentences preserved under direct
product that are not equivalent to any such Horn sentence. The problem
of characterizing syntactically those sentences preserved under direct

Received October 22, 1958. Work supported in part under grants from the National
Science Foundation

i This concept is due to Tarski; see [13], [14].

155



156 R. C. LYNDON

product, as well as that of determining under what algebraic processes
Horn sentences are preserved, remains open. That the general Horn
sentence is not preserved under subdirect product is shown by a simple
example : the family of all finite subsets of an infinite set constitutes,
in the usual sense, a ring without unity, that is, in which the Horn
sentence jxyy xy = y fails, although it is a subdirect product of two-
element fields, in which this sentence holds.

The earliest result of the kind under consideration is that of G.
Birkhoff [3] who showed that those classes of algebras that are closed
under formation of direct products, subsystems, and homomorphic images
are precisely those classes definable by universally quantified equations.
In addition to the work of Horn, Chang, and Morel, properties preserved
under direct products have been studied by K. Bing [2], K. Appel [1],
and A. I. Taimanov [12], while subdirect products have been studied by
A. Malcev [11].

We first proved the result stated above by means of the theory of
Natural Inference of G. Gentzen [5]. The proof offered here seems
preferable in that it is simpler, despite the fact that it contains a double
induction (which could, with some artificiality, be removed), and in that
it presupposes less. We have tried to make the present exposition
readable as it stands to one familiar with the general ideas but for
various details, in particular, for precise definitions, and for an Interpo-
lation Theorem which plays a central role in the argument, we refer to
our earlier papers [9], [10].

2. Preliminaries, Let L be a first order language, with operation
symbols w of prescribed ranks p(w), and relation symbols r of ranks
p(r), among which is the symbol e for the identity relation, of rank
p(e) = 2. A model 21 for L consists of a set of operations %w on a
certain non-empty domain A, and of relations Sir on A, indexed by the
operation symbols w and relation symbols r of L, and of corresponding
ranks. A relational system is a model such that 2Ie is the identity
relation on the domain A of 31.

Let SIj, for all i in an index set I, be relational systems for a
language L. The direct product 31 of the 3I« is defined as follows. The
domain A of 3ί is the Cartesian product of the domains A% of the 31*.
For each i in / we denote by πt the projection carrying each a in 31
onto its component πta in 31*. The operations %w of 21 are defined by
specifying their components : for each i, and alf , apCw^ in 31,

π%[^ίw(al9 , αp(w))] = S^wfotti, , π4αp(M,))

the relations Sir of 21 are defined by taking %r(aλJ , αp<») to hold, for
Ui, , αPo) in 21, if and only if S I ^ T Γ ^ , , 7r,ap(r)) holds in 21, for each
i in /. It must be noted that this last criterion is satisfied by the
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identity relation. A system 2Γ is a subdirect product of the systems
Sΐt if it is a subsystem of the direct product 21 such that, for each i in
/, the projection πt maps the domain A! of 21' onto the domain A% or 21$.

The usual criterion for an algegraic system to be isomorphic to a
subdirect product of systems from a given collection carries over directly
to relational systems, and takes the following form.

CRITERION. A relational system 2ί is isomorphic to a subdirect product
of systems belonging to a given collection K if and only if there exists
a family Θ of homomorphisms θ of 21 onto systems #2ί in K such that
for all r and aL, •••,apCr) in 2ί, [(θ^ί)r](θau •• ,0αp(r)) for all θ in Θ
implies that Sir (au « ,αp(>)) in 21.

Before turning to the main theorem we establish a series of lemmas.

LEMMA 1. Let F be a formula with distinct free variables xly , xn,
and F' the result of replacing in F the xi by new and distinct constants
{operation symbols of rank zero) wt. If C is any formula that does not
contain the wi} and C^Ff, then C^y^x1 ••• xnF.

Proof.* Let F being to a language L that does not contain the u\
then F' belongs to the language L' obtained from L by adjoining the
symbols w%. Let μ be an interpretation of L such that μC = 1, and λ
an interpretation of L that agrees with μ except on the variables
xl9 , xu. We must show that λF = 1. Extend μ and λ to interpreta-
tions μr and λ' of L' by defining μ'wt — λ' wt = λxίt Since C belongs to
L, μ'C = μC=l. Since C ^ F , and μ'C = 1, μ'F' = 1. Since Fr does
not contain the xif λ'Ff = μ'F', and λ'F' = 1. By the construction of
Ff and of λ', λF = λ'F', whence λF = 1.

Let 21 be a model for the language L, and L(A) the language
obtained from L by adjoining new and distinct constants wa for each
element a of the domain A of 21. Let 21 be the extension of 21 to L(A)
defined by setting %wa = a for all a in 21. Let μ be an ordinal number,
and Lμ the language obtained from L(A) by adjoining new and distinct
relations symbols rv of rank p(r^) = p(r), for all r in L and v < μ. If
2ίμ is any model for Lμ, and v < μ, let 2Iμ>v be the model for L defined
by taking §lμtVw = 2Iμw for all w, and 2Iμ)vT = 2Iμrv for all r.

Let i£ be an elementary class3 of relational systems. We shall say
that a model 2Iμ of Lμ has the property (*) if

( 1 ) the restriction of 2ϊμ to the language L(A) is an elementary

extension of 21
2 For concepts appearing in this paper without definition, see [9], [10].
3 As in [10], we use " elementary class" in the sense of Tarski's "arithmetical class

in the wider sense (ACA) " .
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( 2 ) the restriction to L of 3Iμ>v is in K, for all v < μ
( 3 ) 3Iμr <Ξ 3ίμ,vr /or αM r in L and all v < //.

LEMMA 2. .For μ = 0, ί/̂ e model 3I0 =
 SΛ o/ ί/̂ e language Lo —

Λαs ίfcβ property (*).

Proof. Condition (1) is trivial, and (2) and (3) are vacuous.
Let Σ be the class of all special Horn sentences that hold for K,

and Σ* the class of those models that satisfy all sentences in Σ.

LEMMA 3. Let 3X be in 21*, and F an atomic sentence, that is, an
atomic formula without free variables, of L(A) that fails in 31. Let 31 μ

be a model for Lμ with property (*). 27&ew ί/^ere exists a model 3Iμ+1

/or Lμ + 1 witt property (*) swc/z, £λα£

(1') £Ae restriction of 3Iμ+1 £o Lμ is α^ elementary extension of 3ίμ

(4) F/αife m 2Iμ+1.

Proof. Let F be the set of all sentences of L that hold in if.
Let Δ be the set of all sentences of the language L^(Aμ) that hold in
2tμ. Let Γ' result from Γ and F' from F by replacing each r by the
corresponding rμ. Let / be the set of all sentences

for all r in L.
Suppose the set Δ, /, Γr, <^ Ff is inconsistent. By the Compactness

Theorem, there exists a conjunction of sentences from Γ, and hence a
single sentence C from Γ, such that J, I, C, ̂ F " is inconsistent. Thus
Δ,I=^C ZD F', where C ID ί7' contains only the relation symbols rμ,
while Δ does not contain the rμ, and / contains the rμ only positively.
By the Interpolation Theorem of [9], there exists a positive sentence P'
containing only the rμ such that Δ, I=$P' and P'^C z> Ff. If P is
the result of replacing each rμ in P' by the corresponding r, it follows
that Δ^P and P^C 3 F. Thus C =φ P 3 F. Let Po and Fo result
from P and F by replacing all wb. that occur in them by distinct variables
xl9 xn. Since C is in Γ, and belongs to the language L that does
not contain the wb, it follows by Lemma 1 that C^H, where H —
Va?1 £Cn Po:D.iF7o Since H contains only the relation symbols r, and
does not contain the wb9 it belongs to the language L. Since H is a
special Horn sentence, and a consequent of C in Γ, H is in Σ. Since
31 is in 21*, i ϊ holds in W, and hence in 31. It follows that P ID F holds
in 31. On the other hand, from J = > P we have that P holds in 3lμ,
hence in 1. From the fact that P and P 3 F both hold in W it follows
that F holds in 31 which contradicts the hypothesis of the lemma.
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It has been established that the set Δ, I, Γ', ~Fr is consistent, and
therefore holds in some model 33. Let (£ be the restriction of 93 to the
language L. From the fact that 93 satisfies Δ, it follows by Proposition
3 of [10] that the quotient model 3Iμ+1 = (£/(£e is a relational system and
an elementary extension of §Iμ. This establishes (Γ), and, by virtue of
the hypothesis that §Iμ has the property (*), it follows that 3tμ+1 satisfies
(1) and also (2) and (3) for all v < μ. From the fact that 93, and therefore
Slμ+i, satisfies Γ, it follows that the restriction to L of 2Iμ+1, μ is in K,
which completes the proof of (2). From the fact that 93, and therefore
Stμ+1, satisfies /, it follows that, for all r, 3tμ+ir c : 2ίμ+1>μr, which completes
the proof of (3). Finally, from the fact that 93 satisfies ~ F' it follows
that Ff fails in Stμ+1, as required by (4).

LEMMA 4. Let μ be a limit ordinal, and a family of systems 5ίv

for Lv, all v < μ, be given, with the property (*) and such that
( 1 : μ) for all p < v < μ, the restriction of 2tv to Lp is an elementary
extension of §ϊp.

Let Fv, all v < μ, be a set of atomic sentences of L(A) such that
(4 : μ) for all v + 1 < μ, Fv fails in SI^v+i.

Then there exists a model 2ίμ for Lμ with property (*) and such that
( 1 : μ + 1) and (4 : μ + 1) hold.

Proof. By virtue of ( 1 : μ), the Sίv, v < μ constitute an ascending
chain of systems and their union is a well defined system 2Iμ. Let
P < μ, and for all v, p < v ^ μ, let 93, be the restriction of 9ίv to Lp.
Then 93μ is the union of the ascending chain of systems 93V, p < v < μ.
Since each 93,, p < v < μ, is by ( 1 : μ) an elementary extension of §IP,
it follows directly from the definition of elementary extension that 93μ

is an elementary extension of 2IP

4. This suffices to extend ( 1 : μ) to
( 1 : μ + 1). That 2Iμ has property (*) follows from this directly. It
remains only to note that, since μ is a limit ordinal, (4 : μ + 1) is in fact
equivalent to (4 : μ).

LEMMA 5. Let §1 be in I7*. Then there exists an ordinal μ and a
model 2ίμ for Lμ, with property (*) and such that

(4*) if any atomic sentence F of L(A) fails in SΛ, then it fails
in some SCμ,v> v < μ.

Proof. Let the Fv, all v < μ, for some μ, be the set of all atomic
sentences of L(A) that fail in 2ί. Let §I0 = 21 as in Lemma 2. For
some v, v < μ, suppose that systems 2ίp have been constructed for all
p < v with property (*) and satisfying ( 1 : v), (4 : v). If v is not a

See Theorem 1.9 of [15].



160 R. C. LYNDON

limit ordinal, Lemma 3 with F = Fv and v — 1 for μ assures us of 2IV

with the required properties. If v is a limit ordinal, Lemma 4 yields
the same result. Thus transfinite induction yields a chain of SIV, all
y ^ μ* The condition (4 : μ) now gives (4*).

LEMMA 6. Let 21 δe m 21*. ϊ%en £/^re eris£s cm oridίnal σ and
a system 2Iσ for Lσ with the property (*) cmcϊ swc/z, ί te ί

(4**) if any atomic sentence F of the language L(Aσ) fails in 2Iσ,
then it fails in 2Iσ>v for some v < σ.

Proof. Iteration of Lemma 5 yields a sequence of ordinals

A) = 0 ^ /^ ̂  μ2 ^ such that 2ΐ0 is 2ί each SIμ has the property

(*) for each n, the restriction of 2Iμ + to Lμ is an elementary exten_

tion of 21^ and, finally, that if an atomic sentence F of the language

L(AμJ fails in §Iμ , then it fails in some SĈ  v, v<μn+1. It follows

directly that, for σ — lim μn, the union 2Iσ of the ascending chain of

2ΐμ , n < ω, has the required properties.

3 The Main Theorem*

THEOREM. Let U be a relational system of the language L, and K
an elementary class of systems of L. Then the following are equivalent.

( 1 ) 21 satisfies all special Horn sentences that hold in K;
( 2 ) 2ί has an elementary extension that is a subdirect product of

systems in K.

Proof. To show that (2) implies (1), it clearly suffices to show that
if S is a sentence of the form S — \/x1 xn P D F where P is positive
and F is atomic, and 21 is a subdirect product of systems 21, in which
S holds, then S holds in 21. Suppose then that S holds in all the 2ίέ,
and yet S fails in 21. Then there exists an interpretation μ of L in 21
such that μP=l and μF φ 1. Since each projection πt is a homomorphism
of 21 onto 2Ii, we have that, for all r in L and terms tL, , £p(»,
*Άr(μtlf •• ,Λ*P(r)) implies %r(n^tl9 , πtμtp^). For each 2ί4, define an
interpretation μ% in 21̂  by setting μtx — πtμx. Then μG — 1 implies
μtG — 1 for all i if G is an atomic formula, whence μP = 1 implies
μtP = 1 for all i. Since S holds in each 2^, that μtP = 1 implies ^ έ F = 1,
all i. But F is an atomic formula, and μ%F — 1 implies that μF — 1,
a contradiction.

To show that (1) implies (2), assume that 21 is in 21*, where Σ is
the set of all special Horn sentences true for K. By Lemma 6, for some
ordinal σ there exists a system 2Iσ of Lσ with properties (*) and (4*).
Let 2Γ be the restriction of 2Iσ to the language L by virtue of (1), 2ί'
is an elementary extension of 21. For each v < σ, let 33V be the restric-
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tion of 2ΐσ>v to the language L by virtue of (2), each 23V is in iΓ**, and
consequently the quotient model (£v = S3,/S3.e is a relational system in K.
For each y < σ, SΓ and 93, have the same domain A, whence the canonical
map θv of SI onto 3I/93.e maps A onto the domain Cv of (£v. By virtue
of (3), for each v < σ and each r in L, SΓr == SIσr gΞ SIσiVr = SIvr, whence
#v defines a homomorphism of 21' onto (£v. To complete the proof that
the family of θv, v < σ9 satisfies the Criterion for SI' to be a subdirect
product of the (£v, v < σ, suppose that, for some r in L and αx, , α p ( r )

in SI, [evr](^vαi, , ^ α p ( r ) ) holds for all v < σ. If Wr(au , αp ( r 0) failed
in SI', then the atomic sentence F = r(wOl, , wa ) would fail in SI.
By virtue of (4*), F would fail in SI^v, for some v < σ, hence in 33V.
Since 3 3 ^ ^ = <Άσ^ai — 3ίwα< = aif V8»r](alf , αp ( r )) would fail in S v ,
whence [Svr](#vαi, , θyapω) would fail in Kv. This contradicts our
hypothesis, and extablishes the desired conclusion, that 2Pr(αlf * ,αPoo)
holds in SI'.

4 A complementary example^ It will be shown that there exists
an elementary class such that the set of all subdirect products of systems
from this class is not an elementary class. In consequence, the reference
to elementary extensions in the preceding theorem can not be deleted.

If K is any class of systems, let P{K) be the class of all systems
isomorphic to some subdirect product of systems from K, and let Pϋ(K)
be the class of all systems isomorphic to some subdirect product of a
non-empty family of systems from K. As was noted earlier, P{K) will
differ from P0(K) at most in containing all trivial systems, with domain
a single element and all relations universal, which will not belong to
PQ(K) unless K itself contains some trivial system. We suppose now
that the language L contains only a finite number of relation symbols,
whence there is a single sentence T characterizing the class of all trivial
systems. Then

( 1 ) P(K) is an elementary class if and only if P0(K) is an
elementary class.
If K contains a trivial system, then P(K) = P0(K) and there is nothing
to prove. Otherwise P0(K) = P{K) - T. If P{K) is elementary, say
P(K) = Γ*, then evidently P0(K) = {Γ, ~ T}* and P0(K) is elementary.
On the other hand, if P0(K) = Γ*, then P0(K) = {C V T: all C in Γ}*.

If K is any class of systems, let H'(K) be the class of all those
systems of which some homomorphic image lies in K. The following
assertion can be obtained by dualizing the proof of the Main Theorem
of [10], or may be deduced as a corollary to that theorem.

(2) if K is an elementary class, then H'(K)* is the set of all
consequences of all negative sentences that hold in K.
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It is clear from the definitions that PQ(K) s H'{K). To obtain a partial
converse, define an occurrence of a relation symbol in a sentence S to
be universal if no variable that occurs in the atomic formula containing
the given occurrence is existentially quantified in S. Then

( 3 ) if K= Γ*, where no sentence of Γ contains a positive universal
occurrence of any relation symbol, then H'(K)* = P0(K)*.

To establish (3), we first show that the argument used to establish
the Interpolation Theorem in [9] in fact enables us to impose the following
additonal conditions in the conclusion :

(4a) a relation symbol has a positive universal occurrence in S°
only if it has a positive universal occurrence in S

(4b) a relation symbol has a positive non-universal occurrence in
S° only if it has a positive non-universal occurrence in T.
We refer to the proof of the Interpolation Theorem. To prove (4a),
suppose that a relation symbol r has no positive universal occurrence
in S = S1. Then each atomic formula of S1 that contains r positively
also contains some variable that is existentially quantified in S1, whence
the corresponding atomic formula in the Skolem matrix for S1 contains
one of the Skolem functions s}. It follows that each atomic formula in
the Skolem matrix M1 of U1 that contains r positively also contains one
of the functions s], and the same is then true of M°, whence it follows
that the corresponding atomic formula in S° contains an existentially
quantified variable. Since positive occurrences of r in S° can arise only
in this fashion, it follows that all such occurrences are non-universal.

To prove (4b), note first that an atomic formula containing a positive
occurrence of r in S° will correspond to an atomic formula A in M° and
hence in M1, and that, if the occurrence is non-universal, then A will
contain one of the functions sι

oί. Suppose now that every positive
occurrence of r in T is universal then in S2, equivalent to ~ T, we
may suppose that every variable that occurs in an atomic formula con-
taining a negative occurrence of r is existentially quantified. Passing
to the Skolem matrix of S2 and thence to Λf2, it follows that if B is any
atomic formula of M2 that contains a negative occurrence of r, then
each occurrence of a variable of r is subordinate to some one of the s2

0j

in the sense of occurring in a term beginning with this symbol. From
the construction of Ma from M1 and AT it results that an atomic formula
A of M1, as above, will appear also in M° only in case ηA — yB, for
B an atomic formula of M\ as described. But this is impossible, since
every occurrence of a symbol s]k in ηB is subordinate to some slt while
A contains an ocurrence of some sι

Qj that is not subordinate to any s2

0i

in A, which does not contain the s2

0i, and hence this occurrence of sι

Oj is
not subordinate to any s2

0i in ηA.
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Turn now to the proof of (3). From the theorem of § 3 it is easy
to see that Pb(K)* consists of all consequences of ' generalized ' special
Horn sentences that hold in K, that is, of those sentences that hold in
K and are obtained by universal quantification and conjunction from
formulas of the types P Z) F and ~ P, for P positive and F atomic.
From the hypothesis of (3), if Γ =^>T, where T is a generalized special
Horn sentence, then Γ =φ S and S ^ Γ , where S, a conjunction of
sentences from Γ, contains no positive universal occurrence of any
relation symbol. Since T contains no positive non-universal occurrences
of any relation symbol, application of the Interpolation Theorem with
the conditions (4a) and (4b) provides the existence of S° such that S^> S°
and S° =φ T, where S° contains no positive occurrences of any relation
symbol, either universal or non-universal: in short, where S° is negative.
Since Γ ^ S° and S° =φ Γ, it follows by (2) that T e H'{K)*. This
establishes that PQ(K)* S Hf(K)*, while the opposite inclusion follows
from the fact that P0(K) g H\K).

In § 5 of [10] an elementary class K of systems, without operations
and with a single binary relation (other than identity), was constructed,
with the property that H(K) is not elementary. Replacing, in each
system in K, the relation in question by its complementary relation,
yields an elementary class K' of systems such that H'(K!) is not elemen-
tary. More explicitly, K' is characterized by the single sentence

S': ^xyyz^t: ~ r(x, y) Λ : ~ r(x, z) ID ~ r(x, t) Λ ~ r(z, t)

It follows as in [10, § 5], or may be derived from the result there, that
H\K)* - {S(, S£, •••}**, where the S'n result from the Sn by prefixing
a negation sign to each occurrence of the symbol r. If %' is the natural
numbers with the relation x <̂  y, it contains descending chains of arbitrary
length, hence satisfies the S'n and belongs to H'(K')**. If 31' had a
homomorphic image S3 in K', from S' it would follow that
~ 33r(60, 6X), , ~ 33r(6w, 6n+]), for some 60, 6L, in S3, and any set
of inverse images aύ9 au would constitute an infinite descending chain
in 31', which is clearly a contradiction. Thus Sΐ' is not in H'(K'), and
H\Kf) Φ Jff;(ίΓ)**, that is, H'{K') is not elementary.

Finally, the set Γ = {S;} satisfies the hypothesis of (3) indeed,
each atomic formula of S' contains one of the existentially quantified
variables x, y or t. Thus, by (3), P^K')* = H'(Kf)*. It now follows
that P(ϋΓ') is not elementary. For, by (1), this would imply that PQ(K')
were elementary, hence P0(K')** - P0(K'). But P°(ίΓ')* = H'(K')* implies
H'(KT* = P»(KT*, and PoίίΓO S ί ί ' (^ ; ) , which, together with P0(ϋΓ')** =
P0(ίΓ')» w o u l d ^ P 1 ^ H'(K')** s iϊ 'ίί: ') and hence that ίT'OSΓ') were
elementary, a contradiction.
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A LEMMA ON ANALYTIC CURVES

ROBERT OSSERMAN

The following lemma turns out to be useful in many places in
Riemann surface theory. It is generally sufficient to have piecewise
analyticity, rather than analyticity, but the availability of analytic cur-
ves will invariably make proofs simpler. This is especially true of the
second half of the lemma, since an analytic Jordan curve on a Riemann
surface is defined by a mapping of the unit circle into the surface and
this mapping can be extended to a one-to-one map of an annulus into the
surface. The extended mapping can be used, for example, to define
explicitly differentials on the surface having prescribed properties.

The proof which we give is perhaps not the most straightforward
one but has certain advantages over the usual type of reasoning involv-
ing subdivision of the parameter interval.

LEMMA. Every closed curve on a Riemann surface is homotopic to
an analytic closed curve, and homologous to a finite sum of analytic Jordan
curves.

REMARK. By homology we mean singular homology. We are not
concerned here with the choice of definition since we only use the fol-
lowing two properties of singular homology.

(1) Homotopic curves are homologous.
(2) If a closed curve C is defined by a mapping f(t) on the interval

I and if there is a subdivision of / into intervals Ik, k = 1, , n, and
if the restriction of f(t) to Ik defines a closed curve Ck, then C is homo-
logous to ΣLiC f c .

We may also word the lemma as follows:
(a) Every homotopy class on a Riemann surface contains an analytic

curve.
(b) Every singular homology class on a Riemann surface contains

a cycle of the form Σ*-i C* where the Ck are analytic Jordan curves.

Proof. Let R be the Riemann surface and C an arbitrary closed
curve. Let R* be the universal covering surface of R and let p* be
a point on i2* which projects onto a point p of the curve C. If we
continue along the curve C starting at p* we arrive at a point g* which
also projects onto p. Any arc joining p* to g* will, by definition of the
universal covering surface, project onto a curve homotopic to C. In

Received July 15, 1958. This paper was written while the author was a Temporary
member of the Institute of Mathematical Sciences at New York University.
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particular, an analytic arc will project onto a curve which is analytic
except possibly at p. To prove part (a) of the lemma we make a sim-
ple choice of arc which will give a curve analytic also at p.

We note first that if p* and g* coincide, then C is homotopic to
zero, and any small circle through p will be homotopic (and homo logous)
to zero, hence to C. In particular if R* is the sphere, then R is itself
the sphere and C must have been homotopic to zero.

The other two possibilities are that ϋί* is the plane or the interior
of the unit circle. In the first case the cover transformation taking p*
into g* is a linear transformation which takes the line through p* and
g* into itself. The projection of the straight line segment joining p*
to g* will therefore be analytic even at p.

If R* is the interior of the unit circle, then the cover transforma-
tion taking p* into g* will be a linear fractional transformation with
either one or two fixed points on the unit circle. The circle through p*
and g* and the fixed point (or points) will be mapped onto itself, so that
again the arc of this circle joining p* to g* will project onto an analytic
curve homotopic to C.

This proves part (a) of the lemma.
We have obtained in particular a simple proof that every closed curve

is homologous to an analytic closed curve, which is in itself a useful fact.
The proof of part (b) requires a bit more effort. The case where

i2* is the plane is almost trivial since (except where R is itself the plane,
hence simply connected) the group of cover transformations is either
of the form z + nb where b is a fixed complex number and n runs through
the integers, or else of the form z + ma + rib where a and 6 are fixed
and m and n run through the integers. In the first case p* and g*
will correspond to a pair of points of the form zQ and zQ + rib, so that
the projection of the segment from zQ to z0 + rib will consist of the pro-
jection C of the segment from z0 to zQ + b covered n times. Hence C
is homologous to nC'. But C is a Jordan curve since no two points on
the segment between z0 and z0 + b are equivalent.

Similarly, in the second case if p* and g* correspond to z0 and
z0 + ma + rib, we simply take the straight line segment from z0 to z0 + ma
followed by the segment from z0 + ma to zQ + ma + rib.

Finally, in the case where i2* is the interior of the unit circle, we
consider the metric fundamental polygon P consisting of all points in the
unit circle which are nearer (in the non-euclidean metric) to the point p*
than to any point equivalent to p* under a cover transformation1. If T
is the cover transformation which takes p* into g* we may represent

1 A simplification in the proof at this point is due to the referee.
All the basic information about the fundamental polygon can be found, for example, in

the book of Nevanlinna, Uniformisierung, Chapter VII, and in particular, §7.15.



A LEMMA ON ANALYTIC CURVES 167

it as T = Πϊ-iTfc* where each Tk is a cover transformation taking one
side ak of P onto another side bk. The sides ak and bk are circular arcs,
and we can form the Riemann surface Rk which consists of the interior
points of P together with inner points of the arcs ak and bk with equiva-
lent points under Tk identified. Then Rk is doubly-connected and may
be mapped conformally onto an annulus rλ < \w\ < r2, where rx — 0 if
ak and bk have a vertex in common. This annulus is one-to-one con-
formally equivalent to Rk and hence to the surface R cut along certain
analytic arcs. Let Ck be the curve in R corresponding to that circle
\w\ = r' which passes through the image of the point p. Then Ck is
a Jordan curve passing through p, and if we continue R* along Ck

starting at a point pfc* of ak, we arrive at the point gfc* of bk which is
the image of pk* under Tk. Hence the curve Ck generates the trans-
formation Tk9 and the curve C = ΠS-iC* i s a closed curve at p which
generates the transformation T. Thus C is homotopic to C, and using
the properties of singular homology remarked above we have that C is
homologous to C" which is homologous to Σ*-iC*> proving the lemma,

STANFORD UNIVERSITY.





ON A THEOREM DUE TO SZ.-NAGY

R. S. PHILLIPS

B. Sz.-Nagy [4] has proved the following theorem:

THEOREM A. Let [Tt; t Ξ> 0] be a strongly continuous semi-group of
contraction operators on a Hilbert space H. Then there exists a group of
unitary operators [U£, — ^ <t < ^] on a larger Hilbert space H such that

( 1 ) Tty = PVtyf yeH,t^0;

here P is the projection operator with range H. Then space H can be
chosen in a minimal fashion so that [UtH — oo < t < oo] spans H. In
this case [U8] is strongly continuous and the structure {H, U{, H] is de-
termined to within an isomorphism.1

The infinitesimal generator L of the semi-group [Tt] is defined by

( 2 ) lim d'\T,y -y] = Ly
8^0 +

for all yeH for which this limit exists. The operator L is linear and
closed with dense domain, ®(L) (see [1]). It is shown in [2] that L is
maximal dissipative in the sense that

( 3 ) (

and L being maximal with respect to this property. Since [U«] is a
semi-group as well as a group of operators, the infinitesimal generator
L of [Uf] also shares these properties; however in the case of a group
of unitary operators ΐL is in addition self-ad joint.

The purpose of this note is to study the relation between L and
L. It turns out that L is a restriction of L only when L is maximal
symmetric. In general L is neither a restriction nor a projection of L;
in fact ®(L) Π H may contain only the zero element. Nevertheless we
shall obtain H, L, and [Ut] directly from L, our principal tool being the
discrete analogue of the above theorem, which is also due to Sz.-Nagy
[4], namely

THEOREM B. Let J be a contraction operator on a Hilbert space H.
Then there exists a unitary operator J on a larger Hilbert space H such
that

( 4 ) Jny = PJ"y, yeH,n^0;

here P is the projection operator with range H. The space H can be

Received September 24, 1958. This paper was written under the sponsorship of the
National Science Foundation, contract NSF G-4231.

1 Two structures {H, Uj, Hj and {Hr, U£, H} are isomorphic if there is a unitary map
V of H onto IF which is the identity on H and is such that ΎVty = U V̂?/ for all 2/6H.
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chosen in a minimal fashion in the sense that [JnH; — oo <n< oo] spans
H. In this case the structure (H, J, H] is determined to within an iso-
morphism.

For a maximal dissipative operator L with dense domain, it is shown
in [2, §1.1] that (I — L) is one-to-one with range ΪR(I — L) — H and that

(5) J = (I + L)(/-L)- 1

is a contraction operator with ®(J) = H and such that (/ + J) is one-to-
one. Applying Theorem B we obtain the unitary operator J on the
enlarged space H spanned by [Jwff; — oo <%< oo] with J satisfying the
property (4).

LEMMA 1. The operator (I + J) is one-to-one.

Proof. Let S be a contraction operator, set $(S) = [#; Sy + y = θ],
and denote the projection operator with range $(S) by Ps. Then the
ergodic theorem (see [3, pp. 400-406]) asserts that

st. lim (n + l ) " 1 ^ (~Sf = P*

and that SP^ — PSS — ~PS. We apply this result first to J and then to
J. Making use of (4) we see that

PP j2/ = PJ?/, ye H.

As noted above P3 = Θ, so that PPjP = Θ. Actually PjP = Θ; for
otherwise there would exist a yeH with P^y Φ θ so that

which is impossible. Thus PjP = Θ and hence Q(J) is orthogonal to H.
But this means that

P3J
nH - JnPjH = θ ,

and we infer that JnH is orthogonal to ,3(J) for all n. The minimal
property of H therefore requires that $(J) — θ.

REMARK. Associated with J is the resolution of the identity [E(α-);
—π < σ ^ 7r] and the integral representation

Jn = f * exp (wσ)ffl(σ) .

Setting the restriction of PE(σ-) to H equal to F(σ) we see by (4) that

Jn = f ̂  exp (mσ)ίLF(σ-) .

The argument used in Lemma 1 applied to S = exp (iμ)J shows that if
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J has no eigenvalues of absolute value one, then neither does J and
hence that both E(σ) and F(σ) are strongly continuous in σ-. Converse-
ly, F((τ) is strongly continuous then as is readily verified

(n + 1)-'Σ

= [* Kn(σ + μ)dF(σ)y -* 0 , yQH)
J-it

here

Kn(σ) = (n+ I)-1 exp (»/2) sin [n + 1

 σ T s i n . ^ T 1 .

It then follows from the ergodic theorem that g{ — exp(iju)J] = θ and
hence that J has no eigenvalues of absolute value one.

THEOREM. Set

(6) L = (J-I ) (J + I ) - 1 .

Then L generates a strongly continuous group of unitary operators
[Ut — oo < t < oo] such that

(7) y , ^ 0

and [\JtH; — oo < t < oo] spans H.

Proof. It follows from the above lemma that (I + J) is one-to-one
and hence that L is well-defined. Morever ®(L) = 31(1 + J) is neces-
sarily dense in H since otherwise (I + J*) would nullify some non-zero
vector and since J ' 1 = J* the same would be true of (I + J). Further
it is clear that iL is the Cayley tranform of iJ and hence L generates
a strongly continuous group of unitary operators which we shall denote
by [UJ. In order to verify (7) we proceed to represent the resolvent
R(λ, L) = (λl - L)-1 in terms of J for λ > 0. We see from (5) that

( 8 ) y = 2-\Ju + u) and Ly = 2~\Ju -u), ueH .

Suppose next that λy — Ly = / . Replacing y by u as in (8) we obtain

2~λλ{Ju + u)- 2~\Ju -u) = /

so that

u = 2(1 + λ)^± [(l - λχi + λ)-γj»f, λ>o.

Again making use of (8) we get

where
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a£λ) = (1 + λ)~ι and an{λ) = 2(1 - λ)u-\l + ;)—» for n > 0 .

Thus R(λ, L) can be represented by an absolutely convergent series in
powers of J for λ > 0. Taking powers of R{λ, L) we see that

where again the series is absolutely convergent. Similarly

and it follows from (4) that

( 9 ) [R(λ, L)fy = P[R(Λ, L)fyf y e H, k ^ 0, λ > 0 .

According to Yosdia's proof of the Hille-Yosida theorem (see [1|),

(10) Tt = st.lim exp (tBλ) and Ut = st.lim exp (ίBλ), f ^ 0 ,

where

5 λ = λ*B(λ, L) - λl and Bλ = λ*B(λ, L) - λ\ .

Thus for 2/ e ί ί the relation (9) implies

exp (tBλ)y = P exp (ίBλ)?/, yeH, λ>0 ,

and this together with (10) gives (7).
It remains to prove that H is the same as

Ho = closed linear extension of [UtH; — oo < t < oo] .

Let Po be the projection of H onto Ho. Then clearly U^HoCHo for all
real t, and since U t* = U_c the same is true of the orthogonal comple-
ment to Ho. As a consequence P0Uf = Û Po for all real t. Hence for

PQhy - lim δ-φoVty - Fffl) = lim d-\\J,PQy - Poy) = LPoy .
δ->o+ δ->o+

Thus Po commutes with L and hence with J. But since H is obviously
contained in Ho we have

JnH = JnPQH - P 0 J w i ϊcH 0 .

The minimal property of H asserted in Theorem B therefore implies that
H = Ho. This concludes the proof of the theorem.

It should be noted that since ih is self-adjoint, the largest restric-
tion to H of %L will be symmetric. On the other hand if iL is sym-
metric then it is easily verified that J is an isometry and hence that J
is an extension of J ; in this case then L will be an extension of L.
However in general if u e H and y — Ju+u, then z = Py = Ju+u e
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and LPy = PL?/; each ze S(L) can be so represented. A simple example
shows that ®(L) Π H may contain only the zero element.2
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A GENERALIZATION OF ATOMIC BOOLEAN ALGEBRAS

R. S. PIERCE

1. Introduction. A Boolean algebra B is called atomic if every
non-zero element of B contains an atom. A variant of this definition is
the equivalence: B is atomic if and only if B contains a dense (i.e.,
coinitial in B — {0}) subset which is totally unordered. In this paper,
we will investigate the properties of Boolean algebras which contain
dense subsets of somewhat more general order type than the totally
unordered sets.

DEFINITION 1.1. Let a be an infinite cardinal number. A partially
ordered set P will be called a-compact if P is closed under finite meets,
contains a zero element and satisfies the condition that if J l ί g P has
cardinality ^ a and no finite subset of M has zero meet, then M has
a non-zero lower bound in P.

The use of the term "compact" is of course motivated by the
topological analogy.

DEFINITION 1.2. A Boolean algebra B will be called a-atomic if B
contains a dense subset which is α-compact.

Since a totally unordered set becomes α-compact (for all a) if a zero
element is adjoined to it, an atomic Boolean algebra is α-atomic for all
cardinals a.

The organization of the paper is as follows. Section two is devoted
to the construction of examples of α-atomic Boolean algebras. In section
three, some properties of ^-atomic Boolean algebras are proved. Section
four presents a representation theorem for α-atomic algebras.

Throughout the paper, a will denote a fixed infinite cardinal
number. The abbreviation α-B.A. will be used for α:-complete Boolean
algebra. The terms α-subalgebra, α:-ideal, α-homorphism, α-field, etc.
have their usual meanings. Thus, an α-homorphism of an α-B.A. is a
homomorphism preserving a-joins; an α-subalgebra of an α-B.A. is a
subalgebra closed under formation of a-joins in the enveloping algebra.
It is sometimes convenient to use the symbol oo in place of a with the
meaning that the corresponding property is to hold for all cardinals.

The lattice operations of join, meet and complement are designated
by v, Λ> a n d O respectively. The symbols 0 and u denote the zero and
unit in a Boolean algebra. Set operations are indicated by rounded
symbols: Π, U and gΞ stand for intersection, union and inclusion
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respectively. The empty set is denoted by Q. The symbol \A\ repre-
sents the cardinality of the set A. For any cardinal number a, the
smallest cardinal greater than a is denoted a+.

2 Examples, We have already observed that any atomic Boolean
algebra is oo-atomic. The converse is also true.

THEOREM 2.1. A Boolean algebra is c&-atomic if and only if it is
atomic.

Proof. Let B be oo-atomic. If |J3| = α, it is possible to find a dense
subset D in B which is α-complete. Let M be a maximal dual ideal in
D. Then M has the finite meet property and \M\ ^ a. Hence, M has
a non-zero lower bound a in D. By the maximality of M, it is clear
that a is an atom of B. Since, by Zorn's lemma, every non-zero
element of D is contained in a maximal dual ideal of Z), it follows that
every element of D contains an atom. But D is dense in B so every
element of B contains an atom. Thus B is atomic.

In order to construct an α-atomic B.A., it is enough to exhibit an
α-compact partially ordered set P which is disjunctive, that is, satisfies
the condition that for any a gS 6, there exists c e P such that 0 Φ c ^ a
and C Λ 6 = 0. Indeed, any disjunctive partially ordered set can be im-
bedded as a dense subset in a complete Boolean algebra (see [1]), and
if the partially ordered set is α-compact, then the B.A. will necessarily
be tf-atomic. This complete B.A. is determined up to isomorphism by
the disjunctive partially ordered set. In fact, a more precise statement
is true.

LEMMA 2.2. Let B± and S 2 be complete Boolean algebras. Let Pλ and
P2 be dense subsets of Bx and Bλ which are closed under meets. Suppose
φ is an isomorphism of Pλ on Pz. Then φ has a unique extension to an
isomorphism of Bx on Bλ.

This result is proved in [1] for example.
We describe a fairly general method of constructing partially

ordered sets which are disjunctive and α-compact.
Let / be a non-empty index set. Let {Xt\i el} be a collection of

sets, each containing at least two elements. Put X = ILeJXI Suppose
9Ji is a given non-empty collection of subsets of / with the properties

(a) 9Ji is closed under finite unions,
(b) 3Jί is α-directed: any subcollection of 3Jί with cardinality g a

has an upper bound in 9Jΐ.
Let M e SDΐ and φ e ILeiΛ* that is, φ is a function on M such that
ψ(i) e Xi for all i e M. Denote
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AM,φ = {χ e X\χ\M = φ] .

Finally, let Ω = Ω(I, Xif 2K) be the collection of all AM, φ, together with

the empty set.

LEMMA 2.3. The set Ω, ordered by inclusion, is an a-compact, dis-
junctive partially ordered set.

Proof. Observe that AM, ψ £ AN% ψ if and only if M2 Nand φ\N = ψ.
On the other hand, AMt Φ Π ANt φ — Q if and only if there exists i e Λf Π N
such that y>(i) ^ (f(i). The fact that β is meet closed and disjunctive
is a routine consequence of these observations and property (a) of 9JΪ.
The fact that Ω is α-directed follows from property (b) of 2K.

A special case of this contruction is particularly interesting. If /
is arbitrary, each Xt is a two element set and 9Jϊ consists of all sub-
sets A of / with \A\ ̂  α, then the conditions for the application of
Lemma 2.3 are fulfilled. The α-compact partially ordered set Ω in this
case is completely determined by the cardinal numbers a and β = | / | .
Thus we can designate this Ω simply as Φaβ. Let B be a complete
Boolean algebra containing Φ«β as a dense subset and define Faβ to be
the smallest α-subalgebra of B containing Φaβ. It is clear from 2.2 that
Faβ is determined up to isomorphism by Φaβ.

THEOREM 2.4. The Boolean algebra Fσβ is isomorphic to the a-field
of subsets of X generated by Φcβ and is a free a-representable algebra
with β generators.

REMARK. A Boolean algebra is called α-representable if it is the
α-homomorphic image of an α-field (see [2]). The fact that the class of
all such algebras is equationally definable and therefore admits free
algebras has been investigated in [5]. Indeed, Sikorski proves in [7]
that the α-field generated by Φaβ is a free α-representable algebra with
β generators. Thus it is only necessary to prove the first assertion of
2.4.

Proof. Let Bx be the α-field (in X) generated by Φaβ. Note that
Φaβ is closed under α-intersections and that the complement of any set
of Φctβ is a union of sets of Φaβ. Hence, by Lemma 5.2 of [4] (quoted
in (4.3) below), Φaβ is dense in Bλ. It follows from 2.2 that Bλ is
isomorphic to FΛβ.

COROLLARY 2.5. Every a-representable Boolean algebra is an
a-homomorph of an oc-atomic, a-field.

It is easy to see that if β <; α, then Φ^ is atomic and hence so is
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any Boolean algebra containing Φaβ as a dense subset. However, if
β > a, then a Boolean algebra B containing Φaβ as a dense subset is not
even α+-atomic. This is a consequence (by (3.3) below) of the stronger
result that B is not α+-distributive (see [9]).

THEOREM 2.6. Let B be a Boolean algebra containing Φaβ as a dense
subset. Suppose also that β > a. Then B is not a+-distributive.

iJc

Proof. Let J g ί have cardinality a+. For i e I, denote ai

{χ e X\χ(i) = xi1ύ} (k = 1, 2), where Xt = {xiιy xi2}. Then au v ai2 = %
(since no element of ΦΛβ is disjoint from both atl and α<2). But if Λf e 2JΪ,
then J ξL M, so there exists j e J — M. For this index, D i e ^ ^ c o S fy*
(fc = 1, 2) for all ψ e 2M. Thus

Λί€j(αίivα i a ) = % > 0 = V<p(Λ*ejα,,<p(o) >

so JB is not ^-distributive.

REMARK. The referee has pointed out that 2.6 is related to the
results in Scott's paper [6]. Scott constructs a Boolean algebra BΛ (for
each regular cardinal a) which, when a = β+, is equivalent to the com-
pletion of Fββ + .

3. Properties of α-atomic algebras. The term " covering " will be
used to designate a subset of a Boolean algebra whose least upper bound
is the unit element.

LEMMA 3.1. Let B be an a-complete, a-atomic Boolean algebra. Then
B has the following property:

(*) if {Aσ\σ 6 S} is a family of coverings of B such that \S\ ̂  a+

and if b φ 0 in B, then there is a choice function ψ on S such that
ψ(σ) e Aσ with the property that if T gΞ S and \T\ ̂  a, then

b A Aσeτψ(cr) Φ 0 .

Proof. Let T §Ξ B be dense and α-compact. Denote by λ the least
ordinal of cardinality a+. We can assume that S consists of the ordinals
σ < λ. By transfinite induction, define functions f:S->T and ψ on S
with ψ{σ) e Aσ having properties

(i) σ < T implies 0 </(r) ^/(σ) ^ δ,
(Π) f{σ)^Ψ{σ).

These are constructed in the following way. Assume f(σ) has been de-
fined for all σ < r, where τ < λ. By α-compactness, c = λσ<Tf(<r) Φ 0.
If T = 1, then c = ^. Let ̂ (1) 6 AL satisfy ^(1) Λ b Φ 0. Such an element
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exists, since b = b AU = 6Λ VΛ = V{bΛa\a e AJ. Let /(I) e Γ be
chosen arbitrarily, satisfying 0 φf(l) ^ ψ(l) Ab. If Γ > 1, then c ^ δ.
Choose <p(τ) e Aτ so that <f(τ) A C Φ 0. As before, some element of AT will
satisfy this requirement. Using the fact that T is dense, it is possible
to find /(r) e Γ such that 0 < f(τ) ίg ^(r) Λ C. With this construction, it
is clear that (i) and (ii) are fulfilled.

Now if T S S and | Γ | ^ α, then since /I is regular, there exists
Ύ] < λ such that T < η for all r e 2\ Hence,

& Λ Λσe^(σ-) ^ & Λ Λτ<^(r) ^ 6 Λ Λτ<,/(r) ^ f{rj) > 0 .

This is the required conclusion.

COROLLARY 3.2. Any a*-complete, a-atomic B.A. is a+-representable.

Proof. It is easy to see that the condition (*) of (3.2) implies
Smith's property (PΛ+) (see [8]). Hence, (3.2) follows from Theorem 4.1
of [8].

COROLLARY 3.3. Any a-complβtβ, a-atomic B.A. is (a, oo)-distributivβ.
For the definition of {a, cχ))-distributivity, the reader is referred to

[9] or [4]. The property (*), together with (2.3) of [4] implies (3.3).
If B is a complete B.A. containing Φaβ as a dense subset, then B is

α+-representable by (3.2). If β > α, then B is (a, αD)-distributive, but
not α+-distributive by (2.6). Hence, B is not 2Λ+-representable. If we
admit the generalized continuum hypothesis, this means that B is not
f-representable for any γ > α+, which partially answers a question
raised by Chang [2; p. 213].

In [3], the author conjectures that any α-distributive 2Λ-complete
B.A. is 2*-representable. This conjecture now appears rather unlikely
in view of Theorem 3.4 of [8], since its validity, together with the
generalized continuum hypothesis, would imply a positive answer to
Souslin's problem. However, for an a-subalgebra Br of an a-atomic
Boolean algebra B, it is true that ^-completeness implies a+-representa-
bility. For Bτ is also an α-subalgebra of B, the normal completion of
B. But B is α+-representable and α-distributive by (3.2) and (3.3).
Therefore, to see that Bf is α+-representable, we have only to notice
that it must actually be an α+-subalgebra of B.

THEOREM 3.4. Let B be an a-distributivef 2
a-complete Boolean algebra.

Suppose B is an a-subalgebra of B which is 2cύ-complete. Then B is a
2x-subalgebra of B.

REMARK. This theorem is well known for fields of sets. (See [9],
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Theorem 3.10 and the references given there.) We will give a proof,
since the result seems to have been overlooked in [3] and [9].

Proof. Let Q g £ and \Q\ ̂  2*. Let b = l.u.b. Q in B and b =

l.u.b. Q in β. Then & ^ 5. Assume b>b and set c = &Λ5'. Let β x

be the α-distributive Boolean algebra : {d e B \ d <Z c}. Denote by ^ the

mapping B-> Bx given by Λ(ά) = α Λ C. Evidently A is a complete

homorphism of B and hence the restriction h of h to B is an α-homo-

morphism. The image h(B) is an α-subalgebra of Bx and therefore is

α-distributive. By Theorem 3.6 of [9] or (6.5) of [3], h is a 2*-homo-

morphism. But obviously Q is contained in the kernel of h. Thus,

h(b) =Jί.u.b.B{h(a)\a e Q} = 0. But c ^ 6 , so c = u AC — 7ι{u) — Ίι(b v c ) =

h(b) v A(c') = A(6) v (c' A c) = 0, a contradiction. Thus, 6 = 5, which is

the desired conclusion.

COROLLARY 3.5. Let β be weakly attainable from the infinite cardinal

a. Suppose B is a β-distrϊbutive, 2β-complete B.A. and B is an a-sub-

algebra of B which is 2β-complete. Then B is a 2β-subalgebra of B.

Proof. Clearly, if ξ is a singular cardinal and B is an ^-subalgebra

of B for all η < ξ, then B is a f-subalgebra. Using this fact, 3.5 follows

from 3.4 by transfinite induction.

4* The representation theorems* Not every α-atomic B.A. is an
α-field, since the normal completion of an atomless α-field will not, in
general, be an α-field (a being infinite). However, we will prove that
every α-atomic algebra is a dense subalgebra of the normal completion
of an (X-field. Of course, since any B.A. is a dense subalgebra of its
normal completion, it suffices to prove that any complete, α-atomic B.A.
contains a dense subalgebra BQ which is isomorphic to an α-field.

LEMMA 4.1. Let be an a-complete, a-atomic B.A. Then B contains a
dense, a-compact subset which is closed under a-meets.

Proof. By Definition 1.2, B contains a dense α-compact subset T.
The set of all α-meets of elements of T will clearly be a dense,
α-compact subset of B which is closed under α-meets.

LEMMA 4.2. Let F be a disjunctive, a-compact partially ordered set
which is closed under a-meets. Let X be the set of all proper maximal
dual ideals of F. For a e F, let φ(a) = {P e X\a e P}. Then φ is an
a-meet preserving, order isomorphism of F into the Boolean algebra of
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all subsets of X. The image f of φ has the property that the complement
of any set of f is a union of sets of f.

Proof. Since F is α-compact and closed under α-meets, every
maximal dual ideal of Fis also closed under αxmeets. Hence, <p preserves
#-meets by the usual argument.

If c Φ 0 in F, then ψ(c) Φ Q, since every non-zero element is con-
tained in a proper maximal dual ideal. Since F is disjunctive, a ̂  b
implies the existence of c e F with 0 Φ c ^ a and b A C = 0. Hence,
Q Φ ψ{o) S ψ(a>) and ψ{b) Π ψ{c) = Q. Therefore, f (α) g ψ(b).

If P e X — y>(α), then a 0 P. By the maximality of P, there exists
be P such that α Λ δ = 0. Then P e y(δ) s (^(α))c. This shows that
(^(α))c is a union of sets of f.

For the proof of the main theorem of this section, we need a known
result.

LEMMA 4.3. Let f be a family of subsets of a set X with the pro-
perties that f is closed under a-intersections and the complement of any
set of f is a union of sets of f. Let S be the a-field generated by f. Then
f is dense in 8.

The proof of this fact can be found in [4].

THEOREM 4.5. Let B be an a-atomic Boolean algebra. Then B is
isomorphic to a dense subalgebra of the normal completion of an a-atomic
a-field of sets.

Proof. Let B be the normal completion of B. Then B is α-atomic.

By (4.1), B contains a dense, α-compact subset F which is closed under

tf-meets. Since F is dense in the Boolean algebra 5, F is disjunctive.

By (4.2), there is an α-isomorphism ψ of F onto a family f of subsets

of a set X with the two properties of (4.3). Let 8 be the α-field

generated by f and let 80 be the normal completion of 8. By (4.3), f is

dense in 8 and hence in 80. Consequently, by (2.2), <p extends unique-

ly to an isomorphism of ΰ on 8fl. The restriction of this extension is

an isomorphism of B onto a dense sub-algebra of the normal completion

of the α-atomic α-field 8.

COROLLARY 4.6. Any complete, a-atomic Boolean algebra is isomorphic
to the normal completion of an a-atomic a-field.
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ANALYTIC CONTINUATION OF MEROMORPHIC
FUNCTIONS IN VALUED FIELDS

J. B. ROBERTS

In this paper* we consider analytic continuation of power series by
matrix methods in arbitrary fields complete with respect to a valuation.
In the complex field continuation can generally be achieved by a formal
expansion of the given power series about a point in its circle of con-
vergence. The new series (with power series coefficients) generally
exists and converges over a circle extending beyond the circle of con-
vergence of the original series.

When the field is non-Archimedean however the new circle of con-
vergence is always contained in the old. Hence in this case we need
have recourse to a summability method. In this paper we consider
a certain class of matrix methods which can be applied to the power
series coefficients appearing in the formal expansion of the original
series about points outside the original circle of convergence. The methods
will be applicable in Archimedean or non-Archimedean fields.

The work here is based upon Chapter 3 of the author's PhD dis-
sertation written under the direction of Prof. G. K. Kalisch at the
University of Minnesota in 1955.

l Notations and definitions* Throughout the paper k shall be a field
which is complete with respect to a valuation, denoted by | |. Unless
stated explicitely to the contrary the valuation may be either Archimedean
or non-Archimedean. It is useful to note that, by a theorem of Ostrowski,
if the valuation is Archimedean then k is topologically isomorphic with
the real or complex numbers.

We shall designate the collection of all infinite series with terms in
fc by S. Further we introduce an operation, the Cauchy product, into
S. If C — Σ π ^ i a n ( i C = ΣΓ-oβ* &re ίn S then the Cauchy product
CC is defined by

This product is clearly in S; so Sis closed relative to this multiplication.
The subset of S consisting of all unconditionally convergent series

will be denoted by T. When k is non-Archimedean T coincides with the

* This paper was originally accepted by the Trans. Amer. Math. Soc, received by
the editors of the Trans. Amer. Math. Soc. January 16, 1957, in revised form April 18,
1958. The author wishes to express his thanks to the referee who through his extensive
comments on the first version has changed the character of the whole paper and has
increased its generality in certain respects.
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set of all convergent series since in this case a series converges if and
only if its nth term goes to 0. When k is Archimedean T coincides
with the collection of all absolutely convergent series. A theorem of
Mertens in the Archimedean case (which remains true in the non-
Archimedean case) assures us that T is closed relative to the multipli-
cation defined in S. Further by the same theorem if C, C converge
respectively to c,c' then CC converges to ccr.

The set of series in T which converge to non-zero limits will be
denoted by T*. From the last sentence of the preceding paragraph we
see that ϊ 7 * is closed under multiplication.

The set of infinite matrices (atJ), i = 0,1, 2, j = 0,1, 2, where
ai5 is in k for all ί, j will be denoted by M. We introduce into M two
operations—addition and multiplication. Addition is unrestictedly defined
by the following:

w&i = (aίj)> m2 = Φij) then mλ + m2 = (aυ + btJ) .

Clearly m1 + m2 is in M.
Multiplication is not unrestrictedly defined. We have the following

definition (m1 and m2 as above):

mxm2 — (c^) providing ci} = ^aiqbqj converges for all i, j .

We shall be interested in mappings from subsets of S into M. A mul-
tiplicative homomorphism from a subset V of S into M is a mapping / of
V into M such that when Clf C2 and C,C2 are in V then f{Cλ)f{C2) is
defined and

2 The matrices Ao and Bo.

DEFINITION 1. Let C = Σ«°=o^ be in S.
(a) Bσ = (bij) where biό = Cj_4 and c ^ is taken to be 0 when j < i;
(b) If C converges to c Φ 0 then A^ = Boic)'1 where (c) is the

diagonal matrix with all diagonal elements c.

LEMMA 1. The map C -> Bo is a multiplicative homomorphism of
S into M.

Proof. Let C=ΣΓ-oC 4, C' = ΣΓ-Oc{ be in S. Then
where cl = Σ'-oCjC{_i,. Thus jβσσ/ =(cj-t). Since β σ and 5^, each have
only finitely many non-zero terms in each column BCBG, is defined. Fur-
ther BoBOr — (dtJ) where

j j-i

q=0 ς=i 5=0



ANALYTIC CONTINUATION OF MEROMORPHIC FUNCTIONS 185

Hence BCBO, = Bco, and the lemma is proved.

LEMMA 2. Let C, C be in S and suppose they converge respectively
to the non-zero sums c, c\ Then AOAC, exists and AcAa, — Aco, pro-
viding CC converges to cc'.

Proof. AG = Bc(c)-\ Ac = Bc^c')'1 and therefore

AoAo, = BcίcY'Bcic'Y1 = Bccicc')-1 = AΌΌ. .

COROLLARY. The map C —• Ao is a multiplicative homomorphism
of T* into M.

We now introduce a norm into T and two topologies into M.

DEFINITION 2. The norm of C, denoted by \C\T, for C = Σί°=o^ in
Γ is defined by:

[max | c t | for k non-Archimedean

' C ' Γ = I Σ k<| for k Archimedean .
U = 0

By restricting our C to be in T we insure that this norm is defined.
The following properties are valid for arbitrary k.

\C + C'\T<\C\T + \C'\T;

\CC'\T<\C\T\C'\T;

\aC\τ = \a\ \C\T for a in k .

If k is non-Archimedean the first two properties can be strengthened
to read

, \C'\T)\

Defining addition in T to be componentwise addition we see that T
is a normed ring.

DEFINITION 3. (a) The weak topology in M is the topology induced
on M by making the sequence mn = (aif) of matrices converge to the
matrix (ai3) if and only if for all i, j we have a[f -> ai}. When this is
true we say that the sequence mn converges weakly to {ai3).

(b) If, for an arbitrary positive real number r, we denote the set
of all matrices {aiό) with \ai3\ < r, for all ΐ, j , by Mr then the set of
Mr gives a basis system for the open sets about the additive identity
0 in Λf. This induces on M the topology of the additive group of M
and is called the uniform topology.
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We note that addition and multiplication (when the latter is defined)
are continuous in both topologies in M. Also if a sequence of matrices
converges in the uniform topology it converges in the weak topology.

We shall denote by M the collection of matrices m = (ai3) for which

max \atJ\ exists. For m in M we define \m\ = max \atJ\. This induces

the same topology on M which the uniform topology of M induces on M.

LEMMA 3. The map C -+ Bc is a continuous map of T into M under
either the uniform or weak topologies of M.

Proof. Since C is in T, max \ct\ exists and is < \C\T. As Bc =

(cj-i) the norm of Bo, in M, is given by

\B0\ = max Jcj-il = max \ct\ < \C\T.

Therefore the map of T into M is continuous with respect to the

norm topology of M. Since this topology is induced by the uniform
topology of M this map is continuous relative to the uniform topology.
This then implies continuity relative to the weak topology and the lemma
is proved.

LEMMA 4. The map C -> Ao is a continuous map of T* into M un-
der either the uniform or weak topologies of M.

Proof. Ao = Bc{c)~ι where c Φ 0 is the sum of C. Since multipli-
cation in M is continuous in either topology as is the map C -> BG (by
previous lemma) we need only show that the map C —> (c)"1 is continuous.
This is the product of three maps C -> c -> c~λ -> (c)"1.

The first is continuous since it is an additive homomorphism and \c\ <

\C\T. The second is a continuous map on k* (the non-zero elements of

k). The third map is a ring isomorphism into M preserving norms. I.e.

\c~λ\ = max jc"1! = I ( c 1 ) | . Hence this map is continuous into Mrelative

to the norm in M. As in the proof of Lemma 3 this concludes the proof.
We define the convergence of an infinite product Πn-iC n , Cn in T,

in the usual way. That is, ΠΓ=iCM converges providing l i m ^ Π L Cn

exists and is not the additive identity of T. Making use of the theorem:
Π~=i Cnf Cn in T9 converges if and only if |1 — Cn\τ -> 0 as n -> OD

(where 1 is the multiplicative identity in T).
We deduce from Lemma 4 the following immediate consequence.

THEOREM 1. Let Σ"- i Cn converge and suppose Cn is in T* for all
n. Then ΠίΓ«i Ao converges relative to both weak and uniform topologies
of M and its limit is
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3 T2 matrices and C(x)-continuation Each infinite matrix m can
be thought of as a mapping defined over a subset of S and mapping
this subset into S. In fact, let m = (ai}) and suppose C = ΣΠ=A is in
S. Then if, for all j , the series ΣΓ-oCiflίj exists and equals c'ό we shall
say that the matrix m maps C onto C' = ΣΓ-<>cJ. We shall write
mC - C".

(If we let C* be the " vector " (c0, cx, c2, •) derived in the obvious
way from C then C * = (mC)* = C* m where the right side is the
ordinary matrix product of C* and m.)

When C has sum c then C" has sum c we call m a Γ2 matrix.
Necessary and sufficient conditions in order that an infinite matrix be
a T2 matrix will be found in [2] for k Archimedean and in [8ab] for k
non-Archimedean. (In the reference [2] the T2 matrix is called an a
matrix.)

Now suppose C = ΣΓ-oco C — ΣΓ-o^ί a r e ίn ϊ1 with sums <?, & re-
spectively. Then CC exists and

where Bo is as defined in § 2.
Since in this case CC converges to ccf we see that BG maps con-

vergent series onto convergent series but alters the sum by a factor of
c. Thus for C in Γ*, Aσ = ^(c)" 1 will map convergent series onto con-
vergent series with the same sum. This proves the following.

LEMMA 5. If C is in T* then Ao is a T2 matrix.

We wish now to consider series of functions. Let C(x) — £Γ=oΦ)
and U(x) — Σ ΐ l o ^ W where x ranges over some subset X of k. Sup-
pose in addition that C(x) is in T* for all x in D where D is a subset
of X. Further suppose there is a non-empty subset Δ of D on which
U(x) converges. Then, by Lemma 5, Ac<ix^ is a T2 matrix for x in D
and therefore transforms U(x)9 for x in Δ, into a new series with the
same sum. However it may be true that AG{x^U(x) is defined and con-
verges for some x in D — Δ.

The sum function u'(x), considered over the largest portion of D on
which Aoίχ)U(%) exists and converges, will be called the C(x)-continuation
of U(x) (or more accurately the C(#)-continuation of the sum function
u(x) of U(x)). The C(#)-continuation will be called efficient for U(x) if
there exists an x in D — Δ for which A0Cx:> exists and converges.

In Archimedean fields it is possible for an infinite series to converge
conditionally. If C(x) converges conditionally for some x then Acw is
defined but is not necessarily a T2 matrix (since the Cauchy product of
conditionally convergent series may not converge). Considering X now
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to be a topological space we can speak of the closure D of D in X. Let

x be in D and suppose that when y in D converges to x in certain pre-

scribed ways then C(x), U(x), ACCx:>U(x) converge respectively to

^ c(y), lim^x u(y), l i m ^ u\y)

when these limits exist. When x is in D we know u(x) = u'(x) so A0{7i)U(x)
converges when U(x) does. Thus if c(x), u(x), u\x) are continuous over D
then for x in Ό1 whatever the prescribed ways y in D tends to x, we
have C(x), U(x), Acίx), U(x) converging respectively to

l i m ^ c(y), l i m ^ u(y)9 l i m ^ u\y).

Let D* be the set of all x in B for which C($), Ϊ7(aj), A0(z)U(x) have
the respective limits specified above as y -> x in one of the prescribed
ways. Then Z) c D* c D when φ θ , tt(αj), ̂ '(#) a r e continuous over D.
The function w'(ce), considered over I?*, will be called a generalized
C(x)-continuatίon of £/"($) (relative to the allowed modes of convergence
of y in D to <c in D*).

4# Power series and the Weierstrass decomposition theorem.. In this
section we take the X of § 3 to be all of k and suppose C(x) and U(x)
to be power series about a in k. Then we may take, without loss of
generality, the set D to be a circle with center a from which have been
excised all zeros of C(x). Then A is the intersection of D with some
circle of center α. When k is non-Archimedean D — D and when k is
Archimedean D is the closed circle about a of the same radius as D.
Thus (by AbeΓs theorem in the Archimedean case) if we prescribe y in
D to converge to x in D — D only radially we can take D* = D.

THEOREM 2. For ^0 Φ 0, n = 0,1, 2, let Cn(x0) = ^ΐ=ΰanixl and
C(x0) = ΣΓ=o^(^o) ί>0 iw Γ T/iβ^ i/ Cn(xQ)-* C(x0) the following are
true.

(i) /or eαc/̂  i there is an at such that lim „_>«, αwί = α̂
(ii) α 4 4 = CiiXo) .

ΓΛαί is, C(x0) is the term by term limit of Cn(x0) when it is the limit
in the T norm.

Proof. Since | Cn(x0) - C(x0) | τ -* 0 we have | Cn(x0) - Cm(x0) | Γ -> 0 as

n,m-> cx> independently. But

α n i - αTOi| |a?0|*

in the cases where k is non-Archimedean or Archimedean respectively.

In either event \ani — ami\ |a?0|* < |Cn(a?0) — CTO(#0)|Γ -> 0. Hence by com-
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pleteness of k there is an at such that ant -> ait This proves (i). To prove

(ii) we have

[αέx* - ct(x0)\ < |αta?J - anix\\ + \anix\ - c4(a?0)l

< |αta?S - anix[\ + \Cn(x0) - C(xo)\τ .

Since both terms on the right tend to zero the proof of (ii) is completed.
We now suppose that k is algebraically closed and is non-Archimedean.

If C(x) = ΣΓ-o0ί#* ^s a n e n t i r e power series (i.e. C(x) is in T for all x
in k) which is not identically zero then by the analogue of the Weierstrass
decomposition theorem in algebraically closed non-Archimedean fields (see
Schobe [10] and Schnirelman [11]) we can express C(x) as the formal
limit of

a^o Π (1 - Φn)

where i0 is the multiplicity of the zero x = 0 of the sum c(x) of C(x)
and where zq ranges over the set of non-zero zeros of c(x), each factor
1 — xjzq occuring a number of times equal to the multiplicity of zq as
a zero of c(x).

Schobe [10] has also proved that |^Q | —> oo as g-*oo. Therefore,
since the terms of the product are power series and 1 + (1 — x/zq) =
x\zq has \xlzq\τ -> 0, the product Πβ-o° (1 — Φ*)> when infinite, converges
for every x in lc, relative to the topology of T. Hence by Theorem 2
above this product converges to C(x). These remarks combined with
Theorem 1 prove the following theorem. The notation is as above.

THEOREM 3. Let C(x) be an entire power series. Then for x a non-
zero of the sum function c(x) of C(x) we have

I I

where, if n is infinite, the right side converges to the left in both the
uniform and weak topologies of M.

In the case of the complex field the original Weierstrass decompo-
sition theorem gives an analogous result where the Aλ-xiz are replaced
by more complicated matrices corresponding to the primary factors of
C(x).

5 Meromorphic functions and C(#)-continuation. If the function
f(x) has a Taylor series expansion X Γ = o Φ ~ aY about a in k which
converges to f(x) in its circle of convergence we shall denote this series
by [f {%)]*• If D is the circle of convergence and y is an interior point
of D we can expand [f(x)]Λ about y to obtain (formally) [f(x)]v. Thus
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[/(*)]» ~ Σ Σ (* t j)ai+J(y - ay(χ - yf .

We shall denote Σ"-o(* \ 3)aι+){y ~ a)} by [/f(y)]e. When the char-
racteristic of A; is 0 we know

(Although much of what we shall say is true for fields of arbitrary
characteristic we confine ourselves to fields of characteristic 0 in order
to simplify the discussion.)

Letting f^y) be the sum function of [fi(y)]a we have

ίf(x)l = tfάv)(x - vY .

It is known that in both the Archimedean and non-Archimedean
case that for all i, [f^y)]* converges for all y in D. However in the
Archimedean case it is often true that there is a circle Dlf not contained
wholly within D, and in which, for all i, [fi(y)~\* converges and
ΣΓ-o [/«(!/)] (% - VY converges in Dλ to f(x).

This allows one to step by step recover the function f(x) from
a power series element [/(x)]* of the function. When k is non-Archi-
medean it can be shown that no such circle as Dλ can ever exist. Thus
the usual method of analytic continuation necessarily fails in such fields.
In this section we shall show how C(#)-continuation can be applied in
the case of the continuation of power series elements of meromorphic
functions with known denominators (see below).

Let D be a circle in k (D open if k is Archimedean) with center α.
A function f(x) defined over some subset of k will be side to be mero-
morphic over D if there exist two series [g(xj] , [h(x)]Λ convergent on D
such that

(i) f(x) is defined for x in D if and only if h(x) Φ 0
(ii) f(%) = g(x)jh(x) everywhere on D where defined.

The function h(x) will be called a denominator of f(x) over D. If D is
the greatest such circle we call it the circle of meromorphy of f{x).

LEMMA 6. If f(x) is meromorphic on D with denominator h(x) and
if a is in D then f(x) is the \hix^\^continuation of

Proof. Let x be in D, h(x) Φ 0. Then there is a g(x) such that
[#(#)]* converges on D and f(x) = g(x)/h(x). Now f(x) is the sum func-
tion of
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and the lemma is proved.

THEOREM 4. Let f(x) be meromorphic on D with denominator
h(x). Further for a in D let

have circle of convergence contained in D. Then

is in D, h(y) Φ 0, and fι(y) is the [h(yy\l+}-continuation of

Proof. As seen above the formal expansion of [/(#)L about /̂ is
given by

Σ

where

But

=

dyι dyι

where t(y) is a polynomial in g(y) and fe(^/). Thus [ί(2/)]Λ converges over
i) and dif(y)ldyί is meromorphic on Z) with denominator (t(y))ί+1. Thus
by Lemma 1, dlf(y)jdyl is the [(^(T/))* ̂ ^continuation of

= ΐ! Σ (l \ j)aί+j(y - ay .

From Theorem 4 and Theorem 1 we have the

COROLLARY. f%{y) is the sum function of AιHy)1 [dίf(y)ldy%.

THEOREM 5. If a function f(x) defined over D is the C(x)-continua-
tion of a power series [f(x)]a then f(x) is meromorphic on D when C(x)
is of the form
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Proof. Let f(x) be the sum function of

which converges on D. Then [g(x)]a = [λ(αj)]Λ[/(a?)]Λ converges on Zλ
Letting #(#), fe(aj) be the sums on D of [#(#)]*, [&(#)]* respectively gives
[/(#)]« the expansion about a of g(x)lh(x) which is meromorphic on D.

There are many further questions which can be asked concerning
these methods of continuation. In view of Theorem 5 one would wish
to concentrate on C(#)-continuations where C(x) is not a power series.

Further we can generalize the method so that instead of restricting
ourselves to the use of C(#)-continuations we allow the use of arbitrary
T2 matrices. Some work has been done in this direction in [8a].

Vermes, making use of series to sequence methods, has dealt with
similar problems for k the field of complex numbers [13abc]. Some of
his results in [13a] overlap some of the work done here. For further
considerations of these and similar problems see the references to
Chabauty, Krasner, Kurshak, Rychlik, Schobe and Strassman cited below.
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IDEMPOTENT MEASURES ON ABELIAN GROUPS

WALTER RUDIN

1 • Introduction.

1.1. All groups mentioned in this paper will be abelian, even when
this is not explicitly stated, and will be written additively. For any
locally compact abelian group G, ^ (G) will denote the set of all com-
plex-valued Borel measures (sometimes called Radon measures) an G.
The convolution of two such measures μ and λ is the measure μ * λ defined
by

(1.1.1) (μ*λ){E) =[ μ(E- x)dλ{x)
3G

for every Borel set E c G, where E — x is the set of all y — x with
ye E.

With addition and scalar multiplication defined in the obvious way,
and with convolution as multiplication, ^//(G) is a commutative algebra.
A measure μ e ^/f(G) is said to be idempotent if

(1.1.2) μ*μ = μ .

The set of all idempotent elements of ^£{G) will be denoted by ̂ ( G ) .
It would be interesting to have an explicit description of the idem-

potent measures on any locally compact group. For the circle group,
this was obtained by Helson [1], and was of considerable help in the
determination of the endomorphisms of the group algebra of that group
[6]. In the present paper, the problem is completely solved for the finite-
dimensional torus groups (Section IV) and for the discrete groups (Theorem
2.2). In Section II it is proved that every idempotent measure is con-
centrated on a compact subgroup (Theorem 2.1). In Section III the
general problem is reduced to the study of the so-called irreducible
idempotent measures on compact groups.

1.2. Apart from its intrinsic interest, this problem has another
aspect: If JS^(G) is the Banach space of all complex Haar-integrable
functions on G, and if A is a bounded linear mapping of J*f{G) into J5f{G)
which commutes with all translations of G, then it is known that there
is a unique μ e ^/f(G) such that

(1.2.1) (Af)(x) = ( f(x - y)dμ(y)
JG

Furthermore, A2 — A if and only if μ*μ = μ.
Received May 22, 1958. The author is a Research Fellow of the Alfred P. Sloan

Foundation.
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Thus the determination of all idempotents in ^€(G) is equivalent
to the determination of all projections in £?(G) which commute with
the translations of G.

1.3. Let Γ be the dual group of G, that is, the group of all con-
tinuous characters of G. With every μ e ^/t{G) there is associated its
Fourier-Stieltjes transform μ, defined by

(1.3.1) Kr)=\ i-χ,r)dμ{χ) (reΓ),

where (x, γ) denotes the value of the character γ at the point x.
The correspondence μ —• μ is one-to-one, and the transform of a con-

volution is the pointwise product of the transforms of the factors. It
follows that μ 6 ^~(G) if and only if μ has 1 and 0 as its only values.

We associate with each μ e ^ ( G ) the set

(1.3.2) S(μ)= {reΓ\Kr) = l} .

The problem of finding all μ e ̂ (G) is then equivalent to the problem of
finding all subsets of Γ whose characteristic function is a Fourier-
Stieltjes transform.

1.4. In order to lead up to our conjecture concerning the struc-
ture of the measure in ̂ ( G ) , we present some relevant facts concerning
subgroups, quotient groups, and measures.

(y) If H is a closed subgroup of G, let N(H) be the annihilator of
H, that is, the set of all γeΓ such that (x, γ) = 1 for all x e H. Then
N(H) is a closed subgroup of Γ and is the dual group of G/H. Also
r/N(H) is the dual group of H.

(b) For any μ e ^€(G), let \μ\ be the measure defined by

(1.4.1) M(£)-supΣI/Wl,
the sup being taken over all finite collections {Et} of pairwise disjoint
Borel sets whose union is E; detailed proofs of the properties of the
\μ\ so defined can be found in [4]. The norm of μ is defined as \\μ\\ =
\μ\(G); with this norm, ^£(G) is a Banach algebra, and

(1.4.2) \\μ\\ > sup I Mr) I (reΓ,μe ^t(G)) .

We say that μ is concentrated on E if \μ\{E) = \\μ\\. The restric-
tion of μ to a set A is the measure λ defined by λ(B) = μ(A Π B). The
support of μ is the smallest closed set F on which μ is concentrated.
If μ is concentrated on a countable set, then μ is discrete if μ(E) — 0
for every countable set E, μ is continuous if μ(E) = 0 whenever ra(i?) = 0,
where m is the Haar measure of G, μ is absolutely continuous; finally,
if μ is concentrated on a set E with m ^ ) = 0, then μ is singular.
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(c) If a closed subgroup H contains the support of some μ e
then μ may also be regarded as an element of ^(H). Conversely, any
λ e ^//(ΈL) may be regarded as an element of ^ZZ(G), such that λ(E) = 0,
whenever E (Ί H is empty.

It is important to note that if a group H contains the support of
two measures μ, λ e ^/f(G), then the same is true of μ*λ. This follows
immediately from (1.1.1): Since λ is concentrated on H, the integration
extends over H only, and if E Π H is empty, so is (E — x) ΓΊ H for every
xe H; hence (μ*λ)(E) = 0.

(d) If H is a closed subgroup of G, if μe ^ίf{G)> and if μ is constant
on each coset of N(H), then μ is concentrated on H.

We sketch the proof. The assumption on μ implies that

{-x, γ'){- xf r)dμ(x) = f {~x, γ')dμ{x) (f eΓ,γe N{H) ,
G JO

and the uniqueness theorem for Fourier-Stielt jes transforms shows that
(— x, τ)dμ{x) = dμ(x) for all γe N(H). Hence (— x, γ) — 1 almost every-
where on the support of μ, which means that this support lies in H.

(e) Suppose now that G is compact (so that Γ is discrete) and that
mH is the Haar measure of a compact subgroup H of G. Then mπe ^ZZ(G)
(see (c)), and it is easy to see that mHe^fr(G) and that S{mH) = N(H)
(see (1.3.2)).

If, for some γ e Γ, dμ(x) = (x, γ)dms(x), then μ is again idempotent,
and S(μ) = N(H) + γ.

It follows that every coset of every subgroup is S(μ)for some μe ^(G).
(f) Consider the family W of all sets S(μ), for μ e ^~(G). If μ and

λ are idempotent, so are the measures μ*λ, μ + λ — μ*λ, and u — μ,
where u is the unit element of ^(G) (i.e., u is the point measure which
assigns mass 1 to the identity elements of G; ύ(γ) = 1 for all γeΓ). Since

S(μ) U S(λ) = S(μ + λ - μ * λ ) ,

and the complement of S(μ) is S(u — μ), we see that W is closed under
finite intersections, finite unions, and complementation. That is to say,
W is a ring of sets.

1.5. Suppose again that G is compact. Define the coset-ring of Γ
to be the smallest ring of sets which contains all cosets of all subgroups
of Γ. We conclude from 1.4 (e), (f), that every member of the coset-ring
of Γ is S(μ) for some μ e ^{G).

The structure of such a μ can be described as follows: Every sub-
group of Γ is N(H) for some compact subgroup H of G, and any finite
union of cosets of N(H) is S(μ) for a measure μ defined by
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N

(1.5.1) dμ(x) = Σ(x, ri)dmH(x) ,

where ft, , γN are distinct characters of H. Roughly speaking, μ is
a trigonometric polynomial on H. If £(Λ) belongs to the coset ring of
Γ, λ can accordingly be obtained from measures of the form (1.5.1) by
a finite sequence of the operations described in 1.4 (f).

It seems quite likely that there are no other idempotent measures:

CONJECTURE. If G is a compact abelian group and μ e J^{G), then
S(μ) belongs to the coset ring of Γ.

The main result of this paper is the proof of this conjecture for the
finite-dimensional torus groups.

2* Reduction to Compact Groups and Some Consequences1 •

Our first theorem shows that we may restrict our attention to measures
defined on compact groups:

2.1. THEOREM. Suppose G is a locally compact abelian group and
μ 6 .J^(G). Then μ is concentrated on a compact subgroup K of G {and
hence μ e

Proof. Let GQ be the smallest closed subgroup of G which contains
the support of μ; we wish to show that Go is compact. By 1.4(c) we
may assume, without loss of generality, that Go — G, and 1.4(d) implies
then that μ is not constant on the cosets of any non-trivial closed sub-
group of Γ. In other words, if we define μΊ by

(2.1.1) dμy(x) = (x, γ)dμ{x) (γ e Γ) ,

then μΊ Φ μ if γ Φ 0. Since μy — 0 or 1, (1.4.2) implies

(2.1.2) \\μy-μ\\>i (rΦO).

There exists a compact set C c G such that \μ\{C) < 1/4, where C
denotes the complement of C. If V is the set of all γ e Γ such that

(2.1.3) | l - ( α ? , r ) | <

for every x e C, then V is open (this is precisely the way in which the
topology of Γ is defined), and for every γ e V we have

(2.1.4) \\μ - μy\\ <\ I 1 - (x, T)\d\μ\(x) = f + f < J + -ί < 1 .
)G Jc Jc 3 2

1 The proofs in this section are simpler than they were in the original version of this
paper, due to welcome suggestions by the referee and by P. J. Cohen.
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By (2.1.2), the open set V thus consists of the identity element
alone. Consequently, Γ is discrete, and G is compact.

2.2. THEOREM. Suppose G is discrete (so that Γ is compact).
(a) If μ e ^(G), then μ is concentrated on a finite subgroup H of

G, the annihilator N(H) is an open-closed subgroup of Γ, and S(μ) is
a finite union of cosets of N(H).

(b) Conversely, every open-closed subset E of Γ is S(μ) for some
μ e Jfiβr).

Proof. The first part of (a) follows from Theorem 2.1; for the rest,
we observe that ΓjN(H) is a finite group and that μ is constant on the
cosets of N(H).

Next, if E is an open-closed subset of Γ, there is a neighborhood
V of 0 in Γ such that E + V = E. If / and g are the characteristic
functions of V and E, respectively, then

(2.2.1) ( f(r')g(r - r')dm(r') = m(V)g(γ) ,

where m is the Haar measure of Γ. Since / and g are in L2(Γ), the
Plancherel theorem implies that g is a Fourier transform, and the result
follows from the remark at the end of 1.3.

2.3. For technical reasons, which will become apparent in the next
section, it is convenient to enlarge the class ^ (G) somewhat. We let
/s~(G) be the class of all μ e ^(G) such that μ is an integer-valued
function, and we can immediately prove the following proposition:

If μ e Js~(G), then μ = axμγ + + Ojnμnf where aτ, , an are in-
tegers and μlf , μn e ^ (G).

Indeed, let al9 * ,α w be those integers which are different from 0
and which lie in the range of μ (since μ is bounded, this is a finite set).
Let Pi be a polynomial such that

P,(0) - 0, Pfaj) = 0 if j Φ i, P4(α,) = 1 ,

and put μi — Pι{μ).

(We define μn = μ*μn-\ and P(μ) = Σ c / if P{x) = Σcnx
n.) Then

1

hir) = Pmr) = \l *Kr) Γ α"
0̂ otherwise

so that μt e ^{G) and μ = a,μγ + + anμn.

2.4. THEOREM. Suppose G is a compact abelian group, μ e ^{
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and His a closed subgroup of G. Let {ίfj be the (evidently at most counta-
ble) collection of those cosets of H for which

(2.4.1)

Let H be the smallest subgroup of G which contains all these Hiy and let

σ be the restriction of μ to H. Then
(i) σ.

(ii) H\H is a finite group.
Assertion (ii) implies, in particular, that {H^ is a finite collection,

and that μ vanishes on every coset of H which has infinite order in
GIH.

Proof. We first claim that the following two statements are true

for every Borel set 4 c G :

(a) If A Π H is empty, then σn(A) = 0 for n = 1, 2, 3, .

(b) If A c H, then σn(A) = μn{A) for n = 1, 2, 3, . . .

Note that H is an at most countable union of cosets of H, hence in
particular is a Borel set.

It is clear that (a) holds if n = 1, and we proceed by induction:

— x)dσ(x) = \ σn~\A — x)dσ(x) .

If A Π H = 0 and α? e ^ , then (A - a?) Π Jϊ = 0. Thus if (a) holds for
n — 1, it also holds for n.

To prove (b), put τ~ μ — σy and expand μn = (σ + r)w by the binomial
theorem. We have to show that

(2.4.2) (τk * σn-k)(A) = 0 (k = 1, 2, . . . , n)

if AczH.

Since r vanishes on every coset of Jϊ and since H is an at most
countable union of such cosets, we have τ(A — x) = 0 for every x e G.
Thus, for any λ e .^f (G),

;») = o,

and (2.4.2) follows.
From (a) and (b) we conclude that

(2.4.3) σ\E) = μ\E f]H) (n = 1, 2, 3, . . . )

for every Borel set E c G.
Let αi, ,αn befthe non-zero values of £, and let P be the polynomial
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P{t) = ί Π (< - α.)

Then P(μ) = 0, and (2.4.3) implies that P(σ) = 0. From this it follows
that every value of σ is a root of P, so that the range of σ lies in the
set {0, Oi, •••,«„}. This proves the first part of the theorem.

We now put a new topology on H: the neighborhoods of 0 are to

be the sets H Π V, for any neighborhood V of 0 in G. Then H is a

locally compact abelian group, and σ e ^(H). By Theorem 2.1 (extended
from L/(G) to ^~(G), via Proposition 2.3), we see that σ is concentrated

on a compact subgroup K of iϊ. The minimality which was one of the

defining properties of H shows that K — H. Thus H is compact, and

since H is an open subgroup of H, we conclude that H/H is finite.

3. Decomposition into Irreducible Measures.

3.1. If G is compact, μ e ^(G), and H is a compact subgroup of
G, the second part of Theorem 2.4 shows that H has finite index in

a compact subgroup H such that /* vanishes on every translate of H

which is different from H. The existence of such H suggests the fol-
lowing definitions.

(a) Suppose G is compact, μ e ^/Z(G), and K is a compact subgroup
of G. We say that K is associated with μ if
(i) \μ\{K+ x) = 0 for every x $ K;
(ii) I μ I (iϊ) < I μ I (J5Γ) for every compact subgroup H oΐ K which is dif-
ferent from K.

Note that (ii) implies \μ\(K) > 0. Thus the null-measure has no
group associated with it. If μφO, the smallest compact group on which
μ is concentrated is clearly associated with μ.

(β) If μ = 0, or if there is precisely one compact subgroup associated
with μ, we say that μ is irreducible.

It should be pointed out that μ need not be concentrated on a sub-
group which is associated with μ. For example, let G be the circle
group Tι (the one-dimensional torus), and set μ = m + λ, where m is the
Haar measure of Tι, and λ is a positive measure concentrated at the
point eix. If xjπ is rational, then the finite cyclic group generated by
eix is associated with μ, and so is T\ If x\π is irrational, then T1 is the
only group associated with μ, and μ is irreducible.

3.2. The following two propositions may elucidate these concepts
(we use the notations of 3.1):

(a) If K and H are associated with μ and if H is a proper subgroup
of K, then KjH is infinite.
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Indeed, suppose K/H is finite, so that a finite number of translates
of H covers K. Since \μ\(H + x) = 0 whenever x $ H, it follows that
\μ\(K) = \μ\(H), a contradiction'

(b) Suppose μ 6 J?~(G) and K is the smallest compact subgroup of
G such that \μ\{K) — \\μ\\. Then μ is irreducible if and only if \μ\ (H) = 0
for every compact subgroup H of K such that m(H) = 0, where m is the
Haar measure of K. If μ is irreducible, we also have \μ\(H+ x) = 0
for every such H and all x e G.

Note that m(H) = 0 if and only if K/H is infinite. Thus if | μ \ (H) = 0

whenever m{H) = 0, proposition (a) implies that μ is irreducible. On the

other hand, if \μ\{H)>0 for some H with m(H) = 0, the Hof Theorem

2.4 (with K in place of G) is associated with μ and m(H) — 0 hence μ

is not irreducible. The last assertion of (b) also follows from Theorem

2.4.

3.3 THEOREM. Suppose G is a compact abelian group and μ e ^{G).
Then there exist irreducible measures ^ e / ( G ) and integers α4 such that

μ = aιμx + a2μ2 + + anμn .

Proof. It is convenient to weaken the hypothesis somewhat and to
assume merely that μ e ^(G); assume also μφO.

We first show that there is a compact subgroup Hx of G which is as-
sociated with μ, such that the restriction λλof μ to Hλ is irreducible, and
such that λλ e J7~(G).

If μ is irreducible, let Hx be the smallest compact group on which μ
is concentrated. If μ is not irreducible, there is a compact group Kλ which
is associated with μ, such that \μ\(K1) < \\μ\\; let στ be the restriction
of μ to Kι. By Theorem 2.4, σ1 e J^iG), and the same is thus true of
μ — σx. Since μ — σλ Φ 0, (1.4.2) shows that

(3.3.1) \\μ - σΎ\\ > 1 .

On the other hand, σx and μ — στ are concentrated on disjoint sets, so
that

(3.3.2)

It follows that

(3.3.3)

If σx is not irreducible, we repeat this process, with σλ in place of
μ: there is a compact K2 c Kλ which is associated with σλ (hence with
μ), such that the restriction σ2 of σx to Kλ belongs to ^~(G) and satisfies
the inequality
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(3.3.4) lk,||<IK||-l<||H|-2.

Since the norms decrease by at least 1 each time, we evidently
obtain an irreducible measure (Φ 0) after repeating this process a finite
number of times. Call this measure λτ.

Since λL is the restriction of μ to a group Hl9 we see that λτ and
μ — λλ are concentrated on disjoint sets, so that \\μ\\ — \\λλ\\ + \\μ — λx\\.
We conclude, as above, that

(3.3.5) I I ^ - ^ I I ^ I I ^ I I - I .

If μ — λx is irreducible, put λ2 = μ ~ λτ. If not, repeat the preceding
construction, finding an irreducible λ2 e J^{G) such that

(3.3.6) i ^ - ^ - ^ i i ^ I I ^ I I _ 2 .
Again, this must stop after a finite number of steps, and we obtain
a representation

(3.3.7) μ = λx + λ2 + + λp ,

where each λt is irreducible and belongs to
In 2.3, we saw that every λ e ^"{G) is a finite linear combination,

with integer coefficients, of idempotent measures μ5. The theorem thus
follows from (3.3.7) if we can show that the μό are irreducible if λ is
irreducible; by 2.3, we therefore have to show that P{λ) is irreducible
if P is a polynomial without constant term.

Suppose then that K is associated with λ and that λ is irreducible.
Let m denote the Haar measure of K. If H is a compact subgroup of
K with m{H) = 0, then \λ\(H) = 0 by 3.2 (b), and it easily follows that
\λn\(H) = 0 for w = 1, 2, 3, •-., and hence that |P(/l)|(#) = 0. Thus if
p(Λ) =£ 0, P(/l) is concentrated on a subgroup Kr of i£ which has finite
index in K, and K is associated with P(Λ). Applying 3.2 (b) again, we
conclude that P(λ) is irreducible.

This completes the proof.

3.4 Let R denote the coset ring of Γ, and call a function / defined
on Γ an ^-function if

where each g% is the characteristic function of some member of R, and
each Ci is a complex number.

Suppose we know, for some compact group G, that S(μ) e R for
every irreducible μ e ^{G). Then μ is an R-function, and since a finite
sum of R-ίunctions is again an iϋ-function, Theorem 3.3 shows that σ
is an R-ί unction for every σ e <J^(G) (irreducible or not) this means
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that S(σ) 6 R.
Thus the conjecture made in 1.5 will be proved for a given compact

G if it is proved for every irreducible μ e ^(G).
According to the remarks made in 1.5, we therefore have to prove

the following: if K is the subgroup associated with the irreducible
μ e ^(G), then μ is a trigonometric polynomial on K. This is equivalent
to the assertion that μ is absolutely continuous with respect to the Haar
measure of K; for if μ is not a trigonometric polynomial, then μ(φ) = 1
for infinitely many ψ in the dual group of K, so that μ(Φ) does not
vanish at infinity.

4 The Idempotent Measure of the Torus Groups*

4.1. Let Tr denote the r-dimensional torus group the points of Tr

are of the form

(4.1.1) x = (e» •••,«,

the ξi being real numbers mod 2π. The dual group of Tr is AΊ\ the group
of all lattice points in r-dimensional euclidean space R, i.e., the set of
all

(4.1.2) rc = K . . . ,* r )

where the vι are integers. If we put

(4.1.3) n-x = Σ ^ ,

then {xy n) — ein'x, and the transform of any μ e ^?(Tr) is

(4.1.4) fι(n) = [ e-ίn'xdμ(x) (n e Ar) .

We shall prove that every μ e j^{Tr) has the structure described
in 1.5:

4.2. THEOREM. If μ e ^(Tr)9 then S(μ) belongs to the coset ring
of A\

The discussion in 3.4 shows that Theorem 4.2 is a consequence of
the following:

4.3 THEOREM. Suppose G is a compact subgroup of Tr, and suppose
G is associated with an irreducible measure μ e ^(Tr). Then μ is ab-
solutely continuous with respect to the Haar measure of G.

Proof. We shall use induction on r.
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For r = 1, the theorem is due to Helson [1] (our terminology differs
from his, being adapted to a more general situation), but we include
the proof for the sake of completeness.

If G is a finite group, there is nothing to prove. If G = Tι, we
have to prove that S(μ) is finite. Since μ is continuous, a well-known
theorem of Wiener implies that

(4.3.1) lim } ΣIM^)12 = O.
ΛΓ-~ 2N + 1 -iv

If £?(/-*) were infinite, it would therefore contain an infinite set {nk} such
that none of the integers nk + 1, , nk + k belong to S(μ), and a sub-
sequence of the measures μk defined by

(4.3.2) dμk(x) = e'ιVdμ(x)

would converge weakly (as functional on the space of all continuous
functions on T1) to a measure σ e ^(T1). The choice of {%} shows
that σ (O) = 1 and σ(n) = 0 for all n > 0. This latter fact implies, by
a well-known theorem of F. and M. Riesz, that σ is absolutely continuous.
But every weak limit of the sequence (4.3.2) must be singular [2; p. 236].
Since σ Φ 0, this is a contradiction, and we conclude that S(μ) is finite.

We now assume that the theorem has been proved for r < p — 1
(p ~ 2, 3, 4, •). To prove it for r = p, we consider two possibilities:

Case 1. G is the direct sum of Tq (for some q <p) and a finite group
F.

Case 2. G = Tp.

Case 1. Let/j, •••,/, be the elements of F, so that each element
of G can be written uniquely in the form x+f with x e Tq and f e F.
Let φl9 , φs be the characters of F.

Let μlf , μs be measures on Tq defined by

(4.3.3) μk(E) - Σ(-Λ, ΦMEj) (Λ = 1, - , β) ,

where E1 is a Borel set in Tq and E5 — Έ +fj9 Then, for w e J 9, we
have

= t = 0 or
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SO that μk 6
Since μ is irreducible and G is associated with μ, (4.3.3) shows that

\μk\(H) = 0 for every proper compact subgroup of Tq; hence μk is irre-
ducible and Tq is associated with μk9 or μk = 0. Our induction hypothesis
now implies that μfc is absolutely continuous (1 < k < s).

If we multiply the equations (4.3.3) by (fi9φk), add over k, and
observe the orthogonality relations satisfied by the characters φk, we
obtain

(4.3.4) Σ (/4, φk)μk(E) = 8 μ(Ed (i = 1, . . . , s) ,

and thus the absolute continuity of the measures μk implies that μ is
absolutely continuous with respect to the Harr measure of G. This
settles Case 1.

Case 2. We now assume that μ e ^(Tp) and that \μ\(H) = 0 on
every proper compact subgroup of Tp (compare 3.2 (b)), and we wish to
prove that S(μ) is finite. Our proof will be similar to that of the case
r = 1, but we have to replace our reference to the theorem of F. and
M. Riesz by a result recently proved by Helson and Lowdenslager1 [3;
Section 4, Lemma 3]:

Let Q be a subset of Ap such that (a) nx + nt e Q if nγ e Q and n.zeQ,
(b) 0 0 Q, (c) if n φ 0, then n e Q if and only if — n 0 Q. Suppose σ
is a singular measure on Tp such that σ(n) — 0 for all n e Q. Then
σ(0) = 0.

We think of Ap as a subset of euclidean space Rp (see 4.1). The
theorem of Wiener (namely, (4.3.1)) extends without difficulty to Fourier-
Stieltjes series in several variables and shows that S(μ) has density 0
in Ap, since μ is continuous. More precisely, the number of points of
S(μ) in the p-dimensional cube with center at the origin and vertices
(± N, ± N, ••• ±N) is o(Np).

If S(μ) is infinite, it follows that there exist spheres Vk in Rp with
the following properties:
(i) The radius of Vk is greater than k.
(ii) Vk contains no point of S(μ) in its interior.
(iii) The boundary of Vk contains a point nk e S(μ), and nk-> oo as k-+ oo.
(iv) If ck is the center of Vk9 the unit vectors

ck — nk

\ck - nk I

converge to some b e Rp. (The absolute value sign denotes the length
of the vector.)

1 I wish to thank these two authors for letting me read their paper prior to its publication.
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(v) The measures μk e ^(Tp) defined by

(4.3.5) dμk(x) = e-in* *dμ(x)

converge weakly to a measure σ e
It is evident that {Vk} can be chosen so as to statisfy (i), (ii), (iii),

and a suitable subsequence will satisfy (iv) and (v) as well.
The passage from μ to σ, via (4.3.5), is such that \<r\(E) < \μ\(E)

for every Borel set E c Tp also, σ is not changed if we replace μ by
its singular component, since the Fourier transform of the absolutely
continuous component tends to 0 (this is the argument used by Helson
in [2; p. 236]).

Hence σ is singular, σ e ^(Tp), and since \σ\(H) < \μ\(H) = 0 for
every proper compact subgroup H of Tp, σ is irreducible our choice of
{Vk} shows that σ(0) = 1 and that σ(n) = 0 for every n in the open
half-space determined by n b > 0.

This last property is a consequence of the relation

(4.3.6) S(μk) = S(μ) - nk

and the fact that S(μk) therefore has no point in the interior of the
sphere through 0 whose center is at ck — nk.

Let Aq be the subgroup of Λp which lies in the hyperplane n b = 0.
Then 0 < q < p. If q = 0, the theorem of Helson and Lowdenslager
gives an immediate contradiction: take for Q the set of all n such that
n b > 0; then σ(n) — 0 in Q, σ is singular, but σ(0) = 1.

If 0 < q < p, then Tp is a direct sum Tq + Tp'\ where Λq is the
dual group of Tq and the annihilator of Tp~q. Let h be the natural
homomorphism of Tp onto Tq, and define a measure λ e ^£{Tq) by

(4.3.7) λ(E) = σίA

for all Borel sets E a Tq. Any x e Tp has a unique representation
α = xλ + x>z with a?! e Tq, x2 e Tp~q. If n e Aq, then ein'x* = 1, so that

(4.3.8) λ{n) = ( β - ^ ' M ^ ) = ( 0-in'xdσ(^) = σ(w) = 0 or 1 .

Thus ^ e ^ ( ϊ 7 3 ) and the irreducibility of σ shows that λ vanishes on
every proper compact subgroup of Tq. Our induction hypothesis now
implies that S(λ) is a finite subset of Aq.

Since S(λ) = S(σ) Π Aq, we see that S(σ) has only a finite number
of points in the hyperplane n b = 0, and a suitable translation of S(σ )
by a vector in this hyperplane results in a singular measure σΎ e ^ ( T * )
which has σ^n) — 0 in a set Q which satisfies the hypotheses of the
Helson-Lowdenslager theorem, but which has <χi(0) = 1.

This contradiction shows that S(μ) is finite, and the proof is complete.
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5. Remarks.

5.1 In the preceding section we have determined all idempotent
measures on Tr, and incidentally also on all groups of the form Tr + F9

where F is any finite abelian group. We note that these groups are the
only compact abelian groups which have no infinite totally disconnected
subgroups.

Indeed, if G is not Tr + F, then its dual group Γ is not finitely
generated (since every finitely generated abelian group is a direct sum
of cyclic groups), and the well-known fact that a compact group is totally
disconnected if and only if its dual group is a torsion group shows that
the above-mentioned proposition is equivalent to the following purely
algebraic theorem (compare 1.4 (a)).

5.2 THEOREM. If G is an abelian group which is not finitely generat-
ed, then G can be mapped homomorphically onto an infinite torsion group.

Proof. If G has finite rank p, let {xl9 , xp} be an independent
set in G. Factoring out the group generated by xl9 9xp gives a torsion
quotient group, and the latter is infinite, since G would otherwise be
finitely generated.

If G has infinite rank, let {xlfx2fxdf •••} be an independent set in
G, and let H be the group generated by {xn}. Every x e H has a unique
representation

(5.2.1) x = Σ an(x)xn ,
1

where the coefficients an(x) are integers for each x9 only finitely many
an(x) are different from 0.

Let {tn} be a sequence of distinct rational numbers, 0 < tn < 1, and
define

(5.2.2) h{x) = Σ aΛ(x)tn (mod 1) .
1

It is clear that h is a homomorphism of H into the group Y of the
rationale modulo the integers, and since h{xn) = tn, h(H) is infinite. Since
Y is divisible, h can be extended to a homomorphism of G into Y
[5; p. 11]. Since Y is a torsion group, the homomorphism h has the
desired properties.

We conclude with a result which gives further support to the con-
jecture stated in 1.5.

5.3 THEOREM. Suppose G is compact and connected, and G is as-
sociated with an irreducible μ e ^(G). Then S(μ) is a finite set.
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We shall omit the details of the proof, and merely give an outline:
If S(μ) is infinite, then S(μ) Π Γo is infinite, for some countable subgroup
Γo of Γ. Since G is connected, Γ has no element of finite order, and
Γo is isomorphic to a subgroup of the real line. If A is any finitely
generated subgroup of Γo, then S(μ) (Ί A is finite, by the results of Sec-
tion IV, and 1\ is the union of a countable increasing sequence of such
J's. A translation argument, combined with a generalized version of
the Helson-Lowdeixslager Theorem (Section 6 of [3]) now leads to a con-
tradiction, as in Section IV.

POSTSCRIPT (added in proof). About six months after the completion
of this paper, P. J. Cohen has succeeded in proving the conjecture
made in paragraph 1.5 in its full generality.

REFERENCES

1. Henry Helson, Note on harmonic functions, Proc. Amer. Math. Soc. 4 (1953), 686-691.
2. ----- , On a theorem of Szegό, Proc. Amer Math. Soc. 6 (1955), 235-242.
3. , and David Lowdenslager, Prediction theory and Fourier series in several
variables, Acta Math. , 99 (1958), 165-202.
4. Edwin Hewitt, Remarks on the inversion of Fourier-Stieltjes transforms, Annals of
Math. 57 (1953), 458-474.
5. Irving Kaplansky, Infinite Abelian groups, Ann iVrbor, 1954.
6. Walter Rudin, The automorphisms and the endomorphisms of the group algebra of the
unit circle, Acta Math. 95 (1956), 39-55.

UNIVERSITY OF ROCHESTER





FREDHOLM EIGEN VALUES OF MULTIPLY-

CONNECTED DOMAINS

M. SCHIFFER

Introduction, The solution of the boundary value problems of
potential theory can be reduced, according to Poincare, to an inhomo-
geneous integral equation of the second kind. It was the study of this
particular problem which led, at the beginning of this century, to the
development of the modern integral equation theory at the hands of
Fredholm and Hubert. From the beginning, attention was drawn to the
eigen value problem for the homogeneous integral equation with the
potential theoretical kernel [10]. The eigen functions of this problem
can be extended as harmonic functions into the domain considered as
well as extended into the complementary domain and give rise to interest-
ing series developments and to a theory relating solutions of the interior
and exterior boundary value problems of a closed curve or surface.

In a preceding paper [17], these Fredholm eigen functions were
applied to problems of conformal mapping of simply-connected plane
domains. Their connection with the dielectric Green's function of such
domains was discussed and we showed the possibility of obtaining univalent
functions by means of the dielectric Green's function. A variational
formula for the Fredholm eigen values was established and an extremum
problem for the latter was solved which permitted one to estimate the
convergence of the Neumann-Liouville series solving the Dirichlet and
Neumann boundary value problems.

In the present paper, the Fredholm eigen value problem is studied
in the case of multiply-connected plane domains. Various new difficulties
arise in this case. The complementary region of a multiply-connected
domain is a domain set and the number of trivial solutions of the problem
with the eigen values | λ | = 1 increases. This fact necessitates a brief
restatement of the basic definitions and concepts in § 1. A certain re-
petition and overlap of material with the preceding paper could not be
avoided but, on the other hand, the presentation of this section makes
the paper self-contained and should facilitate the understanding of it.

In § 2, the dielectric Green's functions gz(z, ζ) of a multiply-connected
domain are discussed and their Fourier development in terms of the
Fredholm eigen functions is given. The functions g, are of geometric-
physical significance by themselves moreover, they represent a one-
parameter (0 < ε < co) family of harmonic positive-definite kernels which
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Research.
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have also the Fredholm functions as eigen functions. For ε — 1, g2(z, ζ)
reduces to the fundamental singularity — log | z — ζ \ and leads to the
classical kernel of potential theory. A power series development of the
dielectric Green's function in terms of (ε — l)/(ε + 1) is given the coef-
ficient kernels are elementary and can be calculated explicitly by integra-
tion of simple functions over the boundary curve system.

The role of the one-parameter family g2{z, ζ) becomes particularly
interesting when one studies the limit cases ε = 0 and ε = oo. This is
done in § 3. It appears that this function family interpolates between
two well-known harmonic functions which determine two important
canonical mappings of the domain considered namely the radial-slit
mapping and the circular-slit mapping.

In § 4 it is proved that not only the limit cases ε = 0 and ε — CΌ
of gs(z, C) give rise to univalent functions in the domain but that each
dielectric Green's function does so. We obtain one-parameter families of
univalent functions which connect the radial-slit mapping function con-
tinuously with the circular-slit mapping function via any prescribed
univalent function in the domain. This result is applied to give a new
proof for the extremum properties which characterize the above two
canonical slit mappings. Another type of one-parameter sets of univalent
functions is constructed which interpolates between the canonical parallel-
slit mappings.

In § 5, we use the dielectric Green's functions in order to define
various norms and scalar products. These are quadratic and bilinear
functional defined for harmonic functions in the multiply-connected
domain D as well as for functions harmonic in the complementary domain
set D. If one pair of argument functions is defined in D, the other
pair in D, and if relations between their boundary values on the separating
curve system are assumed, equations between the various scalar products
are obtained. It is shown that these identities yield estimates and Ritz
procedures for solution of boundary value problems in D if the corre-
sponding boundary value problems for the complementary set D are
already solved. In the special case ε = 1 the procedure becomes, of
course, particularly easy to apply since the dielectric Green's function
becomes trivial. It has, indeed, already been used in this form in order
to prove interesting isoperimetric inequalities for polarization and for
virtual mass [18-20]. The extension of the method to the case of general
ε should increase its flexibility and clarify its significance. The various
quadratic forms are used, finally, in order to characterize each Fredholm
eigen value \λ \ > 1 by the solution of a simple maximum problem without
side conditions. This result lays the groundwork for proving the varia-
tional formula for the Fredholm eigen values in the next section. The
extremum definition is also used in order to prove that all positive
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Fredholm eigen values of a subsystem of curves are never less than the
corresponding positive eigen values of the full curve system.

In § 6, we derive the variational formula for the dielectric Green's
functions under a small deformation of the domain. Through the
maximum definition of the Fredholm eigen values, we can derive from
this result also the variational formula for the Fredholm eigen values
under the same deformation, This formula could also have been obtained
immediately from the general perturbation theory of operators. But it
seems of methodological interest to utilize fully the maximum property
of each eigen value in order to give an elementary proof for this formula.

In order to avoid a discussion of possible degeneration of eigen values
it is convenient to deal with symmetric functions of all eigen values
and their variation, instead of considering individual eigen values. For
this purpose, we define in § 7 the Fredholm determinant of a domain
this concept is rather natural when one comes from the general theory
of integral equations. The variational formula for the Fredholm deter-
minant is easily expressed in terms of a complex kernal closely connected
with the dielectric Green's function which possesses, moreover, as limit
case a kernel well-known in the theory of conformal mapping. Indeed,
the variation of the Fredholm determinant for the particular value 1 of
the argument is described by this classical kernel itself.

In § 8, at last, we apply the results of the preceding section in order
to solve an extremum problem for univalent functions in a multiply-
connected domain and involving the Fredholm determinant. This solution
gives a new proof for the possibility to map every domain conformally
onto a domain bounded by circumferences and characterizes this canonical
domain as an extremum domain of a simple variational problem. The
treatment of the variational problem for the Fredholm determinant seems
also of interest from the methodological point of view and for the
general theory of variations of domain functions. In general, one knows
from the theory of normal families that a solution of an extremum
problem for the family of functions, univalent in a given domain and
with specified normalization, does exist the method of variations has
only the task to characterize the extremum domain. In our present
problem, we had to restrict ourselves to univalent functions which are
analytic in the closed domain in order to be sure of the existence of
the Fredholm determinant. In this case, the theory of normal families
does not guarantee the existence of an extremum function of equal
character. We do not characterize, therefore, the extremum function by
our variations, but rather an extremum sequence within the function
class, considered. We prove from the very extremum property of the
sequence that its limit function does, indeed, belong to the same class
and has, moreover, certain characterizing properties. This procedure is
very general and may have numerous analogous applications,
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l The Fredholm eigen value problem. Let D be a domain in the
complex z-plane containing the point at infinity let its boundary C
consist of N closed curves C5 each of which is three times continuously
differentiate. We denote the interior of each C3 by Ό3 and the union
of the N domains D3 by D.

We define the kernel

(1) k(z, C) = - ^ log . - 1 - — ζeC
dnζ \z - C 1

where nζ denotes the normal of C at ζ pointing into D. It is well known
that, under our assumptions about C, the kernel k{z, ζ) is continuous in
both its arguments as long as they are restricted to C.

We want to discuss the eigen value problem

(2 ) φM = -M k(z, ζ)φv(ζ)dsζ , zeC
π Jo

which plays an important role in many boundary value problems of
potential theory with respect to the multiply-connected domain D. The
ψv(z) and the Λv are called the Fredholm eigen functions and the Fredholm
eigen values, respectively, of the curve system C. The study of the
Fredholm eigen value problem is facilitated by the fact that the kernel
k(z, C) is, for fixed ζ e C, defined and harmonic for all values z Φ ζ in
the complex plane. The integral in (2) represents, therefore, a harmonic
function in I) and a set of different harmonic functions in D. We shall
use the notation

( 3 ) M k(z, QΨM)dsζ = HZ) f 0 Γ * β D

Λv(2;) for z e D .

The set of harmonic functions /&v(#) and /&v(£) can be interpreted
as the potential due to a double layer of logarithmic charges, spread
along C with the density (Λv/π)je>v(C). Hence, the well known discontinuity
character of such potentials leads to the boundary relations at each point

( 4 ) lim hv(z) = (1 + λv)φv(z0) , lim /Γv(s) = (1 - λv)φv(zQ) ,

and

( 4') —& v (z 0 ) = — hv(zQ) ,
dn on

where n denotes the normal of C pointing into D.
The Fredholm eigen value problem may thus be formulated as the

following question of potential theory which is of interest by itself :
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To determine a harmonic function h in D and a set of harmonic functions
h in D which have equal normal derivatives and proportional boundary
values on CΊ. It is easily seen that the two problems are completely
equivalent and that the possible factors of proportionality in the second
problem are simple functions of the Fredholm eigen values λv.

Instead of the harmonic functions hv and hv, we may consider their
complex derivatives, i.e., the analytic functions

( 5 ) vv(z) = • jU v (s) , v,(z) = ^-k(z) .
dz dz

In view of definition (3) and by our assumption on C it can be asserted
that vv and vv are continuous in D + C and Ό + C, respectively. In
order to translate the relations (4) and (4') into terms involving vv and
vv, we use the parametric representation z — z(s) of C by means of the
arc length s and introduce

( 6 ) z> = f ,
as

the unit vector at z(s) in direction of the tangent of C. We can then
write (4) and (4') in the form

\ d z ) l - λ v I d z )

and combine these two equation into the one complex equation

8 ) V,(Z)Z' = - ΐ-- ίv(2)2' + i --^ —ί v (2)z' , Z = 2(8) .
X Λy -L Λy

Introducing (8) into the Cauchy identity. We obtain for ζ e D

9 ) v. (C) = — ί Vv(z±dz = λ±- -λ- f ^ 5 S
2πi J z - C 1 - Λv 2πΐ J z - C

(7 (7
(7

while the use of the equation conjugate to (8) leads to

(10) 1 <ί M?)dz) = A _ _L <f (M^M )̂_ r p D
2 i J z ζ l λ 2 i J z ζ '2 π i J z - ζ l-λv2πiJo z - ζ

Combining (9) and (10), we arrive thus at the following integral equation
for vv:

(11) t>v(C) = - ^

In the same way we prove the analogous equations
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(90 UO = A (

1 — λv 2πi J z —

and
(11') ίi (Γ\ — ^_ I \υvyZ)dz)

In all these formulas the integration over the curve system C has to
be performed in the positive sense with respect to D.

The line integrals in (9), (9') and (11), (11') can be transformed into
area integrals and the integral equations take the forms

(Λo\ *v ff vv{z) , ftfv(C) f o r ζeD

^ J J(« - O 2 ( ( 1 + A v )v v (c) f o r ζeD

a n d

(13) - k f f . J S ΰ ^ J t t - ' v M C ) f o r C e ΰ
7r J J (^ — ζy vΛC) for C G D .

In both integrals dr, denotes the area element with respect to the variable
z and the integrals have to be interpreted in the Cauchy principal sense
whenever they become improper.

The transformation

carries every ZΛintegrable function f(z) defined in the complex plane
E into a new function F(z) of the same class and with the same norm :

(15) JJ I f W d r = jj \f(z)\*dτ.
E B

This functional transformation plays a role in many problems of function
theory [1,3,4] and is called the " Hubert integral transformation".
The integral equations (12) and (13) show the close connection between
the theories of the Fredholm eigen functions and of the Hubert transforms
of analytic functions.

We introduce next the Green's functions of the domain D and of

the set of domains D. While the Green's function g(z, ζ) of D is defined

as usual, the Green's function g(z, ζ) of D is given by the equation

(16) 9(z,ζ)=\
(0 for ze D3ζe
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Here, gό{z, ζ) is the usual Green's function of the domain Dj. By complex
differentiation, we derive from g(z, ζ) the analytic function

(17) L{z, ζ) = - 2 ?-g(z, C) = -~-^ - Hz, 0
-re dzdζ π(z — ζ)"

The kernels L(z, ζ) and l(z, ζ) are well known in the case that D is a
domain [3, 16]. We observe that our generalized kernel l(z, ζ) still
preserves the following important property : If f(z) is regular analytic
in D, then

(18) -1- \\ί

f{z)^dτ= \\l(z,Of(*)dτ.
π JJ(2 - ζy JJ

In fact, if ζ e D3 then l(z, ζ) = lj(z, ζ) for z e Dj and l(z, ζ) = [π(z - C)2]"1

for z e Dly I Φ j . The identity (18) follows, therefore, directly from the
corresponding property of the kernel lj(z, ζ).

In particular, we may formulate the integral equations (12) and (13)
for vv(z) and v,(z) as follows :

(19) λv J j l(z, ζfiMdτ = vv(c) , ζeD
DD

and

(20) -

From the symmetry of the kernels l(z, ζ) and ϊ(z, ζ) we can conclude

(21) ttVvvμdτ = 0 if

(21') (f vv^c?r = 0 if Λv ̂  ,}μ .

Thus, using a familiar argument from theory of integral equation we
may assume that any pair of different eigen functions vv, v^ (or 5V. Vμ)
are orthogonal upon each other :

(21") f U v V ^ = 0 f ί vjΰμflτ = 0 for v Φ μ .

There remains the question of normalizing the vv and the vv. We
have obviously the free choice of a real multiplicator in the definition
of vv however, this choice will already determine the function vv in a
unique way, for example through equation (12), The relation between
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the norms of vv and vv is best understood by returning to the harmonic

functions h^(z) and h,(z) and to their boundary relations (4) and (4'). In

fact, we have

(22) (fI v, \2dτ = A f f I
JJ 4 JJ

D D

?dτ = - λ
4 J Θn

G

4 1 - ^v J ^ Λv - 1
G

We can conclude first from (22) that

(23) μ v 1 > 1 .

Let us consider the limit cases λv = ± 1 . For λv = 1 we have necessarily
$v(z) = 0 the second equation (7) yields

(24) 3 { v , ( z ) z ' } = 0 f o r ^ e C ,

Thus, the eigen function vv(z) is a real differential for each component
domain Djm But a simply-connected domain Dj cannot have such real
differentials hence also vv{z) = 0. Thus, as far as the integral equation
for vv and vv are concerned, λv = 1 cannot occur as an eigen value.
The situation is, however, different when we return to the original
integral equation (2) and to the harmonic functions hv and hv. To λv = 1
must correspond

(25) hv{z) = 2cj in Ό5 , hv{z) = 0

and

(25') φ,(z) - Cj on C, .

In fact, it is immediately verified that for arbitrary choice of the con-
stants Cj the function φ(z) = c5 on C3 is a solution of the Fredholm eigen
value problem (2) to the eigen value λv = 1. There exist thus N linearly
independent solutions of (2) to the eigen value λ = 1. These solutions
disappear when we replace the original integral equation (2) by the
integral equations for vv and Φv, say, by (12) and (13). It is easy to
show that the eigen value λ — 1 is the only one lost m this transition.

We consider next the case λv = — 1. We conclude now from (22)
that vv(z) ΞΞ 0. We find therefore, in view of (8)

(26) 3 R ( Φ ' } = 0 for zeC ,

i.e., vv(z) is a real differential of D. There are N—l linearly independent

differentials of this type in D and we can construct a basis for them

as follows. Let ωό{z) be harmonic in D and satisfy on C the boundary

condition
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(27) ωj(z) = dn f o r z e d .

ω^z) is called the harmonic measure of Cj with respect to z of D.
Clearly, each function

(28) w,{z) = idp
oz

is a real differential in I). Since Xf=1 ω3 = 1, we have Σί=i Wj(%) — 0'
But it is easily seen that apart from this relation no other linear condition
between the wΛ does exist. Thus, we can select any N — 1 of the wά(z)
as a basis for all real differentials in D.

It is clear that each real differential in D satisfies indeed the integral
equations (12) and (13). However, there exists no corresponding single
valued harmonic function hυ(z) connected with the original Fredholm
equation (2) which has this real differential as its complex derivative.
Indeed, in view of (26) such function would have to satisfy the boundary
condition

(29) ^ - E Ξ O on C
dn

which admits only the solution \v = const, and could not lead to a non-
vanishing differential. Thus, while we lost in the transition to (12) and
(13) the N eigen functions to the eigen value λ = + 1, we have obtained
N — 1 new eigen functions to the eigen value λ = — 1 which have no
counterpart in the original Fredholm equation.

After discussing the exceptional cases <lv = ± 1, we consider now
the eigen functions vv(z) and vv(z) which belong to eigen values | λv \ > 1.
Each such pair is obtained by complex differentiation from a pair of
harmonic functions h,(z), hy(z) connected with the original Fredholm
problem. Since hv(z) is harmonic in each of the simply-connected domains
Dj} it can be completed to a set of single-valued analytic functions in
the set of domains D5 :

(30) Vv(z) = hv{z) + %K{z) .

Similarly, we may complete hv in D and define

(31) Fv(z) = K(z) + ϊkv(z) .

From the boundary conditions (4) and (4') and from the Cauchy-Riemann
equations we derive the boundary conditions for the kv:

(32) K{z) - h(z), ®-K{z) = J - + A ~θ-fcv(s) , * e C .
dn 1 — /?v dn
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Equations (32) guarantee that kv(z) is single-valued in D since kv(z)
is single-valued in each Dό. We may characterize the single-valued
analytic functions Vv(z) and Vv(z) as follows: Their real parts have
equal normal derivatives on C while their boundary values are propor-
tional in the ratio (1 + Λv)/(1 — λv). Their imaginary parts are equal on
C but their normal derivatives are proportional with the same ratio.

Let us write k[Ό = (1 — λv)ky and fc(

v

υ = (1 + λv)kv we have on C

(32') k«\k\z) j f c ^ ^
1 + Λv ^^ dn

Thus, k[1} and fc£υ may be conceived as a pair of /^-functions belonging
to eigen functions of the Fredholm problem (2) with the eigen value
— λv. With each eigen value λv with | λv | > 1 there occurs also its
negative — λv as an eigen value. Their corresponding /^-functions are,
up to a factor, conjugate harmonic functions.

Finally, we introduce the analytic functions

(33) uv{z) = Vλv — 1 vv(z), uv{z) = i-\/λv + lvv(z) .

By virtue of (21") and (22), we may assume that these functions form

orthonormalized sets in D and D that is

(34) 11 ujΰμdτ = (5vμ, \ I uvuμdτ = δvμ .
Ώ

 D

Since the ^-functions will be frequently used in this paper, we note
here some formulas which follow immediately from the corresponding
results for the v-ίunctions. From (8) we derive the boundary relation

(35) u*{z)z' = --φ_- u,{z)z' - -?_ψ -- (uχz)z') .
λ 1 V Λv 1

Equations (9), (9') and (11), (11') take on the form

( 3 6 ) ^ £(uAz± = [iV% ~ lttv(C) for ζeD
2πi J z - ζ I _ ύv(ζ) for ζeD.

and

(37) _A_ Γ _ ( M ? ) = pv(C) for ζeD
2 π i J z - ζ I _ i - ] / l ζ ^ ' Γ u v ( ζ ) f o r ζ e D .

From their connection with the Fredholm integral equation it can be
shown that the uv(z) form a complete system of analytic functions in D,
in the sense that every function f(z) which is analytic in D and for

which i l l / \2dτ < cx> can be represented in the form
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(38) f{z) = £ a,u,(z), a, = j J fΰ,dτ .
ϋ

The series converges uniformly in each closed subdomain of D. In the

same sense, the functions uv(z) form a complete orthonormal system

within the class of all functions which are analytic in D, have a finite

norm in D and possess a finite single-valued integral in this multiply-

connected domain. If we add to the (άv}-set any N — 1 linearly indepen-

dent real differentials of D we obtain a complete system for all analytic

functions in D with finite norm and vanishing at infinity [3, 21].

2. The dielectric Green's function. The theory of the Green's func-
tion of the domain D is connected with the electrostatic problem of a
point charge at a source point ζ in the presence of the system of ground-
ed conductors Cj. We may consider also the problem to determine the
electrostatic potential induced by the same point charge at ζ in the
presence of N isotropic dielectric media which are spread over the domains
Dj and have the dielectric constant ε. The corresponding potential g2{z, ζ)
will now be defined in D as well as in D and will be characterized by
the following properties :

(a) gs(z, C) is a harmonic function of z in D and in Ό, except for
z — C and for z = co.

(b) If C e D, the function g2(z, ζ) + log \z — ζ\ is harmonic at ζ.
(b') It ζ 6 D, the function g2(zt ζ) + ε log \z — ζ \ is harmonic at ζ.
(c) 08(2, C) is continuous through C.

(d) / g,(z, C) + ε-tgs(z, C) = 0 for z e C, C in D or in D.
dnz dnz

(e) gz(z, C) + log | z | -• 0 as z -> oo for C fixed.
If such a function #2(£, C) exists it must be unique and symmetric

in its two arguments, as is shown by the standard argument of potential
theory based on the second Green's identity. In order to construct the
Green's function, we set it up in the form

( 1 ) g9(z, C) = log . -±— + \ μ(rh ζ) log | η - Z \ dsη, ζ 6 D
\Z - ζ\ Jo

and try to determine μ(rj, ζ) in such a way that the above requirements
are fulfilled. We proceed analogously, if ζ e D only the singularity
term on the right side of (1) will now be — εlog \z ~ ζ \. By this formal
set up, we have already fulfilled conditions (a) to (c). Condition (e) is
satisfied if we require

/ o \ f /γi r \ j r ε — 1 f o r ζ e D

( 2 ) μ(V, ζ)dsη = J .
•!* 1 0 for C e ΰ .
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Finally, we can satisfy (d) by choosing the density function μ of the
line potential as solution of the integral equation

( 3 ) μ(z, C) + — - J — ( μ(η, QKη, z)dsη =
ε + 1 π JO

8 ~ 1 — fc(C, z) for C € D
ε + 1 π

6 + 1 π

Here k(ζ, z) is defined by equation (1.1). We observe that

k(ζ, z) for ζe D .

( 4 ) S k{η, z)dsz =
0

( 0 for η e D

π for η e C

2π for v e D .

Hence, if μ(z, ζ) is a solution of the integral equation (3) we may integrate
this equation with respect to z over C and verify that condition (2) is
fulfilled automatically. It is sufficient, therefore, to concentrate upon
the inhomogeneous integral equation (3).

For physical reasons, we shall assume ε > 0. In this case, we always
have

(30 ε - 1
e + 1

< 1

Since we showed in § 1 that all eigen values of the kernel k(z, ζ) have
absolute values > 1, it follows that integral equation (3) can always be
solved by the usual process of iteration and that the solution can be
represented by a Liouville-Neumann series. The convergence of this
series will be the better, the nearer ε will be to 1. We observe that

( 5 ) gγ(z, C) = log T-

is trivially known.
The function

( 6 ) 7-ε(S, C) = 0ε(S, O ~ log
z- C

is (for C € D or for ζ e D) a regular harmonic function of z in D, vanishes
if z tends to infinity and possesses a single-valued conjugate harmonic
function in _D. This last fact follows from the boundary condition (d) on
the dielectric Green's function and the fact that each complementary
domain Dό is simply-connected. Let Σ be the class of all functions
h(s) which are harmonic in D, vanish at infinity and have a single-valued
conjugate harmonic function. It is easy to show that the harmonic
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functions hv(s) which belong to eigen values | λv \ > 1 of the Fredholm

problem in § 1 form a basis in the linear space 2 By virtue of (1.5)

and (1.21'), we have

( 7 ) j ( VΛV VΛμdr = 43tjf J$M5μdr} = 0 for v Φ μ .
D D

By a trivial renormalization we can then achieve that

( 8 ) ff VΛv VΛμdr = 5Vμ .
D

We wish now to develop γξ(z, ζ) in terms of the complete orthonormal

set {K}. In order to determine the Fourier coefficients or rε(z, C), we

consider the Dirichlet integrals

J J g s f e C) VΛv(«)drf .

We integrate first by parts with respect to 08(z, ζ) and use the continuity

of this function across C as well as the relation (1.4') for the normal

derivatives of hv and hv on C. We find

(10) iv(C) - 0 .

Next, we integrate by parts with respect to hv(z) and hv(z) we use
(1.4) and the condition (d) on gs(z, ζ). We obtain the equations

(11) j \ ( ζ ) - 2πeK(ζ) ~ ( 1 + ε P v ) \ d g φ ^ > h v ( z ) d s z f o r C e ΰ
jo dnz

and

(11') iv(C) = Zπhίζ) - X + ε ^ f dg4Z^hv(z)dsz for C € ΰ .
β|θv J o dnz

Here, we have introduced the abbreviation

(12) P, = - ^ t |

this simple function of λv will occur frequently in our developments.
From (10), (11) and (11') we deduce immediately

(13) [ [ v g 8 ( z , ζ ) - V h ( z ) d τ z = - - 2 π ε — h v ( ζ ) f o r ζ e D
J J 1 + spv

D

and
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(130 (\ V</ε(z, C) VK(z)dτz = 2 ^ Λv(C) for C e ΰ .
JJ 1 + ε p v

When we specialize ε = 1, we obtain because of (5) the values of
the left-hand integrals with gs replaced by log 1/1« — C l Hence, we
obtain finally by subtraction

(14) f f
JJ f o r

and

(140 ((vίβ(«, ζ)vh(z)dτz = τΓ? (-SτZ"-T ^ f o r

JJ (l+p)(l + fif>)

Having expressed by (14) and (140 the Fourier coefficients of γ2(z, C)

with respect to the complete orthonormal system in Σ , we obtain thus

the two series development for z e D

(15) * ( , . O - l o , Γ J 4 - C , + 2»(1 - . ^ g - ^ f e f f l - j for c β D

(16) ,.(,, 0 = h j j ^ j + 2* - DΣ(1 fϊ§f^ to C β ΰ .

Both series converge uniformly in each closed subdomain of D.
We wish next to expand analogously gz{z, ζ) for z e D in terms of

the functions h*(z). By (1.4), (1.4') and the normalization (8), we have

(17) jjvλv V M r = /°Aμ.
D

Let COJ(Z) and g(z, oo) denote again the i-th harmonic measure and the

Green's function with pole at infinity of 2λ We clearly have

(18) ( h^ds = 0, \ K*&> m)ds = o .
Jtf 9 ^ Jo du

Indeed, because of (1.4) these linear conditions are equivalent to those

with h, and these in turn follow from the fact that all hv have single-

valued harmonic conjugates in D and that they all vanish at infinity.
Let Σ be the linear space of functions h(z) which are regular

hamonic in D and which satisfy the N linear conditions (18). Observe
that Σ does not contain any function hQ(z) which has a constant value
Cj in each Dj9 except for ho(z) = 0. Indeed, the conditions (18) would
yield for such a function hQ(z)

(180 Σ
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where

(18") J>,, = M 8pds

denotes the period matrix connected with the harmonic measures. But
the first system of linear equations (18') implies clearly [5, 15] cλ — c% =
. . . — cN — c and the last equation yields

\ JL U } is y CD A\ v-*-5 I O \J .

Thus, only the trivial function hQ(z) = 0 of this type lies in y,
From this fact and the considerations of § 1, it follows that the

functions {p\/2K(z)} form a complete orthonormal set in Σ The function
γ2(z, C) lies in Σ if ζ e D this follows at once from the conditions (c),
(d) and (e) on the dielectric Green's function. If ζ e D, it is seen that
Γεfo C) + (1 — e)g(z, ζ) lies in Σ where g{z, ζ) is the Green's function of
D defined by (1.16). The Fourier coefficients of γs(z, ζ) are easily
determined from (9), (10), (13) and (13'). Observe that for ζ e Dj

(20) \Wg(z, ζ) VK(z)dτz = - ( d-/^g(z, ζ)dsz = 0\ \vg(z, C) VK(z)dτz = - \ dh-^
J J JC dn

D J

such that the correction term (1 — e)g(z, ζ) does not affect the Fourier
coefficients at all. We find without difficulty

(21) gs(z, C) = log --1- + (s - l)g(z, ζ)

f o r ζ e D

(22) g,(z, C) - log X + 2π(l - ε) ± * 2 ^ ξ L for Cef l .
U - Cl ^=1(1 + i°v)(l + ε/ov)

These series also converge uniformly in each closed subdomain of D.
Equation (22) could have been derived from (15) and the property of
symmetry of the dielectric Green's function in dependence of its two
arguments.

The various series developments for gs(z, ζ) given so far are of
theoretical interest and allow the derivation of numerous identities.
They help little in the actual determination of the dielectric Green's
function of a given domain since we know all Fredholm eigen functions
and eigen values only in very few cases. In order to utilize the preceding
formulas for actual calculations, we have to add the following considera-
tions.

From the definition of the dielectric Green's functions and from
Green's identity, one can derive the identity
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(23) -UfVflΦ, C) Vflrβ(s, 7>)dτ, +\\vge(z, ζ) Vgβ(z, v)dτz = 2πg2(ζ, rj) .

Interchanging ε and e in (23) and subtracting the new identitity, we
obtain

(24) 2π[</ε(C, 7) - Λ(C, 7)]

In particular, passing to the limit e —> ε, we find

(25) Aflr,(ί, 7) = * > J j
X)

We introduce the expression

<26) r(c " = k ί j ( v - I o κ r c1 v

which is a " geometric " functional of Z>, i.e., can be calculated from
elementary functions by a simple process of integration and not by solving
any boundary value problem of potential theory. Passing in (25) to the
limit ε — 1, we find in view of (5)

(27) -|-</ε(C, = Γ(ζ,

On the other hand, we can calculate this same ε-derivative directly from
formulas (15), (16) and (21). Comparing results, we obtain

(28) Γ(ζ,τ])=-2π± A L W I L for ζ,VeD
v-i (l + pvy

(28') Γ(C, ^ ) - 2 τ r Σ ^ A ( Q M ^ f o r ζeD,ηeϊ)
v-ι (l + pvf

(28") Γ(C, η) - <7(C, 7) + 2π Σ ^ ^ 1 for C ^ ί ) .

The fact that these particular series in the ^-functions have relatively
elementary sums is of considerable interest. It leads to series develop-
ments for the dielectric Green's functions in terms of geometric expres-
sions.

Let us define recursively

(29) Γ<">(2, C) = I- \ [(v,Γί-«(7, z) • An log r -- T T V,, Γ « Ξ Γ .

Using equations (9), (10) and the Fourier formulas (13), (13'), we derive
the series developments
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(30) Γ<">(3, ζ) = -2π v. W*QMO f o r

' K ' - (l + θ)"+ 1

(31) Γ")(2, C) = 2.π v P-hίΦ iζ) f ze ϊ),ζe b

(32) ΓW(«,C) = flf(2,C) + 2 ^ Σ -
>

We return now to the formulas (15), (16) and (21) for #ε(2:, £). We
use the series development

(33) A - 1 . = 2 Y, ( i - iy+ 1..(1 _Γ. Λ)! = _ 2 . _ y (A 1 J Γ J
1 + ε̂ v *=oVs + 1 / (1 + iθv)

fc+1 1 - pv fco\i, 1 + e

which converges absolutely since ε > 0 and \λv\ > 1. We insert this
series into the above formulas for g2(z, ζ) interchanging the order of
summation, we obtain in each case the representation :

(34) g,(z, 0 - log X + Σ (£ ~]TlM}izy ζ) .
z —

The kernels Mk(z, ζ) are defined as follows :

(35) Mk(z, C) = - 4 π ± ^ ' ~ ^ k ( z ) h y ( ζ ) f o r zeb,ζeϊ)

(36) Mk(z, C) - - 4π v A - . POVV / , v ( ^μ v ( c ) f o r ^ e J9, C e ΰ
V-l ( 1 + /> v)^+-

(37) Mk(z,ζ)=:2g(zyζ) + Aπ± & ~ ^ + Λ ( * ) M 0 for z e D, ζ e D.

By use of the geometric terms (30), (31) and (32), we can express Mk(z, ζ)
in a uniform way, independently of the location of their arguments.
We find

(38) Mk{z, C) = Σ ( - l ^ W ^ Γ C * - ^ ^ c ) .

Formulas (34) and (38) allow a series development for all dielectric
Green's functions in the entire plane in terms of the known iterated
Dirichlet integrals /τ(w)(£, ζ). They are closely related to similar develop-
ments for the classical Green's function of a multiply-connected domain
in terms of geometric expressions [3, 21]. The formulas are convenient
for I ε — 1 I small. Observe also that the geometrical terms Mk(z, ζ) are
independent of ε and may be defined as the coefficients of the Taylor's
series for gs(z, ζ) in terms of (ε — l)/(ε + 1).
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3Φ Limit values of the dielectric Green's function. From the series
developments for the dielectric Green's function, given in the preceding
section, we can determine the limit values of gB(z, ζ) as ε converges to
zero or to infinity. For this purpose, we have to introduce additional
functions of the classes Σ and Σ a n d to develop them into series of
the h-ίunctions.

(a) We suppose ζ e D and consider the analytic function φ(z, ζ) of

z in D which has a simple pole at z = ζ, vanishes at infinity such that

(1) limzφ(z,ζ) = l

and which maps D in a one-to-one manner upon the complex plane slit
along concentric circular arcs around the origin. These requirements
determine φ(z, C) in a unique way.

Let now

(2) G(s,C) = log|?(s,C)|.

The function G(z, ζ) + log | z — ζ \ is harmonic in D, has a single-valued

harmonic conjugate there and vanishes as | z | -> oo. Hence, this function

lies in the class Σ .

We can construct G(z, ζ) explicitly in terms of the Green's function

g(z, C) of D. In fact, it is evident that

(3) G(z, C) = g(z, C) - g(z, oo) - g(ζ, go) + f

- Σ Oijjlω^z) - ω3{co)){ωΊc{ζ) - ωfc(oo)) ,

with

(3 f) r = \im(g(z, o o ) - l o g 12 I) .

The coefficient matrix ajΐc has to be chosen in such a way as to make

the conjugate of G single-valued along each boundary curve Ct. Hence.

we obtain for it the linear equations

( 4 ) ωτ(ζ) - o)i(co) = Σ ajJcPjilωΛO - ωΛ(co)]

where the pn are the elements of the period matrix defined in (2.18").
Hence, we conclude

i.e., the ^-matrix is the inverse of the period matrix of rank N — 1,
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We can develop G(z, ζ) + log | z — ζ | in terms of the complete

orthonormal system {hv} in Σ Since G(z, C) takes on each curve Cx a

constant boundary value

( 6 ) G(z, C) = c,(C) f o r z eCt,ζeD ,

we have

( 7 ) (\vG(z, C) Vh(z)dτ, = Σ ct(ζ)\ d^ds = 0 .

Thus, combining (7) with (2.130 for ε = 1, we obtain

( 8 ) \\v[G(z C) + log \z - C I] VΛv(s)dr. - - ^ k(ζ) .
JJ 1 4- pv

Consequently, we arrive at the following series development for G(z,ζ):

( 9 ) G(z, C) = log . - 1 -r -2π± -&- Mz)k(ζ) .
1 z - ζ I v-i l + pv

We may now cast (2.16) into the form

(10) g,(z, C) - G(z, C) - 2π ± ε M± M^)i(C) .
-i 1 + εpv

We recognize, in particular, that

(11) lim gt(z, C) - G(z, C) .

Thus, the logarithm of the important canonical map function φ(z, ζ) is
closely related to the limit of the dielectric Green's function as ε—>0.

Let next ψ(z, ζ) be analytic for z e Ό except for a simple pole at

z — ζ e I), vanish at infinity such that

(Γ) lim #(z,C) = l

and map D univalently onto the entire plane slit along rectilinear segments

which are all directed towards the origin. ψ(z, ζ) is uniquely determined

and might be constructed explicitly in terms of the Neumann's function

of D.

Let

(12) iV(z,C) = log|0(z,C)i.

Obviously, the function N(z, ζ) + log \z — ζ\ lies in the class X Since

N(z, C) has, by its definition, vanishing normal derivatives on C, we have
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(13) j JVN(Z, C) v£ v(z)c^ =

t h e r e f o r e , in v i e w of (2.13') fo r ε = 1

(14) ( ί V[JV(z, C) + log \z - C I] Vhv(z)dτz = ^ 2 π

JJ 1 +

Thus, we arrive at the series development

(15) N(z, C) - log Γ - ί + 2π Σ — |

1 —M2)

We can transform (2.16) into

(16) N(z, C) - flre(z, 0 = Σ |

and read oίϊ the limit relation

(17) lim flφ, C) = iV(z, C)

The dielectric Green's function gs(z, ζ) yields thus in D a continuous
interpolation between the logarithms of two canonical map functions.
The result is the more significant since we shall prove in the next section
that each gs(z, ζ) is analogously related to a univalent function in D.

(b) From the fact that the function G(zf ζ) + log \z — ζ \ lies in Σ>
i.e., that it has a single-valued conjugate and that it vanishes at infinity,
it follows by virtue of (6) that

(18) f c,(O ί Θ^ds = \ log A ψds

and

(180 Σ c,(0! βΆ^Us = \ log - 1
z-i JO1 dn JO \z —

We define now for fixed ζ e D the harmonic function c(z, ζ) of s in
D by putting

(19) φ , C) - ct(C) for 2 6 A .

By (18), (18;) and the definition (2.18) of the class Σ, the function
— log I z — ζ I — c(z, C) lies in this linear space. We may develop it,
therefore, into a series of the h,(z). By use of (2.10) and (2.13'), we
obtain
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(20) log X = c(z, C) - 2π Σ h ^ h ^ zeD,ζeϊ) .

We may combine (20) with (2.22) and ήnd

(21) g3(z, C) - Φ , C) - 2^ε Σ X Λv(2)fcv(C) .
v=i 1 + εjθv

This leads to the limit relation

(22) lim g,(z, C) = φ , C) for z e D,ζ e D .
ε->0

The limit of (?3(£, ζ) as ε —> 00 does not seem to admit a simple
geometric interpretation.

(c) Consider next the case ζ e D, say ζ e Dz. We define now the
regular analytic functions φτ{z) which map D univalently into a full
circle around the origin which is slit along concentric circular arcs, such
that z — co goes into the center and that

(1") \imzφι(z)^l .

The function ψt(z) is uniquely determined by the additional requirement
that the special boundary curve Cι shall correspond to the outer
circumference.

Since the function

(23) G%{z) = log I ψτ{z)\

is harmonic in D except for a simple logarithmic pole at infinity and
since

(24) Gt(z) = cl3 for z e C5 ,

it is evident that Gz(z) may again be expressed explicitly in terms of
the Green's function g(z, ζ) of D [5].

Since we assumed ζ e Dl9 the function Gτ(z) + log | z — ζ | lies in the
class Σ. We can develop it into a Fourier series of the system {hv}.
The same calculations as before lead to

(25) Gx{z) = log - λ -- + 2π Σ ψ

From (2.15) we obtain

(26) 08(s, C) - Gτ(z) - - 2πε £ τ }~

hence
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(27) lim gt(z, C) = Gt(z) for z e 3, ζ e Dt.

We obtain again interesting canonical mappings from the dielectric
Green's function by passing to the limit ε — 0.

(d) The expression Gτ(z) + log | z — ζ | satisfies the linear relations
(2.18) if ζ e Dτ. It has on C the same boundary values as the function
g(z, C) + log I z — C I + ct(z) which is harmonic in D, with

(28) φ) = cv for ze Dj .

Thus, the new combination will belong to the class Σ and can, therefore,
be developed into a Fourier series in the {hv}-system. An easy calcula-
tion leads to

(29) g(z, 0 - log A - φ) -2π± h^hf% z e D, ζ 6

From (29) and (2.21) follows

(30) g,(z, C) - eg(z, ζ) = φ) + 2πε±- — i ~hv(z)hy(ζ) .
v-i pv(l + ε^v)

Thus, we find the limit formulas, valid for z e D, ζ e Dt :

(31) lim ffβ(s, C) = Φ) , lim -ίflfβ(2, C) - f/(s, 0 .
0 £ε->0

4 Dielectric Greenes functions and conformal mapping• In this

section, we shall show that the dielectric Green's function gs(z, ζ) leads

to a univalent analytic function in D and to a set of univalent analytic

functions in D. Let us suppose, for the sake of definiteness, that the

source point ζ lies in D. Let p8(z, ζ) be the analytic completion of

gz(z, C) for z in D that is, ps(z, ζ) is analytic for z e D and we have

( 1 ) g*(z, C) = SR{Pβ(«, 0 }

Ps(^, C) is regular analytic except for the two logarithmic poles at ζ and
at CXD . The function has no periods with respect to the boundary curves
Cj. Hence

( 2) /8(s, C) - exp [- pe(z, C)3 , zeD,ζeD

is a single-valued analytic function of z e D and regular in this domain
except for the simple pole at infinity. Since the analytic completion of
a harmonic function is only determined up to an additive imaginary
constant, we may choose f8 in such a way that

(20 /ί(«>,C) = l , Λ
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We may similarly complete gε(z, ζ) to analytic functions of z in D.
In order to determine the additive constants for the disjoint domains
D3 we proceed as follows. By condition (c) of § 2 on gε(z, ζ) and because
of the Cauchy-Riemann equations, we have, whatever the analytic
completion pε(z, ζ) of gε(z, ζ) in D :

( 3 ) 3{p*(z, 0 } - e3f{pe(«, C)} + kj for zeC3.

Here ps and ps shall denote the limits of ps from D and D, respectively
we shall use this more specific notation whenever discussing boundary
relations. We dispose now of the additive constants in the domains D5

by requiring k,f = 0. This convention fixes pe(z, C) in ΰ in a unique way.
In analogy to (2), we define

( 4 ) / ε ( z , C) - e x p [ - ^pe(z, θ ] for zeD,ζe£>.

We shall prove the

THEOREM. The function fs(z, ζ) is univalent in D and the set of
functions fs(z, ζ) is univalent in D in the sense that

( 5 ) /ε(2j, 0 = Λ(A> C) and zu z2e D implies zί = z2 .

In order to prove this theorem, we start with the

LEMMA. The dielectric Green's function has no critical points.
That is, the equation p's(z, ζ) = 0 is only satisfied at z = co and this
point is a pole of the Green's function. The dash denotes differentiation
of Ps(z, C) with respect to its analytic argument z.

Proof. We denote again, more precisely, the analytic completion
of gε(z, C) by ps or by ps according to the location of z in Z) or D,
respectively. We combine the boundary conditions (c) and (d) of § 2 on
the dielectric Green's function gc(z, ζ) into the one complex equation

( 6 ) pί(2, ζ)z' = '-ζ^Mz, ζ)z' + ϊ—ίp't(z, 02'

Since we assume throughout this paper ε > 0, equation (6) yields

( 7 ) SRe{pί(s, ζ)lpί(z, 0} > 0 for z e C .

This inequality implies, in particular :

(8) f d vrg p't(z, ζ) = f dargpί(«,C).
Jo J c
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The statement is evident if p[ and fy are non-zero on C but it can be
upheld in the usual way even in the case that these two functions have
common zeros on C

Let Z, P and Z, P denote the number of zeros and poles of p[ and
pi respectively, in their domains of definition. By the argument principle,
we have

( 9 ) f d arg p't(z, ζ) = Z - P , <f d arg %(z, C) = P - Z
Jo J c

if z runs through C in the positive sense with respect to D. Combining
(8) and (9), we obtain

(10) Z + Z^P + P.

But all poles of p[ and p's are known clearly P = 0, P — 1 and Z > 1.
Hence, we conclude from (10) :

(11) Z=0 , Z=l.

This proves our lemma.
In order to prove the theorem, we consider the lines defined by

(12) ${fφ, 0} = ct for z 6 D , . ^ | — ^ ( ^ , ζ)\ = a for z e D .

Each such line starts from the logarithmic pole ζ and runs to ω. By
virtue of our convention on the analytic completion of gs(z, ζ) these
lines are continuous in the entire plane and, except on C, they are even
analytic. Because of our lemma, there is no intersection between different
lines except at ζ and oo. The lines have the physical interpretation as
lines of force for the corresponding electrostatic problem and the lemma
asserts that there are no points of equilibrium in the field. The lines
form for 0 < a < 2π a non-intersecting system which covers the entire
complex plane. Along each line, gs(z, C) decreases monotonically when
we pass from ζ to oo. These facts guarantee obviously that the analytic
functions fz(z, C) and fs(z, ζ) have the above stated univalency properties.
Thus, the theorem is proved.

Let us assume without loss of generality that ζ — 0. Using the
limit theorems of § 3, we can assert:

We have thus found a one-parameter family of univalent functions which
connects continuously the circular slit mapping through the identity
mapping with the radial slit mapping.

In order to illustrate the significance of this result, we calculate
from (2.16) that
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(14) log |/ί(C, 01 = 2π{ε - 1) £ ίΛ , -• £• Mζf .
v=i (1 + /λ,)(l + epv)

Since all v̂ > 0, this is a monotonically increasing function of ε in the
interval [0, oo) it is negative for 0 < ε < 1 and positive for 1 < ε. In
particular :

(15) l / ί ( C , C ) l < l l Λ ( C , C ) l > l .

We define the family j^Γ of all functions f(z) which are analytic

and univalent in I) and normalized by the requirements

(16) / ' (~) = 1 /(O = 0 .

Through the mapping w = f(z) we obtain the new domain Dw applying

the inequalities (15) in this domain and returning to the original domain

D, we obtain the inequality

(17) l/ί(C,C)l<[/'(OI<lΛ(C,C)l

valid for each / 6 j^Γ.
Inequality (16) asserts an extremum property of the canonical slit

functions /0 and fx which is well-known [13, 15]. It is, however, not
obvious that all real values between the extrema are also possible values
for I /'(C) I in ^l. We have now explicity constructed a one-parameter
family in ^l which interpolates between the two extremum values.

There are various other possibilities to obtain from the dielectric
Green's function one-parameter families of univalent functions. Consider,
for example, the analytic functions

(18) As(z, C) - - % ε ( s , C) , Bs(z, C) - I -~-,P*{z, C)
dξ % dηf

with C = f + iV- Both functions are single-valued in D and in D they
have for z = ζ simple poles with residue 1 and are else regular in D
and in Zλ We obtain from the identity (6) by differentiation

(19) A&, ζ)zf = λ+- 1A&, ζ)zf + 1 ~--±(Al(z, ζ)zf)

(19') B[{z, ζ)z' = x-±-~-B&, ζ)z' - L ±(B[(z, ζ)z>) .

Let a be an arbitrary point on C integrating (19) along C from a
to z e C, we find

(20) A(2, 0 - A3(α, C) = 1 + ε[Aε(zf C) - Aε(α, C)]
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Hence, we have

(21) 5 R { M ^ _ 0 - A A a Λ 0 \ > 0 f o r z e c .
{ΆQ(z,ζ)-Άs(a,ζ)]

Reasoning as before we can conclude by means of the argument principle
that As(z, C) takes the value Aq(a, ζ) precisely once in D + C and that
A*(z, C), likewise, takes every boundary value precisely once. Thus,
As(z, ζ) and Ae(z, ζ) are univalent in their respective domains of definition.
The same reasoning applies to Bs(z, ζ) and B2(z, ζ).

It is known, and easily verified, that

(22) I0(z, 0 = Jr log φ (z, ζ) , Bfc, C) = 4 1 - log φ(z, C)

are univalent functions in D with a simple pole at z = C and that they
map D onto the entire complex plane, slit along rectilinear segments
parallel to the imaginary and the real axis, respectively [16]. Similarly,
the analytic functions

(23) A»(z, C) = ;?- log ψ{*> 0 , B-(z, 0 = 4 - 1 log ψ(z, ζ)

are univalent in D with the same singularity and map the domain onto
the entire complex plane, slit along segments parallel to the real and
the imaginary axis, respectively. Hence, by the uniqueness theorems
on the canonical mappings of a domain, we must have

(24) A^z, ζ) = B0(z, C) + JC(C) B^z, ζ) = A0(z, ζ) + ;(C) .

Finally, clearly

(25) A&, C) = Bλ(z, C) = — ~ - .

Hence, Ae(z, ζ) and Bε(z, ζ) interpolate between the two parallel slit
mappings through the simple rational mapping (25).

Using the series development (2.16) for gz(z, ζ), ζ e D, we may prove
the well-known extremum properties of the canonical slit mappings in
the same way, as we did above for the circular and the radial slit
mapping.

We do not enter into a more detailed discussion of these families of
univalent functions. We want to remark, however, that the dielectric
Green's function is not, like the ordinary Green's function, a conformal
invariant. By auxiliary mappings of D into a domain ϊ)w, one may
obtain very different one-parameter families of univalent functions which
interpolate between the canonical slit mappings.
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5 Dielectric Green's functions and norms in function spaces* With
each dielectric Green's function g2(z, ζ) we can connect a positive-definite
quadratic form which may be interpreted as a norm in the linear
function spaces Σ and I7, defined in § 2. This norm has remarkable
properties for function pairs h e Σ and h e Σ which have on C equal
boundary values or equal normal derivatives. Useful inequalities and
identities can be established which facilitate the solution of the bound-
ary value problem in potential theory by utilizing auxiliary solutions in
complementary domains. One can characterize the Fredholm eigen
values λv as solutions of certain extremum problems involving these
quadratic forms. This characterization, in turn, will lead later to
elegant variational formulas for the λv under infinitesimal deformation of
the curve system C.

Let h and h be two arbitrary functions of the classes Σ and Σ,
respectively. We have the Fourier developments

(1) h(z) = Σ &vΛv(s) f M«) = Σ %Mz)

in terms of the complete orthonomal sets {pϊir%(z)} and {hv(z)} of these
linear spaces. The Fourier coefficients are given by

( 2 ) xv = 1 D(h, K) , xv = D(ti, k)
Pv

where D and D denote the Dirichlet integral in Σ and Σ :

( 3 ) D(h, H) = [ ivh - VHdτ , D(h, H) = (\vh
D ΰ

Let us consider now the particular case that

( 4) h(z) = h(z) on C .

By Green's identity and (1.4/), we have obviously

( 5 ) D(h, Λv) = - f hdh?ds = - [ hdh^ds = -ϊ)(h, hv)
jo dn JO dn

which gives

y D j Xy :=z Xy .

Pv

We proceed analogously for two function h e Σ and h e Σ which
satisfy on C the relation

/ 7 \ dh __ dh
dn ~ dn '
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Now, Green's identity and (1.4) yield

( 8 ) D(h, K) = - \ hjhds - Pv \ hj- ds =

JC on JO dn

and, consequently

( 9 ) x, = x» .

Thus, both boundary relations (4) and (7) reflect themselves in a very
simple manner in the relations (6) and (9) between the Fourier coefficients.

We define next the bilinear form

(10) Mh, H) = λ \ \ g,(z, 0
2π Jo jc d

for any two elements of Σ and in precisely the same manner we define

the bilinear from πε(h, ίί) for any two elements in Σ.

By use of the Fourier type formulas (2.13) and (2.13') we may

express the bilinear forms in terms of the Fourier coefficients of the

functions involved. Let us denote the Fourier coefficients of h, h by

x'v, xy and of H, H by y-v,Vv; then a straightforward calculation shows

that

(11) πJJi, H) = Σ --—£-v-- XvVv, ί s(fe, H) = Σ -- SpV ~- x»Vv -
v=i 1 + epv v=i 1 + εpv

We verify, first, from (11) that the quadratic forms πd(h, h) and π2(h, h)
are positive-definite. This fact allows us to interpret them, indeed, as
norms in their corresponding function spaces.

On the other hand, we have because of the normalizations (2.8)
and (2.17)

(12) D(h, H) = Σ P XM, ϊ>(h, H) = Σ x*V* .
V = I v = 1

We define further the bilinear forms

(13) I\(h, H) = D(h, H) - -]-πε(fι, H) , I\(h, H) = D(h, H) - π2{h, H)
c

and obtain for them the explicit representations :

(Λά\ Γ (h TJ\ — V ε ^ r 'Ϊ/ /τ (h Ή\ — V ^ ^ 'ίy
V«J 1 + εpv v-i 1 + spy

These formulas show that ί\ and /7

:, too, are positive-definite and lead

to norms in Σ and Σ. We have the estimates :
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(15) 0 < --πt(h, H) < D(h, h); 0 < π,(h, h) < D(h, h) .
s

By the very definition of π, and π3, we have

THEOREM I. If

(16) -<* = 9 * and dIL = d & on C
dn dn dn dn

we have

(17) τrε(fe, i ϊ ) - 5e(A, H) .

From (4), (6) and (14), we derive :

THEOREM II. / /

(18) h = h and H = H on C ,

(19) /τ

ε(fc, H) - εf\(h, H) .

Finally, we verify from the explicit representations for the bilinear

forms

THEOREM III. If

(20) h - h and dH~ = 9 ? o n C ,
dn dn

τυe have

(21) D(h, H) - - Z)(fc, H)

and

(22) π?(λ, fί) = - εl\(h, H), Γε(Λ, if) - - 58(fc, ff) .

Theorems I—III show a very symmetric interrelation between the
various bilinear forms for elements with matching boundary data on C.

The significance of the preceding theorems lies in the fact that one
has often to solve a boundary value problem, say in D, which is much
easier to solve in the complementary domain D. In this case, the above
theorems provide valuable information. Let us illustrate the method
by the following applications.

(a) Given a function h e Σ, to determine the function h e Σ which

ha$ on C the same boundary values as h. In particular, we ask for

the Dirichlet integral ϊ)(h, ti).
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This problem arises, for example, in two-dimensional electrostatics
in connection with the question of polarization of a set of conductors
in a homogeneous field [19, 22].

We derive inequalities for the Dirichlet integral in question by
applying Theorems I—III. We start from the fact that τrs and Γe have
definite quadratic forms and that they satisfy, therefore, the Schwarz
inequalities

(23) τr8(Λ, Hf < π2{h, h) π2(H, H) Γe(h, Hf < Γe(h, h) - Γ*(H, H) .

We select a pair of test functions H e Σ and H e Σ which have equal
normal derivatives on C and obtain from Theorem III and from (23)

(24) Γe(h, Hf < π2(h, h) - π9(Ht H) .

Using the definition (13) of f2 and Theorems I, II, we can transform
(24) into

(25) Γe(h, Hf < [D(h, h) - ~Γs(h, h)]π,(H, H) .
ε

This inequality contains the sought Dirichlet integral ϊ)(h, h) and else
only the known function of h e Σ and the arbitrary test function
He Σ. Thus :

(26) D(h, h) > - - 8 ^ - ^ + -1 -ΓB(h, h) .
π,{H, H) ε

It is easily seen from our derivation that the inequality (26) is
sharp if H is chosen as that function in Σ which has on C the same
normal derivative as h in fact, in this case, the Schwarz inequality
leading to (24) becomes an equality. Thus, we can express (26) as
follows :

(260 D(hf h) = max- / T^' H)- + -~Γe(h, h) for all H e Σ .
πξ(H, H) e

This representation permits us to determine the desired Dirichlet integral
by a Ritz procedure in Σ.

It is sometimes more convenient to renounce a precise equation in
order to obtain a simple and applicable estimate. We may select, for
this purpose, the test function H(z) as equal to the given function h(z)
in this case, we have by (13) and (26)

πz(h, h)

This inequality holds for all pairs of functions h e Σ,h e Σ which have

equal boundary values a t the same points of C.
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In order to understand better the important inequality (27), we
express it in terms of the corresponding Fourier coefficients. If we
denote again by xv the coefficients of h(z), we have by (6) the values
— pvxv = χv for the Fourier coefficients of h(z). Hence, using the explicit
representations (11), (12) and (14) for the quadratic forms, we may write
(27) as follows :

(270 Σ plxl Σ ~p-—^ > Σ P^I Σ r-^—«ϊ .
v =i v=i l -f epv v=i v-i 1 + εpv

We rearrange (27') into the from

(27") Σ jf^ZΓ^ ,$& >- °
v.μ-i(l + εpv)(l + epμ)

Now the inequality has become evident but, what is more important,
we recognize that equality in (27") and, hence in (27), holds if and only
if all xv vanish except for those which belong to a fixed eigen value λμ.
Thus, equality in (27) holds for

(28) h(z) = hv{z) and h(z) = - pS,{z) , v = 1, 2, . . . ,

and only for these functions.
It is interesting that the inequality (27) becomes precise infinitely

often, namely for all functions of the sets {λv}, {Λ,v}, which are complete
in Σ and Σ. On the other hand, this fact leads to a new characteriza-
tion of the Fredholm eigen functions

(b) We deal next with the analogous question : given a function
h e Σ, to determine the function h e Σ which has at corresponding points
of C the same normal derivative as Λ. In particular, to determine the
Dirichlet integral of h.

This problem occurs in the theory of a steady incompressible and
irrotational fluid flow in the plane around the set of obstacles C. The
sought Dirichlet integral, in this case, is the virtual mass of the curve
system C [19, 22].

We select now a pair of test functions H e Σ, H e Σ which have
equal boundary values on C. Starting again with the Schwarz inequality
(23) and Theorem III, we have

(29) πz{h, HY < e2Γz{h, h). Γε(ίf, H) .

We apply equation (13), make use of Theorems I and II and find

(30) πz{h, Hf < εΓs(H, H)[D(h, h) - πe(h, &)] .

Thus finally
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(31) D(h, h) > - £ % ^ τ + π.(h, h) .
ei z{n, ri)

We obtained thus again a lower bound for the Dirichlet integral in terms
of the given function h and the arbitrary test function H. If H has on
C the same boundary values as h, the inequality (31) becomes an equality.
This fact allows us again to approximate arbitrarily the Dirichlet integral
from below by a Ritz sequence of test functions.

When we choose, on the other hand, H(z) — h(z), we obtain

(32) D(h, h) > ^^RD(hy h) m

Γz{h, h)

This inequality holds for every pair of functions h e Σ,h e Σ with equal
normal derivatives on C.

This inequality can be verified by means of the explicit Fourier
representations (11), (12) and (14) as we did in the case of the inequality
(27). We can further show as before that equality in (32) can hold if
and only if

(33) h(z) = hv(z) , h(z) = K(z) , * = 1, 2, .

Thus, inequality (32) leads to another characterization of the Fredholm
eigen functions.

We obtain corresponding inequalities when we interchange the role

of D and D the Dirichlet integral of a function h e Σ can then be

estimated in terms of a function h e Σ which has on C either the same

boundary values or the same normal derivative as h.
The most convenient form in which the preceding theory can be

applied is obtained by using ε = 1. For, in this case, the dielectric
Green's function reduces to the elementary function — log \z — ζ \ and
the bilinear forms can be easily evaluated. Indeed, the general method
was first applied to obtain isoperimetric inequalities for polarization and
virtual mass with this particular choice of ε [18, 19, 20]. However, the
flexibility of the method is obviously increased by considering arbitrary
positive ε-values and the significance of the procedure is clarified in this
way.

We shall now utilize the quadratic forms in order to obtain estimates
for the Fredholm eigen values λv. Let λλ be the lowest positive Fredholm
eigen value > 1. We have shown in § 1 that with λλ also — λλ is an
eigen value. We denote λ2 = — Λx. By definition (2.12) of the pv, we
have obviously

(34) 1 - = p2 < Pv < ft , v - 1, 2, 3, .
ft
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Using now the developments (11), (12) and (14) of the various bilinear
forms, we verify by inspection the following theorems :

THEOREM IV. For every function h e Σ the inequalities

1 + ep1 ~~ D(h, h) ~~ pλ + ε

hold. The first equality sign holds only for those function hv e Σ which
belong to the eigen value λλ; the second equality sign holds only for
functions hv e Σ which belong to the eigen value λ2.

THEOREM V. Every function h e Σ satisfies the inequalities

Pi + e D(h, h) 1 + ePi

Equality holds only if h — hv where h , belongs to the eigen values λ2

and λ19 respectively.
We have thus characterized the lowest positive and non-trivial

Fredholm eigen value ^ by a minimum and a maximum problem in Σ
and in Σ for the ratio of two positive-definite quadratic forms. This
characterization makes it possible to estimate this eigen value by the
use of test functions in Σ and in Σ. The most convenient case for
applications is, of course, the case ε = 1.

It is clearly desirable to find analogous extremum problems which
characterize the higher eigen values Λv. For this purpose, we introduce
the bilinear form

\o i) i ζ e\'Vf Ή ) ~~ > ε y> u f e y> u

ε — e

in Σ and the bilinear form

(37;) 5βfβ(Λ, H) = MhJΏ^^ΰhΛϊ , e > o, e > 0
ε — e

in Σ. From (11) and (14), we obtain the Fourier representations

(38) Γ2tβ(h, H) - Σ 7Γ-+ spv)(l + epy) ' ε%e ' v=i( l + epv)(l + epv)

The quadratic forms Γz%e{h, h) and πSte(h, h) are evidently positive-definite.
We observe that the function

(39) f{x) = —- x

(1 + εx)(l + ex)
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takes in the interval 0 < x < OD its maximum value at the point

<40) X. ^

Hence, (38) yields the following theorems :

THEOREM VI. Every function h e Σ satisfies the inequality

(41) t^uhg^fipj
D(h, h)

where ρm is a value in the sequence of the pv which gives the largest
value of f. Equality holds only for such hv which belong to such a
value pm.

THEOREM VII. For every function h e I7, the inequality

(42) M M ) < / ( P w )

D(h, h)

holds where pm is a value in the sequence of the pv which gives the
largest possible value of f(p). Equality holds only for such hv which
belong to such a pm.

Given any specific pv, we can always choose Vεe = p;1 and the
corresponding maximum problem will pick out this particular eigen value.
We can apply Theorems VI and VII in order to obtain estimates for
the location of ^-values near any given point xm by the use of test
functions in Σ and in Σ. It is easily seen that Theorems IV and V are
contained in Theorems VI and VII as limit cases.

We specialize in Theorem IV ε = 1 and obtain the particular result

(35') 1 ( ( log, 1 , «*W mθdsβ < _ft_i)( λ > h)
2π)o)o | z - C l dn dn ζ 1 + Pι

for every h e Σ equality holds only if h = hv and hv belongs to λ2.
This result permits the following application. Consider the system

of curves C* which consists of the subset C19 C2, * ,CN* of C with
iV* < N. This system of boundaries determines a connected exterior
D* Z)D and the set Z>* of the domains Djf j = 1, , ΛΓ*. Let I7* be
the function class in D* which is analogous to the class Σ in D and let
hf{z) correspond to the largest non-trivial negative eigen value λf of
C*. We determine a function h(z) e Σ such that

(43) ^ = * o n C * , ^ = 0 o n C - C * .
dn dn dn
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Since the boundary conditions (43) determine h(z) in each Dj only up
to an additive constant, we may adjust these constants in such a way
that h(z) satisfies the N conditions (2.18) and thus belongs indeed to Σ.
Observe that the Dirichlet integral of h coincides in each Djf j < JV*
with the corresponding Dirichlet integral of hf, since h and hf differ
only by a constant in these domains. In each D3 with j > ΛΓ*, h{z) is
a constant and has the Dirichlet integral zero. Hence :

(44) D*(hf, hf) = D(h, h) .

By (35') we have

(45) Γ^D*(h*,hί) = ±\ \ log, *

log * - **&

By virtue of (44), we conclude finally

, P* < Pi(46)

Thus, we proved :

1
P
Λ

1

-p? ~ 1
Pi

+ Pi

THEOREM VIII. The lowest positive and non-trivial eigen value λx

of a curve system C is never larger than the corresponding eigen value
λ* of any subsystem C* of C.

Suppose all positive eigen values of C arranged in increasing order,
say λvt, such that v' < v" implies λv, < λv,,. Let us do the same with the
positive eigen values Λ* of the subsystem C*. By the above reasoning
and by use of the standard methods of eigen value theory [cf. 11], it
is easily shown that quite generally

(47) λv, < λ*

will be fulfilled.
We consider finally the bilinear form

(48) B(h, H) =
2 dn

where Γ(ζ, rj) is the geometric kernel defined in (2.26). For he Σ,He Σ
we have, in view of (2.28) the following Fourier representation for B:

(49)

and the same expression is also valid for h e Σ, Ή. e Σ,
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From (11), (38) and (49) follows

(50) πλ(h, H) - B(h, H) = Σ — — &v0v = Λ i(h, H) ,
v-i (l + pvγ

and

(51) B(h, H) = πltl(h, H) .

The function

(1 + a?)2

takes its maximum 1/4 for positive argument at the point xm = 1 and
we derive from (41) and (42) the inequalities

(52) 0 < πλ{hy h) - B(h, h) < —D(h, h) , he Σ
4

and

(53) 0 < B{h, h) < ~D(ti, h) , he Σ .
4

These inequalities are interesting since they yield estimates for the
Dirichlet integrals of h and h by means of elementary integrations over
C which involve only the normal derivatives on C of these functions
and geometric terms. On the other hand, given only these normal
derivatives, we could calculate the precise Dirichlet integrals only after
solving a Neumann boundary value problem for the domains. We gave
by inequality (32) another lower bound for ϊ)(h, h) but in this estimate
we have to assume as known the solution of the corresponding boundary
value problem for the complimentary region D of D. The present
inequalities are, therefore, often easier to apply.

The dielectric Green's functions g2(z, ζ) and ge(zf ζ) which are needed
in the calculation of 7rε>e and Γζ%e are known only for very few domains
if ε and e are different from 1. We may, however, use the series
developments (2.34) for these functions and utilize the partial sums in
the development together with a simple estimate for the remainder terms
in order to obtain estimates for pm. The calculations are clearly quite
laborious, but in principle feasible.

6 Variational formulas for the dielectric Green's functions and
for the Fredholm eigen values* The properties (a)-(e) ennumerated in
§ 2 and defining the dielectric Green's functions g,{z, ζ) are all invariant
under a conformal mapping z* = F{z) which is normalized at infinity
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such that i F'(oo) | = 1. Unfortunately, the only conformal mapping of
this kind which is regular in the entire complex plane has the trivial
form F(z) = az + 6, | a \ = 1. We may consider, however, functions F(z)
which are analytic with isolated singularities. In this way, we are led
naturally to a variational theory for the dielectric Green's functions.

The simplest possible choice of F(z) is evidently

(1) z* = F(z) = z + ~a

z~z0

which has the right normalization at infinity but has a simple pole at
z = z0. We will choose z0 arbitrarily in D or in D but not on the curve
system C. Let E(z0) denote the entire complex plane from which a
circle of radius l/ | a \ around the center z0 has been removed. It is
easily seen that F(z) is univalent in E(z0). Given, therefore, a fixed
point z0 in D or in I), we can always choose | a | so small that C lies in
E(z0) and is mapped in a one-to-one manner into a new curve system
C*. Since F(z) is regular analytic in E(z0) all differentiability properties
of C are transferred to C*. We denote the dielectric Green's functions
of the new curve system C* by gf(z, ζ). Our aim is to connect these
new functions with the functions g2(z, ζ) of the original system C

We introduce the function

( 2 ) d(z, C) = gΐ(F(z) , F(O) - Λ(*, 0

By the definition of gf and of the curve system C*, the function d(z, ζ)
is symmetric and harmonic for z, ζ e E(z0), except along the curve set
C. The function is still continuous across C but its normal derivatives
satisfy the discontinuity relation

(3) JLd(z, ζ) + εj^d(z, ζ) = 0 for z e C, ζ e E(z0) - C .
dnz dnz

Observe that d(z, ζ) is still regular harmonic for z = ζ and that

(4) limd(*,C) = 0 .

We consider now the integral

( 5 ) J(ζ, rj) = 1 f \d{z, ζ)^~gs(z, V) - gs(z, y)-°~d(z, ζ)]dsz .
2πJcL dnz dnz J

We introduce the characteristic function d(z) of D, i.e., we define

(6) δ ( z ) = \ 1 ί f z e D

(0 if zφD .

By Green's identity applied to D, we find
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( 7 ) J(ζ, V) = ed(ζ, η)d{η) + T(ζ, V)δ(z0) .

Here

8 T(ζ, η) = f ( \d(z, ζ)^-gs(z, 7) ~ flr«(«, ?)/-<*(*,
27r J L dwz dnz

where c(s0) is the circumference of radius τ/| a \ around z0 and where
n is its interior normal.

On the other hand, we may apply Green's identity to J(ζ, η) with
respect to the complementary domain D. Taking notice of (4) and of
the known discontinuity behavior of the various terms in the integrand,
we find

(9) J(C, η) = - ed(ζ, η){l - δ(V)] - eT(ζ, V)[l -

Subtracting (9) from (7), we obtain finally

(10) εd(ζ, η)=- Γ(C, ?)[ε + (1 - e)δ(z0)] .

The difference function (2) of gf and gs is thus expressed in terms of
an integral over the small circle c(z0) around the singularity point z0.

A straightfoward calculation of the type usual in such variational
problems [15, 21] yields

(11) 0?(C*, ?*) = ft(C, V) + [ l + ( y - l ) ^ ] j ΐ { ^ ( Z o , C ) Λ , V)}

where p,(z, ζ) is the analytic function defined in § 4 whose real part
is gs(z, C). The error term O(\ a |2) can be estimated uniformly for ζ
and η in E(z0) and for z0 in any fixed closed domain which does not
contain points of C.

We derived in (11) an interior variational formula for the dielectric
Green's function which is very similar to the well-known variational
formula for the ordinary Green's function of a domain [14, 15]. Observe
that in the special case ε = 1 formula (11) reads

log . „ * » . = log —-^-f + Sft{7 -£ 4 + 0(1 a

In view of the identity

(11") 1 -

we can verify (11') directly by means of the logarithmic series.
We shall not enter into the variational theory of the dielectric
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Green's functions since it is entirely analogous to that given in the case
of simply-connected domains [17]. We wish to utilize (11) in order to
derive analogous variational formulas for the eigen values Λv. For this
purpose, we shall make use of the extremum principles (5.41) and (5.42)
and of the method of transplanting the extremum function [6, 11].

Let us suppose that the singular point z0 of our variation (1) lies
in I) in this case, the function F(z) is regular and univalent in D. If
h(z) is any analytic function in D, we can define by

(12) Λ*(s*) = h(z)

a regular analytic function h* in each component D* of the varied
domain set D*. We call the definition (12) the transplantation of the
function h(z) from D into D*.

We define now the ratios

(13) R(h) = ^JhΆ QQ^Λ*), #(fo)
D(h,h) D*(h*,h*)

which occur in the extremum problem (5.41). In view of the conformal
character of the transplantation, we have clearly

(14) D(h, h) = D*(h*, h*)

and

(15) *W W W&
dn* dn

It is, therefore, easy to calculate the ratio J2*(fc*) by referring back to
the original region D. By the definitions (5.10), (5.13) and (5.37), we
find

(16) Γ*β(Λ*, Λ*) = - 1 - i f f Γ-^flrίίC*, 7*) -- f f f (C*, 7
ε — e 2π jo*)o*\_e ε

dn* dn* ζ η

Now, we use (11) and (15) in order to return to the curve system C as
the path of integration. We remember that zoe D and obtain

(17) Γ*β(h*, h*) = Γfβ(Λ, h) + 2ττ9ΐί a Hl^oY ZL*^lAz°f\ + O(\ a
I ε — e )

with

(17') ςf.(z) =
2
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Since z0 e D, we can express qs(z) as a surface integral

(18) qs(z0) = - A Γ-l \\vgζ(z0, fl Vλ(O
oz0 L π J J

The error term O(| a |2) can be estimated uniformly for all functions
h(z) with bounded Dirichlet integral and for z0 in a closed subdomain of
D. We have to use the known error term in the variational formula
(11) for the dielectric Green's function.

As a first result we can conclude that the eigen values of the ratio
i?*(ft*) depend continuously on a and converge with | a \ -> 0 to the
corresponding eigen values of R(h). We can, moreover, derive a precise
asymptotic formula for these eigen values.

Let indeed p0 be a particular ^-value of the original curve system
C and let the function f(x), defined in (5.39), be chosen in such a way
that it takes its maximum at a point xm which is nearer to p0 than to
any other pv. If h0 e Σ is an eigen function which belongs to p0, we
will have

(19) R(K) = f(Po) .

We may assume as before (see (2.17)) that

(19') IKK ho) = Po

If h* is the transplantation of h0 into Z)*, we can use (14) and (17) in
order to determine its ratio R*(ht). But now we can use formulas (2.9),
(2.10) and (2.13') in order to express the analytic function qs(z) by means
of the analytic completion of ho(z) defined in (1.31). We have

(20) qs(z0) = eP° V'0(z0) , zoeϊ).
1 + epo

We can now combine (14), (17) and (19) in order to express R*(h£). We
make also use of (19) and of the definition (5.39) of f(x) thus, we
arrive finally at

(21) R*(K) = f(Po) - 2πpJf{pQ)^{aV[{zQγ} + O(\ a |2) .

The function hf(z*) defined by the transplantation of ho(z) will not, in
general, belong to the class Σ* defined with respect to -D* by linear
conditions analogous to (2.18). However, we can add to every function
fo*(z*) which is analytic in D* a different constant in each component
DJ in order to bring it into the class Σ*. This trivial readjustment
does not affect the Dirichlet integral nor the quadratic from Γ*β which
depends only upon the normal derivatives of h*. Thus, in the theory
of the ratio jR*(fe*) the restriction to the class 2'* is unessential, since
easily achieved.
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In particular, we may use h* as a competing function for the ex-
tremum problem regarding R*(h*) and use the identity (21) in order to
estimate the extremum values. Let us suppose that the value p0 belongs
to k different eigen functions hβ(z) of the unperturbed curve system C
we denote their analytic completions by Vβ(z). We restrict, at first,
h*(z*) to the linear sub-space spanned by the k transplanted eigen
functions K$(z*). In this case, the ratio i?*(Λ,*) will have precisely the
k stationary values

(22) τβ = f(Po) + 2πPJ'{pQ)σβ + O(| a |) , β = 1, 2, . . . , k

where the σβ are the eigen values of the secular equation

(23) detll^^F^^K^l+^li^^..., = 0 .

Let us arrange the τβ in decreasing order likewise, we shall arrange
the values f(pβ) in decreasing order. Since the k first values f(pβ) are
the largest stationary values of R*{h*) for unrestricted argument function
fe*, it follows from standard results on quadratic forms that

(24) f{pt) > f(p0) + 2πpJ'(po)<τβ + 0(| a |2), β = 1, . . . , k .

Because of the continuous dependence of the eigen values p* on a
there exists a positive constant δ such that for small enough a all eigen
values p$ have from p0 a distance larger than δ, except for k eigen
values pf which can be brought arbitrarily near to p0.

Having now chosen | a \ sufficiently small, we can select xm to the
left of Po and the k neighboring pβ but so near that all other f(p*) are
less than any of the f(pβ). Since f'(p) < 0 for p0 and all pβ, we derive
from (24)

(240 Pt <Po + 2πPoσβ + O(| a |2) , β = 1, 2, . . . , k .

Choosing, on the other hand, xm to the right of p0 and the p% but again
so near that f(pβ) is still larger than all f{p*), we obtain

(24") pi >Po + 2πpoa-β + O(| a i2) , β = 1, 2, . . , k .

Thus, we proved :
The variation of an eigen value p0 with degree of degeneracy k — 1

is characterized by the formula

(25) pt = Po + 2πp0o-β + 0(| a |2)

where the σβ are the eigen values of the secular equation (23).
In the case that only one eigen function hv e Σ belongs to pv, we

obtain the simpler variational formula

(26) δPv=
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By the relation (2.12) between py and the Fredholm eigen value Λv, we
obtain in this case finally

(27) δλv = (λl - l)π^R{aVf

v(zoγ} .

We can proceed in analogous fashion in the case that z0 e Z>. We
will start then with hoe Σ which belongs to pQ and which satisfies by
(5.42) the equation

(28) R(h0) = JMftoAL = ffa) m

IKK h)

We transplant h0 by an equation (12) into a comparison function h* in
D*. We assume the usual normalization

(29) D(K h0) = 1

and have, therefore, also

(29') ϊ)*{ht, k*) = 1 .

The same chain of calculations as before leads to the asymptotic formula

(30) R*(ht) = ^(K9K) = / ( o) + 2πf'(Po)$ϊ{aV'Q(zoy} + 0(1 a |2) .
D*(K, ht)

Here, VQ(z) is the analytic completion of ho(z) in D. This formula is
very similar to (21) it differs only by the factor — p0. We obtain,
therefore, the following result:

If JOV is an eigen value of degeneracy fc — 1 it will change according
to the formula

(31) pt = P, + 2πσβ + O(|α p) β = 1, 2, . . . , h

under a variation (1) of the curve system C. The σβ are the k eigen
values of the secular equation

(32) det II ΪR{aV't(zQ)V's(z0)} - σδts || ίij=1,...,fc = 0

and the Vt(z) are the Jc analytic functions whose real parts are the eigen
functions h^z) which belong to pv.

In the particular case k = 1, i.e., non-degeneracy, we have

(32') δpv

and hence

(33) Wv = -



FREDHOLM EIGEN VALUES OF MULTIPLY-CONNECTED DOMAINS 253

There is a lack of symmetry between the variational formulas (23), (25),
on the one hand, and (31), (32) on the other. This fact is due to the
different normalizations

(34)

and

(35) if

V[(z)

H*)

dτ = D(hi9 ht) =

dτ = D(hif hi) =

We were led to these normalizations from the theory of the Fredholm
eigen functions φ^z) through the representation (1.3). These normaliza-
tions were also used in the series developments of §§ 2 and 3. However,
the variational formulas become symmetric when we define

(36)

From the definition of the Vy{z) and Vv(z), their normalizations (34) and
(35) and from the definitions (1.33), (1.34) it follows at once that the
functions (36) are identical with the functions uv(z) and ύv(z) defined at
the end of § 1 and normalized by (1.34).

By means of the functions uv(z) and uv(z) we can express the law
of variations of the eigen values λv as follows :

THEOREM. Let λv be a Fredholm eigen value of the curve system
C and of degeneracy k — 1 let uβ(z), uβ(z)(β = 1, 2, , k) be the set of
analytic eigen functions to this eigen value. If we subject the system
C to a variation (1), we have

(37)
- 1

where σβ is an eigen value of the secular equation

(38) det || ΪΛ{aui(z0)uj(z0)} + σdi31| = 0 if z0 e D

or of

(39) det || ^{au^ujizo)} + σd^ | | = 0 if z0 e Ό .

In particular, we have in the case of non-degeneracy

(40)

and

λl- 1
= - 7 r 3 ΐ { c m 2

v ( z 0 ) } f o r ^ e ΰ



254 M. SCHIFFER

(40') ) 2 —V = - πft{au\(Zo)} for z0 e D .

The preceding variational formulas can also be derived easily from
the original integral equation (1.2) by means of the general theory of
perturbations [17]. The above derivation is of interest since it allows
a more detailed study of the error terms by means of the dielectric
Green's function. It is also possible to obtain more precise statements
by using the higher variational terms of these Green's functions. It is
particularly easy to develop the higher variations for the lowest positive
and non-trivial eigen value Λx. Consider, for example, a variation (1)
of the curve system C with z0 e D. Let h(z) e Σ and h* its transplantation
into D*. By definition (5.10) and the identity (11"), we have

(41) π*(Λ*, fc*) = πλ{h, h)

- i f f log
2π JO Jo

1 _ CL

~ So)(C - So) θn dn

Thus, πλ{h, h) has a very simple transformation law under transplantation.
The Dirichlet integral is invariant under transplantation. Since pλ leads
to the extremum values of the ratio (5.35) it is possible to determine
the variations of higher order of λx with relatively little labor.

We wish, finally, to add a simple algebraic remark to the variational
formulas (37), (38) and (39). If λv is of degeneracy k — 1 a variation
(1) will, in general, reduce this degeneracy. It is, however, remarkable
that the secular equations (38) and (39) have only two different eigen
values such that even after the variation a degenerate eigen value can
only split into two different eigen values, at least, up to the order O(\a |2).
Indeed, σ is an eigen value, say of (38) if there exist k real numbers
tj such that the linear equations

(42) σti + Σ ^{uUiuΛtj = 0 , i = 1, , k

hold while

(420 § ί ; = = 1

We denote

(43) £ujh = M

and reduce (42) to

(44) σ^ + ^{ccUiM} = 0 , i = 1, , fc .

Multiplying the ίth equation (44) with ut and summing over all ί-values,

we find:
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(45) σΛf+—αΛΓΣwJ + — ά M " Σ | ^ | 2 = 0.
2 i=ι 2 «=i

On the other hand, multiplying (44) with tt and summing over ί, we
obtain from (42')

(46) σ + 9ΐ{αM2} = 0 .

From (45) and (46) we derive

1 Λ \ rvM \

(47) - σ = K{*M'} = | « g«J + I i ^ i - Σ I

Let us put

(48) aM2 = peίy .

The real part and imaginary part of (47) are :

(47') v cos γ = -J-^-U Σ ̂ 1 + -~ cos r Σ I

0 = | ^ { α Σ «ϊ} - [-γ sinr Σ I ut |
2

Eliminating cos γ form the first equation by means of the second, we find

(49) σ = - ^-
2

γ / l α I2(Σ I Ufa) I2)' - [»{α Σ ^

We see, in particular, that the first variation of each eigen value,
whatever its degree of degeneracy, depends only on

Observe that the product of the two possible σ-values (49) is

1(51)
4 1 = 1 4

such that under a variation (1) at least one component of a split up
multiple eigen value is non-increasing. This is the reason why many
maximum problems for positive eigen values lead to degenerate eigen
values in the extremum case.

7 The Ls-kernels and the variation of the Fredholm determinants.
In this section, we shall discuss certain kernels obtained by complex
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differentiation of the dielectric Green's functions which will appear in
certain variational formulas for important combinations of Fredholm
eigen values. The significance of these kernels is best understood by
considering the kernel obtained in an analogous way from the ordinary
Green's function, say g{z, ζ) of D.

We defined already in (1.17) a kernel L(z, C) with respect to the
Green's function g(z, ζ) of the domain set D and observed its remarkable
property (1.18). Analogously, we introduce the kernel

ϊ(z, C) is a regular analytic function for z and ζ in Zλ We shall need
two important facts about \z, ζ) for later applications,
(a) For ζ e C and z e D, we have

(2) M ^ C l Ξ 0 identically in z e b, ζ e C .
dz

This identity remains even valid when z moves onto C but to a point
different from ζ. Let now s be the length parameter on C, ζ(s) its
parametric representation and ζ' = dζ/ds the local tangent unit vector.
We differentiate the identity (2) with respect to s and find

(3) m*Lθζ> + » i _ Q c ' = 0 , z e C, C e C .
' dzdζ dzdζ

We multiply this identity by z1 and using the symmetry of the first
term in z and ζ as well as the hermitian symmetry of the second term,
we conclude :

(4) L(z, ζ)z'ζ' = real f or z e C, ζ e C .

By use of (1), we may express this result also in the form

(5)

This identity is of great interest since the left side expression is a
differential depending on the Green's function while the right hand term
depends only on the geometry of the curve system C. Moreover, it
can be shown that ϊ(z, ζ) is continuous in both variables in the closed
domain D + C [3, 21]. We may pass to the limit z = ζ on both sides
of (5) an easy calculation yields the boundary condition
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Let us denote by K — κ{s) the curvature of C at z(s) then (6) obtains
the elegant form

(7)

In particular, we note that (7) and our assumptions on C yield the

THEOREM. The function ΐ(z, z) is a quadratic differential of D, i.e.,
satisfies

( 70 ΐ(z, z)z'2 = real on C

if and only if D is a domain bounded by circumferences CJt

(b) Let z* — f(z) be a univalent analytic function in D which maps this

domain into Dλί. The conformal in variance of the Green's function is

expressed by the identity

(8) §*(«*, C*) = flf(«, C)

which leads by differentiation to

(9) L*(s*, C*)/W'(C) = Uz, C)

The 1-kernel has, therefore, the transformation law

(10) Γ*(s*, <:

and, as a simple calculation shows, in particular

(11) ϊ*(z*, z*)f'(zγ = ϊ(z, z) + λ. {/, z}
bπ

where

(12) {f9Z}=fy&--

is the Schwarzian derivative of f(z).

After these remarks on the kernel L(z, ζ), we introduce now a new
kernel by the following formula which is modeled after (1):

(13) L*(z. C) — — ———

This kernel is regular analytic and symmetric in both its arguments in

D and in D, except for a double pole for z — ζ. We define further

two kernels which are regular analytic for z, ζ e D and for z, ζ e D,

respectively :
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(14) h(z, C) = ^ΓZΓζy ~ \L^Z> C ) i n D

and

(15) Ϊ9(z, 0 = π(z^γ ~ L'(z> ° inϊ)-

These kernels have elegant developments in terms of the complex eigen
functions of the Fredholm integral equation. We start with the Fourier
developments (2.16) and (2.21) for gB(z, C) in terms of the harmonic
eigen functions hv(z) and hv{z). Using definition (1.17) and (2.21), we
obtain by differentiation

(16) W. 0 = (i - -1 )fe, 0 + Σ -T
V ε/L v-i p(

where the Vv(z) are the analytic functions whose real part is h^z). As
pointed out in the preceding section, all V[{z) have a different normaliza-
tion and it is more convenient to introduce the functions uv(z) defined
by (6.36) which have all the norm 1. Then (16) transforms to

(17) h(z, 0 = ( l - I)Γl<*, 0 + Σ TΓ
V ε /L v-i (1 + p)( p)

We observe next that with each eigen value λv > 0 which belongs
to u*(z), there occurs also the eigen value — Λv and it belongs to the
eigen function iuv{z). This assertion can be verified directly from the
complex integral equations (1.36) and (1.37) it is also a consequence of
the fact, noted in § 1, that if λv belongs to an eigen function λv(s) then
— λv will be an eigen value with the conjugate harmonic eigen function
ky(z). Thus, in formula (17), each product uv(z) uv(ζ) occurs, therefore,
twice once coupled with pv and the other time with opposite sign and
coupled with l/pv. We combine these pairs of terms and sum now only
over those v which correspond to the positive eigen values λv. Using
(2.12), we obtain finally

(18) Uz, o = ( i - A.)Γi(*f c) - Σ

-L y

-! λl - E2

with the notation

(W) S=i^i.

Passing to the limit ε = 0 and using the limit relation (3.31), we derive
first from (18)
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(ZO) l(z, ζ) = 2 J —^_2v?./_

and, hence, (18) simplifies to

Similarly, we transform (15) by differentiation of (2.16) into the
identity

(22) Uz, C) = (ε - 1) Σ γ/^$Pr~T
v=i(l + />v)(l + εpv)

and replacing F{(z) by ύv(z) by means of (6.36), we find

(23) Zβ(z, C) = - (ε - l ) Σ α \_ ^ ^

We combine again terms with pv and with l/^v and sum only over the
positive eigen values λv an easy calculation leads to

(^4) f 8(3, C) = -^ 2-J T^ ™ M —
V = l Ay — U/ ΛV

The complete symmetry between (21) and (24) is evident.
We consider the limit cases ε = 0 and ε = co of formula (24) which

correspond both to E2 = 1. From (3.11) and (3.17) follows

We can, therefore, express \z, C) by means of (3.3) in the form

(26) λ(z, C) - ϊ(z, C) ~ Σ 1 ^*^(«)wί(C)
2TΓ J , * - " l

where wό{z) denotes the analytic completion of the harmonic measure

ωj(z). Formula (26) is the counterpart for D of the relation (20) in D.

The kernel λ(z, C) is composed of functions with single-valued integral

in D the kernel ΐ(z, ζ) differs from it by a kernel which is composed

of a basis of iV — 1 functions in D which do not have a single-valued

integral and which are orthogonal in the Dirichlet metric to all functions

in D with single-valued integral.
For the sake of completeness, we give also the Fourier developments

of the kernels
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(27) K9(z,ζ)=- 2 d ^ ^ l i n ΰ
πε dzdζ

and

(28) K.(z, C) = - — ̂ % ί l in ΐ) .

Both kernels are analytic and have hermitian symmetry in their argu-
ments. Putting

(29) K{z,0= -λ^izλQ
π dzdζ

we obtain by differentiation of (2.21) after the above combination of
terms

(30) K(z, C) = (1 - - ) | K(z, ζ) - Σ ^ W ί

i τπ \r* ^v — 1

Again, we obtain by passage to the limit ε = 0 and in view of (3.31)

(31) K(z, C) = Σ Uy(z)ΰXζ)

which reduces formula (30) to

__ co 32 I
/QO\ 77" i~ r\ 77T v^ Λv -L n. (~\n, ίr\
(όZ) K2(z, ζ) = hXi — ™^v(«)^v(C)

V = l Ay hi

Similarly, we find by differentiation of (2.16) the identity

\θ6) &s\Z, ζ) — hi 2 J 2 -Wv(2)Wv(U

Formulas (21), (24), (32) and (33) for the various kernels depend on
ε only through E and this simple rational function of ε has the symmetry
property ^(1/ε) = — i?(ε). This leads to the interesting identities :

/Qy|\ 9 Qs\Zf ζ) O Qιi2\Z, ζ j O Qζ\Z9 ζ) uQiisyZf ζ)
\o^±) - - = —

dzdζ dzdζ dzdζ d z d ζ

if z,ζe£) and to a similar identity in z9ζ e D. These relations are
known in the limit case ε = 0 where they represent differential relations
between the Green's and the Neumann's function [2, 5, 21].

We define next the Fredholm determinant of the basic integral
equation (1.2), Observe again that with each positive eigen value λv



FREDHOLM EIGEN VALUES OF MULTIPLY-CONNECTED DOMAINS 261

occurs also the eigen value — λv in equal multiplicity. We may thus
write

(35) D{E) = ft ( l -
E2

where the product is to be extended over all positive eigen values λv > 1.
By use of the variational formulas (6.38) and (6.39) and of the

identities (21) and (24) one can establish readily the

THEOREM. If the curve system C is varied according to (6.1) the
Fredholm determinant D(E) changes according to the variational formulas

(36) δ log D(E) = - 2π$i{al(z0, z0)} for z0 e D

and

(37) δ log D(E) = - 2τr9ft{αie(s0, z0)} for z,eϊ) .

E(e) is the rational function (19) of ε.
The elegant and symmetric variational formulas (36) and (37) show

the theoretical interest of the Fredholm determinant (35). We observe
that, in particular, for ε = oo and E = 1 we have by (20) and (25)

2πϊR{ctl(zQ, z0)} for z0 e D(38)

and

(38')

δ\ogD(l) =

δ log D(l) = 2πϊR{aλ(z09 z0)} for z0 e D .

The functional (35) is defined only for curve systems C which are
sufficiently differentiate. This fact creates difficulties in applications of
the above variational formulas to extremum problems for the Fredholm
determinant since it is not sure, a priori, that the extremum system C
will have the required smoothness. In many problems, however, it can
be shown that the very property of being an extremum set guarantees
already that the curve system C is analytic. Thus, we may restrict
ourselves from the beginning to the class of analytic curve systems C
and formulate the extremum problems only within this class. A first
result for a general theory of extremum problems for the Fredholm
determinants is the fact that D(E) is semi-continuous from above in the
class of all analytic curve systems C. In fact, we will prove the

THEOREM. Let Dn be a sequence of domains, each being bounded by
an analytic curve system Cn and with the Fredholm determinant Dn(E).
If the domains ί)n converge in the Caratheodory sense to a domain D
with analytic boundary C and with the Fredholm determinant D(E)f

then we have for all E > 0
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(39) lim Dn(E) < D{E) .

Proof. We define the kernel

(40) ί«(z, 0 = J jl(s,

and define then recursively

(41)

We remark that

(42)

We denote the corresponding expressions referring to the domain Dn by
the subscripts n. We assert, at first :

(43) \imS(*j) > SW

To prove this assertion, we select a number δ > 0 arbitrarily small

and determine a closed subdomain Δ of D such that

(44)

By the definitions (25), (40), (41) and in view of the continuous dependence

of the Green's function G(z, ζ) on its domain j5, the kernels 42j)(z, C)

converge to I(2j)(£, ζ) uniformly in each closed subdomain of Z), in

particular in 2. Given δ, we can choose n(δ) such that for n > n(δ) the

domains Dn contain Δ and that

(45) JJ

[ [ z , z)dτz - δ > SW - 2δ

Since δ can be chosen arbitrarily small, these inequalities imply (43).
We observe next that by definition (35)

(46) - log D(E) - Σ ±E2jS^

and a corresponding representation is valid for — log Dn(E). Hence,
from (43) follows immediately the asserted inequality (39) and the
theorem is proved.
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The significance of this theorem is the following. Let 21 be a family
of analytic curve systems C and let us ask for the maximum of D(E)
within the family 21, for some fixed value E. We know that by its
definition D(E) < 1 and is thus trivially bounded in 21. Let U < 1
denote the least upper bound of D(E) in 21 we can select an extremum
sequence of curve sets Cn in 3ί such that Dn(E) converges to U. If it
is possible to select a subsequence Cnl of the Cn such that the correspond-
ing domains Dnl converge to a domain DQ with analytic boundary Co e 2ί,
then Co is a maximum curve system. For, by our theorem (38), we
have D0(E) > U and, hence, D0(E) = U since no D(E) in 21 can be larger
than U. This argument will be applied in the following section to an
interesting problem of conformal mapping.

8 An extremum problem for Fredholm determinants and an
existence proof for circular mappings. In this section, we shall utilize the
variational formulas for the Fredholm determinants in order to solve a
specific maximum problem. The extremum domains of this problem will
be characterized by the property that their boundary C consists of
circumferences. In this way, we will then prove that every plane domain
can be mapped conformally upon a canonical domain whose boundaries
are circumferences. This canonical mapping will appear as the solution
of a simple extremum problem for the family of all univalent mappings
of the given domain.

We formulate the following extremum problem :
Let I) be a domain in the complex £-plane which contains the point

at infinity and which is bounded by N closed analytic curves C. Let
J^~ be the family of all functions t = f(z) which are analytic in D + C,
normalized at infinity by /'(c°) = 1 and are univalent in D. Each
f(z) e j^~ will map Ό upon a domain 2 with analytic boundary Γ and
with the Fredholm determinants Δ(E). We ask for the functions
f(z) 6 J?~ which lead to the maximum value of 4(1).

The existence of such maximum functions is by no means obvious.
We can assert only that all determinants Δ(l) obtained by mappings of
the family j^~ have a least upper bound U < 1. Hence, we may select
a sequence of mappings fn(z) e J?" such that

(1) Iim4n(l)= U.
n->oo

Since the fn(z) sue univalent in I) we can use the well-known
normality properties of these functions and assume without loss of
generality that the fn(z) converge to a limit function f(z), uniformly in
each closed subdomain of Zλ The limit function f(z) provides a univalent
map of D into a domain 2 and is normalized at infinity. The image
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domains Δn converge in the Caratheodory sense to Δ. If we could prove

that Δ has an analytic boundary Γ, we would know that f(z) e ^ and

the semi-continuity from above of Δ(l) would insure Δ(l) = U, i.e., that

f(z) is a maximum function.

In order to prove the fact f(z) e J^~ we consider the maximum

sequence fn(z) which converges to f(z). We want to characterize this

sequence by comparing it with near-by sequences obtained by infinitesimal

variations of their image domains 2n. However, if we subject a multiply-

connected domain Δn to an interior variation (6.1), we will, in general,

obtain a domain 2* which is not conformally equivalent to Δn and cannot

be obtained from D by a mapping of the family j ^ ~ . Let, indeed, ωt(t)

be the harmonic measure of the boundary component Γι of Γ with

respect to 2 and let ((pJk)) denote the period matrix (2.18") of this set

of harmonic measures. The period matrix ((pjJc)) is a conformal invariant

and if we preserve the point at infinity under the conformal mappings,

the numbers ω t(ω) must likewise be unchanged. On the other hand,

it is well-known [5, 15, 21] that under a variation of the £-plane of the

type (6.1) and with the singular point tQ e 2, we have

( 2 ) <p% = pjk + ?R{aw'3(t0)wk(t0)} + O(| a |2)

and

( 3 ) ωf(oo) = ωι(oo) + 3t{αp'(ί0, ™)w[(tQ)} + 0(1 a \2)

where again wt(t) and p(t, τ) denote the analytic completions in t of the

harmonic functions ωτ{t) and g(t, τ) in Δ. We see that, in general, the

numbers pjk and ^(oo) will change under interior variations and that

the domain 2* will not be obtained from D by a mapping of the family

Consider now m points tμ in 2 and the variation

( 4 ) ί* = t + Σ -aμ— + 0( | a |2) , \a\- max (| aμ |)
μ-l t — tμ M-

where the error term is estimated uniformly in Δ + Γ. We may choose
the aμ and the correction term 0(\a |2) such that

( 5 )

( 6 ) 31 j Σ «μP'(*μ, °° )w'l(tμ)\ =

and
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It can be shown, indeed, that given such values tμ and aμ, the variation
(4) can be selected in such a way that 2* is conformally equivalent to
2 and that the points at infinity correspond [21]. Even now, we cannot
assert that D goes into 2* by a mapping of the family ^~ which is
normalized at infinity. However, the Fredholm determinants do not
change under a homothetic mapping of a domain and, hence, the insistence
on the normalization at infinity is unnecessary in our problem. Thus,
the above variations (4) will transform the domains Δn of the extremum
sequence into conformally equivalent domains 2% whose Fredholm
determinants z/*(l) may be compared with the maximum sequence Δn(l).

We observe that the functions w'3(t) w'k(t) and p'(t, oo) wΊ(t) are
quadratic differentials of 2, i.e., functions Qk(t) which are regular analytic
in Δ + Γ and satisfy on Γ the boundary condition

( 8 ) QΛ(ί)ί'2 = real .

At infinity all these functions satisfy the asymptotic relation

(9) Q*(*) = O(lt |^ 8).

All functions with the properties (8) and (9) from a linear space with
real coefficients and of the dimension 3ΛΓ-3. We suppose that we have
chosen from the above N(N + 1) quadratic differentials a fixed basis of
3ΛΓ-3 elements Qk(t), A; = 1, 2, - , 3N-S.

After these preparations, we return to our maximum sequence of
domains Δn we denote by Qίn)(t) the corresponding basis of quadratic
differentials of Δn and by Qk(t) the basis for their limit domain 2.
Clearly, we can choose the basis in each Δn and in 2 such that

(10) limQLn)(ί) = Qft(ί),

W-s oo

uniformly in each closed subdomain of Δ. The determinant

(11) det || ^{QM} || , I, k = 1, 2, . . . , 3ΛΓ-3
does not vanish identically in 2 because of the supposed real independence

of the Qk(t). Hence, we can determine 3iV-3 points ί μ e l such that

(12) det || K{QίnXtμ)} | | * = 0 k, μ - 1, 2, . . . , 3ΛΓ-3

for large enough n we may even assume, without loss of generality,
that (12) holds for all integers n.

Let ί0 be an arbitrary point in Δn and α ( w ) be an arbitrary complex
number. We determine 3Λ/"-3 real numbers x™ by the linear equations

3JST-3

(13) SJlfαWQίΓW} - Σ <^{QiM)(U} . k = 1, 2, . ., 3ΛΓ-3
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which is always posible because of (12). Observe that x™ — O(i a (/° |)

for small values of α ( w ) . Consider then the interior variation of Δn

,-,(%) 3JV-3 ^(n)

(14) ί* = ί + a - - Σ μ - + 0(1 α w |2) .

This variation is of the type (4), but by the choice (13) of the x^, we

are sure that the equations (5) and (6) will be fulfilled. We can,

therefore, adjust the error term 0(\ α ( w ) |2) in such a way that the varied

domain i * is conformally equivalent to Δn and such that the points at

infinity correspond. Hence, 2* may be used as a competing domain

sequence to the maximum sequence Δn. We apply now the variational

formula (7.38') in order to characterize the limit domain Δ.

We derive from (7.38') that the variation (14) of Δn yields

(15) log Δ*(l) - log Δn(l) - 27r3t{α«ίn(ί0, ί0)}
3N-3 ^

+ 2π Σ xΐ^{Utμ, tμ)} + 0(1 a^ |2) .
l

Here, the λn(t91) denote the )ι-kernels of Δn. We denote

(16) δn = \ogU~ log Δn(l) .

By the definition of the maximum sequence, we have 0 < δn-+0. Since
log Λΐ(l) < log U, we infer from (Ie5) the inequality

(17) > A > - 9t{αwJB(<o, ί0)} + Σ x^'Mt,, tμ)} + 0( | α w |») .

We choose finally

(18) ct^ = (5wreίτ , r > 0

and define the real numbers $μ by the system of linear equations

(19) Σ ^{QΛt,)} = metτQΛQ} , k = l, , SN-S .
μ = l

We divide equations (13) and (17) by δn and pass to the limit n -> oo
comparing (13) with (19), we find

(20) lim * ^ = ξ,

and since at t0, tl9 , ί3Λr_3 holds

(21) lim ?n(ίμ, tμ) = \tμ9 tμ) ,

we obtain from (17)
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1 ^ 3 i V 3

(22) ι > - 5K{<Λ?(ί0, ί0)} + Σ
2ττr μ-i

This inequality holds for arbitrary values r > 0 hence, sending r -> co,
we find

-v. 3iV-3 ^

(23) 0 > - SR{e'^(ί0, ί0)} + Σ ξμ3t{λ(tμ, tμ)} .
μ=1

If we replace in (19) the signum eiτ by — eίτ, the solution vector
ξμ changes into — fμ. Since eίτ is entirely arbitrary, the inequality (23)
must also hold for inverted sign of the right hand term. Thus, we
arrive finally at the equation

^ 3IV-3 ^

(24) 9t{elτΛ(ί0,«.)} = Σ ξ^{λ(tμ, tμ)} .
μ = l

valid for arbitrary choice of the signum eiτ and the corresponding

choice (19) of the fμ. The fact that, for given fixed t19 •• ,ί3Λτ-3 in 2

and for arbitrary ί0 e 2, the linear equations (19) always imply the

equation (24) for arbitrary eι\ guarantees the existence of 3ΛΓ-3 real

numbers βμ(μ — 1, •••, 3ΛΓ-3) such that

3N-3

(25) ^(ί, ί) = Σ β.QΛt)

This identity is then the condition which characterizes the limit domain

Δ of an extremum sequence Δn.

Since, in view of (7.26), the function λ(t, t) coincides with the more

fundamental kernel l(t, t) except for a quadratic differential, we may

express the result (25) as follows :

THEOREM I. If A is the limit domain of a maximum sequence Δn,

its l-kernel satisfies the condition

(26) Γ(ί, ί) - Q(t)

where Q(t) is a quadratic differential of Δ.
Prom Theorem I, we can deduce

THEOREM II. All boundary curves Γx of Δ are analytic.

Proof. Let us express equation (26) in terms of functionals of the
original domain D which is conformally equivalent to Δ. By (7.11) and
because of the covariance character of the quadratic differentials under
conformal mapping, we can express (26) in the form

(27) ϊ(*,*) + ~{f,z} =Q(z)
O7Γ
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where Q(z) is the quadratic differential in D which corresponds to Q(t)
under the mapping t = f(z) of D into A and ϊ(z, z) denotes the i-kernel
of D. We have assumed that D has analytic boundaries C3 hence, we
can assert that l(z, z) and Q(z) are analytic in the closed region D + C.
By (7.12), we may now interpret the equation (27) as a linear differential
equation with analytic coefficient in D + C :

(28) μ''(z) + 3π[Q(z) - ϊ(z, z)]μ(z) = 0

for the unknown function

(29) μ(z) =

From the general theory of ordinary differential equations we obtain
that μ(z) is regular analytic in Z) + C and can have only finitely many
zeros on C. Hence, f'(z) is analytic on C except for poles which are at
least of order 2. At such singular points on C,f(z) would have poles
too. But f(z) is univalent in D and has already a pole at infinity. It
cannot have additional poles on C hence, f(z) and f'{z) are regular
analytic on C and the theorem is proved.

In particular, we have now shown that the limit function f(z) of
the maximum sequence fn(z) belongs also to the family J?r considered
and is, therefore, a maximum function of our problem.

Since we know now that the boundary curves Γz of Δ are analytic,
we can combine (26) with (7.7) and find :

(30) 3{f(ί, t)n = 3f{Q(*)*"} = — -J 1

bπ as

But Q(ί) is a quadratic differential of A thus we arrive at

(31) dιc = 0 on each Γ% .

ds
This leads to

THEOREM III. Each boundary curve Γι of the maximum domain
A is a circumference.

Since in each given domain D there exists at least one maximum
sequence fn(z) e ^ , we have given a new proof for the classical theorem
[5,7,8,9,23]:

THEOREM IV. Every plane domain D can be mapped onto a domain
bounded by circumferences.

Since the domain A is the limit of a maximum sequence of domains
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Δn and since it is analytically bounded, the semi-continuity of the
Fredholm determinants leads to

THEOREM V. Among all conformally equivalent domains, the
circular domains have the largest value of the Fredholm determinant
DO).
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A NOTE ON THE COMPUTATION OF
ALDER'S POLYNOMIALS

V. N. SINGH

In two recent papers [2, 3] I deduced and used the general trans-
formation

(1) 1 + Σ( ~ l ^ afί 'e**1)-1^! ^ ; 8 I(
(x s)

= Π (1 - fee") Σ ^4?"- ' (Λf = 2, 3, )

to prove certain generalized identities of the type

(x t)

where A8(x, t) and GM,t(χ) a r e polynomials. For s = M and 8 = 1
respectively in (2), we get Alder's generalizations of the well-known
Rogers-Ramanujan identities

and

in the form [1]

and

For the Alder polynomials GM>ι(x) in (1), I gave the general form

Γitf-2 "I
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where

_CW t»-J(a;.w.1-«Λ+i.2 ί i,)a.-* f,c β_1-*n)

[<z] denoting the integral part of <z.
Alder in his paper [1] states that the polynomials GMΛ(x) do not

seem to possess any striking properties, even for small values of M and
t. In the present note, using a simple recurrence relation, I prove
beside other results the interesting property that

GMtt(x) = x * , t < ( M - 1 ) .

The form (3) is not very suitable for the actual computation of the
polynomials GMt,(x) for particular values of M and t since certain factor
have to be cancelled each time. Therefore, moving into the following
series the factor (V~2Ci+1 tλ) from the first series and the factor (Λ-i-2tw+1 tn)
from each of the Tn>M series in (3), we put GM)t(x) in the form

( 4 )

where

Σ

L M-n n - Ί J / t t + i . r \ 2t / t , T - ί \

J-n,M — 2-J 7 ΓT
e ( a ; ; ί )

Now if we put

( 6 ) gMtt(N, x) = f ϊ Tn,M (where t^ = N) ,

then, since

ΓM-2 1

( η \ π (AT γ\ — V \x 1+ > h)\x ' ι ) * ~ ti)

it is easily seen by induction that for t < M — 1, we have

( 8 ) 9M+i,t{N, x) — gM,t(N> χ) = 0

because

( 9 )
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From (4) we have

GM+iΛχ) - GMtt(χ)

Λf-̂ J (~t-t.+l. f \™-2t (t-tΛ

(10) = <*•' Σ {^^^ι)f^^{gM4t,x)--gM^tl(t,x)}
( ί )

+ Σ

Hence from (8) and (9) it follows that, for t < M — 1,

GM,t{x) = Gjί+ϊ,^)

that is,

G^,^) - Gir+i,t(») = = G^(x) , t

Now, for k = 1 and Λί-> oo, (1) gives

Π(l-af) '-° { x ; t )

n = i

whence G^^x) = x\ so that we finally get

(11) GMtt(x) = xι t < M - l .

(10) can be further used for the computation of polynomials GMtt(x) as
follows.

We first find the general form for GM>M(x)
From (10) we have

/1O\ fl (rΛ (1 (rγ\ rv* ̂ -2(^-1)^ ( M iΛ

where xn = (1 — xn)/(l — x) for all n.
From (7) we find

(13) gM,M-i(M, x) = (x;M- l)χ-<i"-iX"-» .

Using (13) in (12) we get

(14) GMtM(x) = ̂ { 1 - (x2; M - 1)}

since GM+ltM(x) = xM. Thus, for example,

More generally, taking t = M+ r in (7), since
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r^M-_* J = M+r_2 r < M _ 2 ,

and

Γ AT + (r _- 1)M- r "| = M + r _ 2 0 < r < M ,
L Λf J

we easily get

9M+I,M+T(N, X) - gM,M+r(N, x)

r

(15) = ϊ[Tn>M{gM-r+hM-r(tr-u x) - gM-r,M-r(tr-i, α)} 0 > r < M - 2 ,

where, in Tn,M, t = Λf + r and ίr = ikΓ— r. Thus for t <2M-2(tΦ M)
the second sum on the right of (10) does not exist and we may succes-
sively establish the general form of the polynomials GM>t(x) for M < t <
2(ΛΓ - 1). We thus find that

<?*+i,*+i(a0 - GMtM+1(x) - x*+χtf;M - ΐ)xΛ M > 3 ,

so that, using (14), we get

Similarly

GM>M+lx) = xM+*{l -(x' M- 1)(1 + ^ a?a)} M > 4 ,

GMtMM = ^ + 3 {1 - (a;5 Λf - 1)(1 + a?5. x3)} M > 5 ,

The above values of the polynomials GM)t(x) suggest that probably,

(16) GM>t(x) - x*{l - (x*-M+2; M - 1)(1 + α ' - * " ^-^)} ,

for t < 2(M - 1) .

But I have not been able to verify the truth of this conjecture directly.
However, I intend to investigate these interesting polynomials more

thoroughly in a future communication.
I am grateful to Dr. R. P. Agarwal for his kind help in the prepa-

ration of this note.
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ON INTEGRATION OF 1-FORMS

MAURICE SION

U Introduction* It has been noted by several people that in order
to define the integral of some differential 1-form ω along a curve C, the
latter need not be of bounded variation. For example, in the extreme
(and trivial) case where ω is the differential of some function /, the
integral can be defined as the difference of the values assumed by /
at the end-points of C. No condition on C is necessary. H. Whithney
[4], with J. H. Wolfe, by the introduction of certain norms, has found
general abstract spaces of curves along which the integral of 1-forms
satisfying certain conditions can be defined. In fact, H. Whitney con-
siders integration of p-forms with p > 1. In a previous paper [2], we
obtained rather awkward conditions for a decent integral to exist that
depended on the number of higher derivatives of ω on C.

In this paper, we consider 1-forms ω possessing ' higher derivatives '
on C in a sense somewhat different from that due to H. Whitney [3]
which we used previously. A Lipschitz type condition on the remainders
of the Taylor expansion is imposed (see 4.1.). We define the a-variation
of a curve as the supremum of sums of αth powers of chords (see 2.7)
and show that the integral of ω along C exists if the ^-variation of C
is bounded, where a is related to the number of ' higher derivatives '
of ω on C. Under somewhat stronger hypotheses on C, we show that
this integral is an anti-derivative of ω on C.

2, Notation and basic definitions* Throughout this paper, N is a
positive integer and we use the following notation.

2.1. E denotes Euclidean (N + l)-space.

( JV \l/2
Σaϊ) for xe E.
ί-0 /

2.3. diam U = sup{d : d = | | x — y \\ for some x e U and y e U}

2.4. φ is a continuous function on the closed unit enterval to E and
C = range φ.

2.5. £f is the set of all subdivisions of the unit interval, i.e. functions
ϊ7 on {0,1, , k) for some positive integer k such that:

Γ(0) = 0, T(k) = 1, T(i - 1)< T(i) for i = 1, . . . , k

2.6. [Γ/α, b]= {i:a< T(i - 1 ) < T(i) < b}

2.7. Fβ(α,6) = sup Σ \\ψ(W - 1) - φ(T(i))\\*
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3 Properties of Va.

3.1. LEMMA. IfO<a<b<c<l, then

Va{a, b) + VJp, c) < a(a, c) < Va(a, b) + VJb, c) + (diam C)*

3.2. LEMMA. If a < β and Va(a, b) < oo, then Vβ(a, 6) > CXD.

Proof. Since yα(α, b) < oo, there is an integer % such that there
are at most n elements i e [Γ/α, δ] with || y>(T(i - 1)) - ψ(T(i)) || > 1 for
any T e £f. For any other i e [Γ/α, δ] we have

ί - 1)) - ψ{T{ΐ)) ||β < || sp(Γ(i - 1)) - φ(T(i)) II- .

Hence,

, 6) < Fα(α, 6) + n(diam Cf < oo .

4, Integration of 1-forms. In this section, we first define the kind
of differential form we shall be dealing with. Our definition is a variant
of Whitney's definition of a function m times differentiate on a closed
set [3]. Next, we choose a special sequence of subdivisions and proceed
to define the integral of the form over the curve C by taking sums of
polynomials of degree m and then passing to the limit. Under condi-
tions involving the generalized variation Va, we show that the integral
exists and possesses, in particular, the properties of linearity and ' anti-
derivative '.

Throughout this section, m is a positive integer, η > 0, K > 0.

4.1. The Differential Form. Let

for any (N + l)-tuple k .
N

i = ϋ

A differential 1-form ω on C is a function on the set of all (N + 1)-
tuples k, for which kt is a non-negative integer for i = 0, , N and
1 < <τk < m, to the set of real-valued functions on C such that

where

IRJp, y)\< K\\x- y\\™^-*κ for x e C and y e C .

It is important to note that, in case m = 1 and η > 0, ω is a dif-
ferential form on C satisfying a Holder condition. If however m > 1,
then ω is also a closed differential form on C, that is, dω — 0 on C,



ON INTEGRATION OF FORMS 279

By taking m = 1 and η = 1, we get the sharp forms considered by
Whitney. The conditions we impose on C, however, are quite different
and, we feel, in practice easier to check than those obtained in [4].

4.2. The sequence of subdivisions. We define first, for each {n + 1)-
tuple of non-negative integers (s0, , sn), a point ί(s0, , sn) by recur-
sion on n and on sw. These will be the end-points of the wth subdivision
of the unit interval.

4.2.1. DEFINITION. ί(0) = 0, t(l) = 1 ,

tfaf f sn, 0) = t(sQ, , sn) ,

ί(s0> > sΛ, j + 1) = sup {u : t(sQ, , sn, j) < u < t(s0, , sn + 1)

a n d | | <p(u') - <f(t(s0, • • • , « ^

for any non-negative integers n and j .
We shall denote by T the sequence of subdivisions of the unit

interval such that :

range Tn — {u : u = £(s0, , O for some ^-tuple (s0, , sw)} .

4.2.2. LEMMA. For any non-negative integers n and j , we have

t(8Q9 ,sn)< t(sQ, , sn, j) < t(sQ, , sn + 1) .

4.2.3. LEMMA. For any positive integer n, i e [TJO, 1], j e [ZV3/0,1]
: Tn+1 is a refinement of Tn, i.e. range Tn c range Γn+1

if Γn(i - 1) < u < TJi),

then

1
\\ψ(Tn(i-l))-φ(u)\\<

2 n >

if

Tn-ti -1)< Tn(i - 1)< Tn{i) < Tn-tf) ,

then

\\φ{Tn(i-ϊ))-φ{Tn{i))\\ = ~ .

4.2.4 LEMMA. If F(x, y) is a real number whenever 0 < x < y < 1,
a 6 range Tn, b e range Γn, αw.cZ a <b, then

Σ *χrn+1(< - i), τn+1(i)) = Σ Σ
/] j € [ Γ / δ ] i [ / r a D
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4.3. The integral of ω. First, we define \ωdψ as the limit of
J&

certain sums of polynomials.

4.3.1. Definitions.

P(a,b) =P'(φ(a),φ(b)),

Sn(a, b) = Σ i T O * - 1), Γn(ί)) ,

S b

ωdψ and some of its
a

properties under conditions involving Va(a, b) for some a < m + η, we
introduce the following.

4.3.2. Definitions.

R{x, y, z) - P'(x, y) + P'(y, z) - P'(χ, z) .

m -1

Jf = gΣ , , , .

β — m + η -

4.3.3. L E M M A . // x, y, z e C, \\x - y \\ < δ and \\y - z\\ < δ, then

\R(x,y,z)\

Proof. Let h(v) = P'(x, v) for v e E. Then, h is a polynomial of
degree m. Let Or = {k:k is an (N + l)-tuple of non-negative integers
and 1 < σk < r).
For k e Or and p 6 Or, let p > k iff p4 > kt for i = 0, , N, and let

0KOVQ

then

= Σ g)
(p0 - ko)

Hence, by Taylor's formula

h(z) = h(y) + Σ ( < t " f



ON INTEGRATION OF FORMS 281

+ Σ <Γ Σ
N - kN)

1}.
On the other hand from 4.3.1 and 4.1 we have

JN

= Σ |Γ
ka\-- kN\

Σ
ep>k

uo — κ>*) ί \pN

• ^o)fc° * (ZN ~

Σ

Making use of the condition on i2fc(a?, 2/) stated in 4.1, we get

37/γ. oA 4~ P'ίoj cΛ — P Y / Ϊ Ά\ <f V - ^ I 2/ ~ ^ | | β "" σ f c II ̂  "^ , y) -\r jr {y, z) — Jr {X, z) \ <^ 2-ι ^—, , — r
fceom ^ o ! ' kN !

4.3.4 LEMMA. Suppose \\x{0) - x(i) \\ < A and \\x(i - 1) - φ*) || <
A for i = 1, , p, whereas \\ x(i — 1) — α ('i) | | = A/rfor i = 1, , p — 1,

αZZ α (ΐ) e C.

= 1

Proof.

V
I 

I
I

-l),φ'))-P^

"V P ' / ^ O 1 ̂  />
* - l

p - 1

ί - 1

(0), x(p))

-1)) + 1

•
/— ) — X\

< Mr*A*-

(x(0), x(p))

P

i = l

yX[ v ~~~ JL ), X\ΊJ 1 )

"1 li "̂ Γ 1\/Tιy(^ ΛB~~&

a<< - 1) -

- P'(»(0), a

P

xyi) 11 .

4.β-*ί —

— X{%) II

4.3.5 LEMMA. Lei n > 1, α e rangeΓ n > 6 e rangeΓ n , a < b,

\Tn-.λ\a, 6] = 0 . Then

I Sn(a, b) - P(a, b) | < M5βVβ(a, b) .

Proof. Let

α' = sup{^ : u e range Ϊ V J and u < a}

br = sup{^: % e range Tw_x and ̂  < 6} .
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First, suppose a <br <b. Then a! < a and, by 4.2.3

|| φ(u) - φ(af) | | < -A_ for α' < u < V
Li

| | f(u) - φ(b') 1| < - L - for 6' < M < & .

Hence

II tfΓΛi)) - ?(α) 11 < - 2 | - for i e [TJa, δ] ,

|| ψ{Tn{i)) - Ψ(V) 11 < φ-{ for i e [Γ./6', 6] ,

|| Ψ(Tn(i - 1)) - Ψ(TJj)) || = A for i e [ΓB/α, δ], Γn(i) ^ &', Γn(») Φ b .

LΛ

Replacing a by β in 4.3.4 and using 4.3.3 and 3.1, we see that

1 Sn(a, b) - P(a, 6) I = I Sn(a, b') + Sn(V, b) - P(a, b) \
< I SJa, b') - P(a, &') I + | Sn(b', b) - P(b', b) | + \P(a, b') + P(b', b) - P(a, b)|
< MWVβia, V) + M2t>Vβ(b', b) + MVβ(a, b) < M5βVβ(a, b) .

Next suppose b' < a. Then, for * e {TJa, 6],

n(* - l)) - ^

Hence, by 4.3.4,

I Sn(a, b) - P(a, b) I < MtfVβ(a, b) .

4.3.6 LEMMA. Let a e range Tn, b e range 21,,, α < b. Then,

1 SU(α, 6) - Sn(a, b) \ < M2«Va(a,

Proof. Using 4.2.4, 4.2.3 and 4.3.4, we see that

\Sn+1(a,b)-Sn(a,b)\

Γ Σ P(τn+ι(i - l), r.+1(»)) - P(Γ.o"Σ
[/

Σ

) Σ II P(ZVi(i ~ 1)) ~ ψ(Tn+ι{i)) \\« < M2*Va(
2 n J ί t / i

4.3.7. THEOREM. / / 0 < a < b < 1, a < β, Va(a, b) <
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< co .

283

\ ωdψ

Proof. Let

an = inf {u : u e range Tn and α < ^} ,

δ'w = sup{% : u 6 range Tn and % < δ} .

If α = δ, the theorem is trivial. If a < δ, for % sufficiently large,
we have

a < a'n+1 < a'n < b'n < b'n+1 < b ,

[Γn/α, < ] = 0 and [TJK, δ] = 0 ,

II ̂ (αUi)^ ~ (Oil < ^ and || ψψn) - ψ(b'n+1) \\ <— .

Hence

I S n + 1 ( a , b) - SΛ(a, b)\ = \ S n + ι ( a ' n + 1 , b'n+1) - Sn(a'n, b'n)\
i nr / t t \ i or / f far \ \ O (}jr yj \ O (πr 7/ \ I

^ I £>n+l(an+lf 0>n) ~ P(θ>n + l9 an) I + I ̂ w + lί^w* % ) — Sn((lf

n, b'n) \

+ I Sn+ι(b'n, K+1) I - P(b'n, 6i+1) I + I P « + 1 , < ) I + lPφ'n, b'n+ι I < (by 4.3.5, 4.3.6)

< .

where

M'= sup
fc0

Therefore, for any positive integer p we have

Σ II Sn+P(a, b) - Sn(a, δ) I < Σ I Sn+Q+ι(a, δ) - Sn+q(a, b) |

Σ

Σ

±

Since, by 3.2, Vβ(a, δ) < co, with the help of 3.1 we see that Vβ(a, <) -> 0
and Vβ(b'n, δ) -> 0 as ^ -> co. Thus, the Sn(a, δ) form a Cauchy sequence

and \ ίϋcẐ < co.

4.3.8. THEOREM. Suppose δ > 0, a < β, L < c o , ^(δ) || < 1,
and

VJίa,b)<L\\φ(a)--φ(b)\\Λ

whenever 0 < a < b < 1 α̂ ίZ b — a < δ. Then, for some Mr < 00,
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I f' ωdψ - P(α, b) <M'\\φ(a)-φ(b)\\«

whenever 0 < a < b < 1 and b — a < d.

Proof. Given 0 < a < b < 1 and b - α < d, let

α£ = inf {̂  : ̂  6 range Tα and a < u} ,

δj = sup{w : ̂  e range Tq and ^ < 6}

and let n be the integer such that [Γ^/α, δ] = 0, \Tn\a, δ] Φ 0.
Given ε > 0, we can choose p so that

I f δ

ωdψ - S n + P ( a ' n + P , b'n+p) < e
I Ja

and

|P(α,δ)-Pα+,,δU)l<s

and

III ψ(a) - Ψ{b) | | - | | φ(a'n+p) - φ(b'n+p) | | | < ε .

Hence we need only to show that

I Sn+P(a'n+P, b'n+p) - P(af

n+P, b'n+p) \ < M'\\ φ(a'n+p) - φ(b'n+p) \\«

for some M* < CΌ and all positive integers p.
We can check that

\Sn+p(a'n+p, b'n+p) — P(a'n+py b'n+p) \

< I Sn(a'n, Vn) - P{a'n, b'n) I + \P(a'n+p, a'n) + P « , K) - P « + p , δQ |

+ i p « + p , δ;) + p(δ;, δt+J>) - P K + P , 6;+p) |
p-l

/ i i l-t VW'n + pj Cvn+k+l) ~Γ -^^V^n+fc+u U>n+k) -^\W'n+p> ^n+k) I
fc = ϋ

fc> On + p) I

+ I ̂ n+fc + l(^n+fc> ^n+fc) ^n + Λ^n+ky On + KJ 1}

Now, we observe that

for < + p < M < v < a'n+k ,

II Ψ(u) - φ(v) II < φ; f o r &»+* < % < v < b'n+p ,

L-̂  n+kl^n+k + lf ^n+kl = " ?

L-L n + klbn + k> ^w + fc + lJ = = ^

Hence by 4.3.5, 4.3.3, 4.3.6 we have
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« , b'n)

P\Q>n + p> bn + p ) I

+v, K) +

Σ

P- + 1 + 2-) Σ ( ^ r

+ 2 + (2 e - + 1 + 2-)) Σ

where

M' =
Λ) Σ (-—T + Ί

< oo, then4.3.9. THEOREM. // 0 < a < b < c < 1,1 Γ ωcẐ  + f° ω

5 c r& re

ωdψ = \ ωd^ + \ ωd^ .
α Jα J&

Proof. Let

«Λ — sup{^ : u e range Tn and % < 5}

b'n = inf {% : u e range Tw and b < u} .

We have l i m ^ P O C 6̂ ) = 0 and for sufficiently large n

Sn(a, c) = Sfn(a, 6) + P(αJ, 6i) + Sn(6, c) .

Taking the limit on both sides we get the desired result.

4.3.10. REMARK. If ω and ω are both 1-forms in the sense of 4.1,
then so is (ω + ω) and

S & Γb Γb

(ω + ω')dφ = \ ωcẐ  + \ ω'dφ
a Jα Jαprovided the right hand side is bounded. This is an immediate conse-

quence of the definitions.
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SUBDIRECT SUMS AND INFINITE ABELIAN GROUPS

ELBERT A. WALKER

l Definitions, Let G be a group, and suppose G is a subgroup of
the direct sum Σ o e i φ Hα of the collection of groups {Ha}aei. If the
projection of G into Ha is onto Ha for each a el, then G is said to be
a subdirect sum of the groups {Ha}aβI. (Only weak direct and subdirect
sums are considered here.) If a group G is isomorphic to a subdirect
sum of the groups {Ha}aei9 then G is said to be represented as a sub-
direct sum of the groups {Ha}aei. A group is called a rational group
if it is a subgroup of a Z(p°°) group or a subgroup of the additive
group of rational numbers.

2. THEOREM. Every Abelian group can be represented as a subdirect
sum of rational groups where the subdirect sum intersects each of the
rational groups non-trivially.

Proof. G is isomorphic to a subgroup of some divisible group, and
thus can be represented as a subdirect sum Gr of rational group {Ha}aei.
Let (hlf h2, , ha, •) be an element of G'. Let (hlf h2, * ,ha, )βx =

(klf K , K, •), where kx = ^ if Gf^HλΦ 0, and fcx = 0 if G' ( Ί f l i = 0 .

Assume /?c has been defined for c < δ. Define

(hu h2, , ha, )^δ = (fci, ^aι mfhf fa+u •)

where kb = Λ6 if i?& Π (Uc<6G
ί'/9c) ^ 0, and kb = 0 otherwise. Each βα

preserves addition because each is a projection. Let (hL, h.z, , ha, •) Φ

(0, 0, « , 0 , •••) and let

(Ax, hi, --,ha, )^α = (h, h, , ίfcα, Aα+i, ha+2, •)

Only a finite number of the coordinates of (hl9 h2, * ,ha> •••)^renot 0.

Let them be hai, ha%, , ha , where aλ < a% < < an. If a < αw, then

= (&!, /b2, •• ,/bα, Aα+1, - -, han, han+ι, •••) ^ (0,0, . . . , 0 , •••)

since httnΦθ. Assume <x^αw. If %—1 and α x = l , then (Ax, h2f , Aα, •) =

( ^ , 0 , 0 * « ,0 , . . . ) e G ' and G'O^Φo so t h a t (Aαi> 0, 0, --v Λ ™ =

(λαχ, 0, 0, , 0, - •)• That is, kai=haiΦQ, and hence (^,^ 2, , ^

(0,0, . . . , 0 , . . . ) • If n = 1 and αw =̂ 1, then (0,0, •• , ^ 1 , 0, 0, « ) e G '

and also in G'βc for all c < a,. Thus fl"αi Π (\Jc<aiG'βc) Φ 0, and

Received September 19, 1958, in revised form October 20, 1958.
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(K K ••-,*«,- ~)βa - (0, 0, , 0, hH, 0, 0, .)/S»

- (0, 0, , 0, hai, 0, 0, . . . )/9αi - (0, 0, . . . 0, haιJ 0, 0, . . . )

* ( 0 , 0 , . . . , 0 , . . . ) .

Assume n > 1. If (^, &2, . . , ha, -)βa = (0, 0, , 0, •), then kc = 0
for c <̂  αn, and

(Ai, A», , ha, - ) / V i = (0, 0, , 0, KnJ 0, 0, •) .

Therefore ff.Λ Π (G' f t ,^) =£ 0, and so ff^ΓKUe^G'ft) =£ 0. Hence fcβn -

hanΦ 0, and this contradicts fcc = 0 for c ^ an. Therefore

(huh, ~-,ha, •••)/?«*= (0,0, . . . , 0 , . . . ) ,

and the kernel of βa is 0. Hence each βa is an isomorphism. Now let

(hu h2, - , h^ * )β = (fci, &2, •••,&«, ). Clearly /? is a homomorphism

of (r' into Σαei φ ^ α But the kernel of β is 0 because every element

in G' has only a finite number of non-zero coordinates. Let Γ be the

set of indices such t h a t a 0 / ' implies t h a t the image of the projection

of G'β into Ha is 0. G'β is isomorphic to a subdirect sum of the groups

{fΓα}αer If G'/9 Π Jϊi = 0, then for (^, ^ , . •-, ha, •) e G ; we have

(Ai, K ---,ha, Oft = (0, h2, ---,ha, •), so t h a t

(hlf h%,m ,ha, )β = (0, Jc2, h, , ka, •) .

Hence the image of the projection of G'β into fl, is 0. Therefore 1 0 Γ.

Let a > 1. Suppose G'βΓ\Ha = 0 and i? α n(Uc<«G^ c ) ^ 0. Then there

exists 6 < α such t h a t H α Π G'/36 ̂ 0 . Let ( 0 , 0 , . - . , 0, ka, 0,0, - ) e Ha Π G'/9δ,

where fcα =£ 0. Let (^, h2, ---,ha, -- )βb = (0,0, , 0, feα, 0, 0, .••). Then

(hlt K ••-, Aα, • 0/5 = (0, 0, . . . , 0, ka, 0, 0, . . . ) , and so G'βnHaΦθ.

Therefore if G>βnHa=0, then -ffαn(Uc<αG'/?c) = 0. This implies for

every (hl9 hz, ha9 •) e G' tha t

(^, A2, , ha9 )βa = (klf k2, , ka, ha+1, ha+2, •) ,

where ka = 0, and hence that

(&!, &a, , Aβ, )i® = (&i> 2̂» β Ί 0, fcα+1, /bα+2, .-.) .

Thus the image of the projection of G'β into Ha is 0 so that a $ I'.

Hence for α e i ' , G'βp[Ha Φ 0. Since G is isomorphic to G'β> the theo-

rem follows.

3. REMARKS. Theorem 9 in [1] is an immediate corollary of the

preceding theorem, as are some other known theorems in Abelian group

theory. In [2], Scott proves that every uncountable Abelian group G

has, for every possible infinite index α, 2°w subgroups of order equal

to o(G) and of index α, and that for each given infinite index, their

intersection is 0. The following theorem shows that if G is torsion free,

one can say more.
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4. THEOREM. Every torsion free Abelian group G of infinite rank
has, for every possible infinite index a, 20(G° pure subgroups of order
equal to o(G) and of index a. Furthermore, the intersection of these pure
subgroups of index a is 0.

Proof. Represent G as a subdirect sum Gr of rational groups
{Ha}aei such that for each a e I, G'f)HaΦθ. Let a be an infinite
cardinal such that a <Ξ o(G). o(I) = o(G) since G has infinite rank. Let
I = SxUSa where o(S1) = a, o(S2) = o(G), and S^S, = φ. Let Γ be a
subset of S2 such that o ( S a - Γ ) = o(G). There are 2°<σ> such Γ's. Let
(hlf hz, "-,ha, •) be in G', and let

(hl9 K , K, )t = ( Σ Aj, fci, &2, , ka, ) ,

where &< = ht if i e S : and fe, = 0 otherwise. The mapping t is a homo-
morphism and the order of its image is equal to o(Sλ). That is, the
index of the kernel of t is α. The order of the kernel of t is equal to
o(G) since o(S2-T)=o(G), and G'f)HaΦθ for all a el. Let T,T'^S2,
T Φ T. Then there is a j e T such that jφT, say. Let h3 e G', h5 Φ 0.
Then

( 0 , 0 , . . . , * „ 0 , 0 , . . . ) « = ( A , , 0 , . . . ) .

However, (0, 0, , hJf 0, 0, )ί' = (0, 0, 0, •). Hence the kernel of t
is not the same as the kernel of V. These kernels are pure in G1 since
the quotient groups are torsion free. Thus G has 20( ί?) pure subgroups
of index α, and of order equal to o(G). Suppose (hlf hz, ---,ha, •••) is
in the intersection of all these pure subgroups of index a. Then if
beSl9 hb = 0. Hence if hc Φ 0, letting T = {c}, we have

{hlf htJ , he, , λα, •)* = (Ac, 0, 0, •) Φ 0 ,

which is impossible. Therefore for each α e / , ha = 0, and this shows
that the intersection of these subgroups is 0.

5. REMARKS. Every torsion free divisible group D of rank a is a
direct sum of a copies of the additive group of rational numbers, and
D contains an isomorphic copy of every torsion free Abelian group of
rank a. The following theorem says that if a is infinite, every torsion
free Abelian group of rank a is represented in a special way in D.

6. THEOREM. Every torsion free Abelian group G of infinite rank
can be represented as a subdirect sum Gr of copies of the additive group
of rational numbers, and in such a way that Gf intersects each subdirect
summand non-trivioλly.

Proof. Represent G as a subdirect sum Gf of the rational groups
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{Ha}aei such that for each a el, Grf]Ha Φ 0. Suppose first that G has
countably infinite rank. That is, suppose I is the set of positive inte-
gers. Each Ha is a subgroup of the additive group of rational numbers,
since G is torsion free. Let kl9 k%, k3, be a sequence of non-zero
rational numbers such that kteG'(Ίίfi. Let rlf r2, r3, ••• be the non-
zero rational numbers arranged in a sequence. Let st = rjki. Let
(hly h» , hn, •) be an element of G'. Let

/ oo oo co \

(Aj, Λa, , hn, -)β = Σ »Λ, Σ 8A, , Σ sthi9 ) .
\i=l i=2 ί=» /

Σί°=fcSince only a finite number of the ht'& are non-zero, for each k,
is a rational number, and for only a finite number of k's is ΣΠUsA non-
zero.

= {hi + 0i, h2 + g2, * , hn + gn, * )β

= ( Σ β i ( λ i + ffi), •• , Σ « i ( λ i + 0ι),
^ cx> oo oo oo

V o 7 > _ i _ V o ^ . . . V O / Ϊ I V Q

\ί = l ί=l i=n i=n

= (&i, K ->,hn, - )β + {gl9 g%9 , £„, )β .

Hence /? is a homomorphism of G' into a direct sum of copies of the
additive group R of rationale. Let Rn be the set of nth coordinates of
elements of G'β. Rn is a subgroup of R since it is the image of the
projection of G'β onto its nth coordinates. Let m^n.

(0, 0, •••, 0, km9 0, 0, . . . ) e G '

and

(0, 0, , 0, kmy 0, 0, )β - (rm, rm> , rm, 0, 0, .) ,

so that rme Rn. Thus Rn contains all but at most a finite number of
elements of Ry and being a subgroup of R, must then be R. Therefore
G'β is a subdirect sum of copies of R. Let xeG', x Φ 0, and let hr be
the last non-zero coordinate of x. Then the rth coordinate of xβ is
srhr Φ 0. Hence the kernel of β is 0 and β is an isomorphism of G onto
a subdirect sum of copies of R. Now consider the case where / is not
countable. Let I be the union of the set of mutually disjoint countably
infinite sets {Ijjjej Denote by Sj the image of the projection of G'
into Σaei φ Ha. Then G' is a subdirect sum of the set of groups
{Sjjjej, and each Sj is of countably infinite rank. Hence each S3 may
be represented as a subdirect sum of copies of the additive group of
rational numbers, and it follows that G may be so represented. In
light of the proof of 2, this representation may be assumed to intersect
each subdirect summand non-trivially.
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HOMOGENEOUS STOCHASTIC PROCESSES*

JOHN W. WOLL, JR.

Summary. The form of a stationary translation-invariant Markov
process on the real line has been known for some time, and these proc-
esses have been variously characterized as infinitely divisible or infinitely
decomposable. The purpose of this paper is to study a natural gene-
ralization of these processes on a homogeneous space (X, G). Aside from
the lack of structure inherent in the very generality of the spaces
(X, G), the basic obstacles to be surmounted stem from the presence of
non trivial compact subgroups in G and the non commutativity of G,
which precludes the use of an extended Fourier analysis of characteristic
functions, a tool which played a dominant role in the classical studies.
Even in the general situation there is a striking similarity between
homogeneous processes and their counterparts on the real line.

A homogeneous process is a process in the terminology of Feller
[3] on a locally compact Hausdorff space X, whose transition probabilities
P(t, x, dy) are invariant under the action of elements g e G of a tran-
sitive group of homeomorphisms of X, in the sense that P(t, g[x~}> g[dyj) =
P(t, x, dy). It is shown that if every compact subset of X is separable
or G is commutative the family of measures t~τP(t, x, •) converges to
a not necessarily bounded Borel measure Qx( ) on X-{x} as £->0,
meaning that for every bounded continuous, complex valued function
/ on X which vanishes in a neighborhood of x and is constant at infinity
t-Ψ(t,x,f)-+Qx(f).

In 3 we show that the paths of a separable homogeneous process
are bounded on every bounded ^-interval and have right and left limits
at every t with probability one. If the action of G on X is used to
translate the origin of each jump to x, it is shown for suitably regular
compact sets D that the probability of a jump into D while t e [0, T]
is given by 1-exp {-TQX(D)}. The maps/->P(£, .,/) = (Γ,/)( ) map
the Banach space, C(X), of continuous functions generated by the con-
stants and functions with compact support into itself, and by a suitable
normalization can be assumed strongly continuous for t > 0. Indeed,
Tt is a strongly continuous semi-group. The domain D(A) of the in-
finitesimal generator A of Tt admits a smoothing operation whose precise

* This paper was originally accepted by the Trans. Amer. Math. Soc; received by the
editors of the Trans. Amer. Math. Soc. November 5, 1956, in revised form February 24,
1958. This paper is a thesis, submitted in partial fulfillment of the requirements for the
Ph. D. degree, Princeton University, June 1956. During its preparation the author was a
National Science Foundation Predoctoral Fellow.
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nature is described in Corollary 1 of Theorem 2.2. Roughly speaking,
if g 6 D(A), ε > 0, and / e C(X) we can find an h e D(A) such that
\\h — /|Ioo < ε and / = h on any preassigned compact subset of interior
({x\f(x) = g(x)}).

A family of measures P(x, A) which is a probability measure on the
Borel subsets of X for fixed x e X, measurable in x for fixed A, and
invariant under G(i.e. P(g[x], g[A]) = P(x, A)), is called a homogeneous
transition probability of norm one. Such a family generates a continu-
ous endomorphism /-> P( ,/) = (P/)( ) of C(X), and a homogeneous
process Tt = exp{ίr(P— 1)}. This latter process is called a compound
Poisson process. In 4 we study strong convergence for compound
Poisson processes (Definition 4.1) and prove among other facts that
every homogeneous process is a strong limit of compound Poisson proc-
esses exp {tr^Pi — 1)}, and if rt < M < + oo the limit process is neces-
sarily compound Poisson. If X is given the discrete topology every
homogeneous process on X is compound Poisson. In case the Qx associated
with P(t,x, dy) vanishes identically, or equivalently P(t, x, dy) has con-
tinuous paths, we show in 5 that P(t, x, dy) is the strong limit of
compound Poisson processes whose Pι{x, dz) have support arbitrarily
closed to x.

In 7 we study subordination of homogeneous processes as defined
by Bochner [1]. By phrasing the definition in terms of a probabilistically
run clock it is shown that many processes are maximal in the partial
order induced by subordination. If we follow the notation in (7.2)
where exp {tS(b, A, F, z)} denotes the family of characteristic functions
of a homogeneous process X(t, ω) on Euclidean w-space, we obtain the
following type of result. When support (F) is compact, X(t, ω) is not
subordinate to any process but itself unless support (F) is also contained
in the half line R+b and A = 0. In this latter case X(t, ω) is subordi-
nate to the Bernoulli process Z(t, ω) = tb. Actually somewhat stronger
statements can be made but they are proven only for the real line.

In our notation we have not distinguished between the application
of a measure μ to a function / and the measure of a measurable set
E, denoting these respectively by μ(f) and μ{E). The set X-Έ is
denoted by Ec and the usual convention is adopted in letting C, R, R+,Z,
and Z+ represent respectively the complex numbers, the reals, the non-
negative reals, the integers, and the non-negative integers.

I would like to take this opportunity to express my gratitude to
Professor Bochner who has patiently encouraged this work, and whose
own ideas are at the base of § 7.

1. Introduction. Let G be a Hausdorff, locally compact topological
group and H one of its compact subgroups, We consider G as a group
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of homeomorphisms of the left cosets of G modulo H, which we denote
by G/H, the left coset xH being mapped by a e G into the left coset
axH. Moreover, if we are primarily interested in the space G/H and
the action of G on this space, there is no reason why the subgroup H
should play a dominant role, for the homeomorphism x -> xb of G carries
the left coset xH of H into the left coset xbb^Hb of b^Hb. As far as
left multiplication by elements of G is concerned this is an operator
homeomorphism and G/ϋ* is equivalent to Gjb~ιHb. For this reason we
use the neutral letter X for the space GjH and denote the operation of
a e G on x e X by a[x]. We call the system (X, G) a homogeneous
space and note that X is naturally homeomorphic to any coset space of
the form G\GZ where Gz = {a e G\a[z] = z).

For the sake of exposition let N(X) be the Banach space of regular
bounded complex Borel measures on X; CC(X) the linear space of con-
tinuous complex valued functions with compact support; CΌo(X) the
closure of CC(X) in the uniform norm C(X) the Banach space of functions
generated by CΌo(X) and the constant functions with the uniform norm.
We use the current notation of W. Feller and denote linear trans-
formations of N(X) by postmultiplication. In this notation a linear
transformation T of CΌo(X) is denoted by the same letter as its adjoint
transformation on N(X), viz. μT(f) = μ{Tf). By the expression μ > 0,
μ e N(X), we mean μ is a real valued non-negative measure, and by
the transformation La we refer to the isometries of CC(X), CΌo(X), C(X)
and N(X) generated by translation of X by a e G, viz. (Laf)(x) =
f(a-1[x~i)f μLa(E) = μ(a[E]). When x e X we denote by δx the measure
placing a unit mass at x, so that δx(E) = 1 if x e E and 0 otherwise.
For example, we shall often use the relationship SxLa-i= δaίxl. Finally,
when we say that a directed sequence (μq)qeQ of measures-commonly called
a net in N(X) - converges weakly to μ e N(X), in symbols μQ-+ μ, we
mean for every / e CC(X), μq(f) -> μ(f) as complex numbers.

DEFINITION 1.1. A homogeneous transition probability is a continuous
endomorphism P: N(X)-+ N(X) satisfying:

(i) μ > 0 implies μP > 0
(ii) μq-*μ implies μqP-+μP;
(iii) PLa = LaP.

An endomorphism, P, with properties (i) and (ii) is usually called
a transition probability and (iii) makes the transition probability
homogeneous.

When fe C^X) it follows from (ii) that SxP(f) is continuous in x.
In addition δxP(f) e CΌo(X). To show this let αjz] be any directed
sequence in X tending to infinity, then by virtue of the assumed com-
pactness of Gzy a^D] -> infinity for any compact set D c X and



296 JOHN W. WOLL, Jr.

La-ιf(y) = f(<ii[y]) -* 0 boundedly and uniformly on every compact set.
It follows immediately that

= δ*LarlP(f) = δΨ(Larlf) -+ 0 ,

proving δ*P(f) e C^X). Now for any given μ e N(X) let μq = Σ ί^V^ be
a bounded, directed sequence of purely atomic measures in N(X) ap-
proaching μ weakly, μq -> μ. Then separate calculations show that on
the one hand μQP(f) -> μP(f), while on the other

μJP(f) = Σ i m ^

Accordingly, for / e C4-X") and μ 6 N(X)

(1.1) /<(«*[/]) - μP(f)

the adjoint of P transforms CΌo(X) into itself and when / e CJ^X)

(1.2) (Pf)(x) =

By letting / f 1 in (1.1) we see that (1.1) and (1.2) hold for fe C(X)
as well. If P and Q are homogeneous transition probabilities

(1.3)

( 1 . 4 ) IIPQII = I | P | | H Q I l .

We obtain (1.3) by noting first from (iii) that <5*P(1) does not depend on
x G X, and then it follows from (i) that μ > 0 implies \\μP\\ = μP(l) —
II^H^P(l); so | | P 1| > ^XP(1). The opposite inequality is obtained by
using the preceeding remarks on a Jordan decomposition of μ e N(X),
while (1.4) follows easily from (1.3).

We remark at this point that if z e X and m is the normalized

Haar measure of Gz, then the m a p P - > P e N(G), given for geC^G)

by P(g) = 1 δ'P(dy)\ m(dw)g(yw), maps the Banach algebra generated by

the homogeneous transition probabilities isometrically onto the subalgebra

m * N(G) * m of N(G).

DEFINITION 1.2. A homogeneous process is a one-parameter semi-
group, (T£)ί>0, of homogeneous transition probabilities which is temporally
continuous in the sense

(iv) μ e N(X) and / e C(X) imply μTt(f) is continuous in t.

Using (1.4), (1.3) and (iv) we see that | |Γ t | | = evt. Therefore, we
replace Tt by the equivalent process e~ptTt and assume in the rest of
this paper that (v) below is satisfied unless explicitely stated otherwise.

(v) \\Tt\\ = 1,
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The requirement of temporal continuity for a homogeneous process
is equivalent to the weak continuity of the restricted adjoint process
Tt: C(X) -• C(X), and by well known results, [5], implies the strong
continuity of this last process for t > 0. The theory of semi-groups
shows that Tt is strongly continuous at t — 0 on the closure of
\Jt>0TtC(X). This may be a proper subspace of C(X). For example,
let (G, G) be the homogeneous space of a group acting on itself by left
translations with μTt = μ * m, where m is the normalized Haar measure
of a non trivial compact subgroup. G. Hunt [7, pp. 291-293] has shown
that by enlarging the subgroups Gz if necessary we can always assume
a homogeneous process possesses the following quality.

Property I. For any fixed x e X and any Borel measurable neigh-
borhood N of x, dxTt(N) -> 1 or equivalents δxTt(Nc) -> 0 as t -> 0.

It is a routine calculation to show that Property I is equivalent to
the strong continuity of Tt: C(X) -> C(X) at the origin, so we hence-
forth assume our processes satisfy Property I, and by Hunt's result we
can do this without loss of generality.

In view of the above statements we can apply the Hille-Yosida
theory of strongly continuous semi-groups to the semi-group Tt: C(X) ~>
C(X). An elementary application of this theory shows that there exists
a dense linear subspace of C(X) which we denote by D(A), and a closed
linear operator A: D(A) -> C(X) with the property that for / e D(A)

- A/ΊU = 0.

2. Properties of D(A). In this section we investigate the domain
of the infinitesimal generator for homogeneous processes which satisfy
Property II below. Later we show that Property II is automatically
satisfied if either X is separable or G is commutative.

Property II. There is a regular Borel measure Qz on X — {z}, such
that t-\TJ){z) -> Qβ(f) as t -> 0 for all / e C(X) which vanish on any
neighborhood of z.

Qz is positive and QzLa-λ = Qα[β]. In general, of course, Qz will be
unbounded, although its values on any set E lying in the complement
of a fixed neighborhood N of z must be bounded, or equivalently
δ*Tt(E) = O(|ί I) as t -H>0. This is easily checked if one notes that D(A)
includes the constant functions and is invariant under G. For then we
can choose an / 6 D{A) which is everywhere positive on X, vanishes at
z, and is greater than 1 on Nc. Clearly

QZ(E) < (Af)(z) = limt^t'\Ttf)(z)

is bounded independently of E c NG.
The homogeneity of the process Tt entails a uniformity in this
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convergence to Qz which may be stated as follows.

THEOREM 2.1. // / is an open subset of X, fe C(X), and f(J) —
0 then t~ιTtf converges to its limit as t -> 0 uniformly on every com-
pact subset of J. If in addition Jc is compact, this convergence is even
uniform on every closed subset of J.

Proof. To prove the first assertion it suffices to show that the
approach is uniform on a neighborhood of z e J of the form N[z] where
N2[z] c J and N = N'1 is compact. If α, b e N, and K is chosen so
that t-ψTt(N[z]e) < K, then

| t -i 3 αω Γ ί ( / ) _ t-^Tt{f)\< K\\LhaM) ~ f\\-

The family {ht(x)\t > 0, ht(x) = t-ιδxTt(f)} is accordingly, equicontinuous
on N\z\, and ht(x) -> Qx(f) as t -* 0. It follows that this approach is
uniform on N[z], The second assertion is a consequence of the fact
that for each e > 0 there is a compact set Ds and a ts > 0, such that
x $ D2 and t < tε imply \t'\Ttf)(x)\ < ε. Assume on the contrary that
there is a sequence at[z] -> infinity, together with a sequence ί, -• 0,
such that \tr1(Ttif)(ai[z'])\ > s. Now choose a bounded sequence of
functions (̂  from C(X) which converges to zero monotonely while
their supports approach infinity, and which satisfy the crucial inequalities
g3 > sup^j |Z/α r l(/)|. The inequalities

ε < liminf<|t i-
1(Γ ί4/)(α,M)| < K m ^ f o ) = 0

yield the contradiction which proves the second assertion.
Suppose h 6 D(A) and on some open subset J of X we have / = h,

where fe C{X). Suppose further that either / or Jc is compact. Let
D be a closed subset of J, containing a neighborhood of infinity if Jc

is compact; and let m e C(X) be constructed so that o<m<l,m(D) =
0, and m(Jc) = 1. The map S: X x X x (0, oo) -> R defined by
S(x, y, t) = (Tm(yytf)(x) is, because of the strong continuity of Tu defined
and continuous in (x, y, t). Consequently its restriction to the diagonal
in the first two components is continuous on X x (0, oo). When
^ ^ ( ^ Λ W ^ t W ) , while if JG is compact (Tmωtf)(x) =
(TJ)(x) = f{x) close to infinity. The maps Wt:C(X) -> C(X) defined by
fix) -> Tm(x)tf(x) form a strongly continuous family of bounded linear
transformations, so that we may form the Rieman integral gix) =
r~\ (Wtf)(x)dt. If x 6 D, m(x) = 0 and g(x) = fix); while for any x,

Jo

\g(x) - f(x)\ = r-11 fP{TΓt/(a5) - f(x)}dt\
JO

< sup ί < r | l TFi/ - / | | . -»> 0 as r -»- 0 .
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Thus for any given ε > 0 we may guarantee that \\g — / |U < ε by
a sufficiently small choice of r.

THEOREM 2.2. Let D be a closed subset of the open set J in X, where
either J or Jc is compact. Let h e D(A), f e C(X), and f = h on J.
Then for each ε > 0 there exists a g,: e D(A)y such that (i) h = / = gs on
D, and (ii) | | # ε - / | L < ε .

Proof. We only need to prove that the g defined above lies in D(A).
To do this we show that

\ - f}dt

converges to its limit uniformly on X. The computations are divided
into two cases.

Case I. m(x) < 1/2. On this closed subset of J

-h} +s-
1{Ts(f~h)~(f-h)} .

Now s~x{Tsh — h} -> Ah in the uniform norm as s -• 0, and by Theorem
2.1 s-'iT^f- h) - ( / - h)} ->Qx(f- h) uniformly on {x\m(x) < 1/2}.
Accordingly,

s'τ{Tsg - g} ̂ r - 1 Γ Wt{Ah + Qx(f - h)}dt
Jo

uniformly on {x\m(z) < 1/2).

Case II. m(x) > 1/4. On this set

s-^Tsg - g} = (rs)'1 [ {Ts+mix)tf - Tm(x)tf}dt
Jo

[ Γ m(x}r+s Γs 1

{Tuf}dn- Tufdu\
m(x)r J Jθ J

-+ {rnι(x)}-i{Tmωrf(x) - f(x)}
as s -> 0, uniformly on {x\m(x) > 1/4}. These observations show that
g 6 D{A).

In the above proof we did not really need the fact that h e D(A).
Indeed, had we replaced h by h + u, where u e C(X) and u{J) — 0,
there would have been no change in the proof. Furthermore, since
g(x) = r~ι \ (Tm{x)tf){x)dty if / is real valued we have the relation

Jo

infx f(x) < inf yg(y) < sup^(2;) < supx/(x). These remarks allow us to
state a corollary.
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COROLLARY 1. Let Jlf J2, •••, Jn be disjoint open sets of Xand let

Dt be a closed subset of Jt. Suppose that for each i either Jt is compact
or for at most one i, J\ is compact. Let ht e D{A) and f e C(X) satisfy
f —hi on Jt. Then for each ε > 0 there exists a g2 eD(A)> such that

(i) ge = ht = / on Di9

(ϋ) | l f l r β -/ | | -<e, and
(iii) iff is real valued then mfxf(x)< mf yg£(y) < sup* gs(z)<supxf(x).

Specializing the preceding we get the following.

COROLLARY 2. If B is compact in X, His closed, and H Π B — φ;
there exists an f e D(A), such that 0 < / < 1, f(H) = 0, and f(B) = 1.

The above results have been derived under Property II and we now
show that we can replace Property II by a condition on D(A).

Property III. For each ε > 0 and / e C(X) which is zero in a neigh-
borhood J of x9 there exists an / ε e D(A), such that fs = 0 in a neigh-
borhood U of x which is independent of ε, | | / ε — / | U < ε, and if / is
real valued so is fe with inΐxf(x) < infyfB(y) < supz f,(z) < supxf(x).

THEOREM 2.3. Property III is equivalent to Property II for homo-
geneous processes.

Proof. We have already seen that Property II implies Property III
and will now demonstrate the converse. First, let / be a neighborhood
of x, and choose a function h e C(X), such that h = 0 in a neighborhood
U d J of x, and h(JG) — 1. We also require that h > 0 everywhere.
Now for 0 < ε < 1 choose an hs in accordance with Property III.

t-λd*Tt{JG) < (1 - eyWT^t-1 < K{U)< + oo

for some constant K(U) depending on U. If / e C(X) and /(J) = 0,
Property II is equivalent to the fact that t~1dxTt{f) -> a limit as t -> 0.
The inequalities

) - \im t-WTt{fH)\ <

<lim sup t - H H

< (ε, + e,)lim sup t-WTW) < (ε, + et)K(ϋ)

show that lim lim ί'^Γ^/g) exists. If we call this limit 6, the inequality

\WTt(f) -b\< \t-WTt(fe) - 6 | + εK{U)
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shows by first letting t -> 0 and then ε -> 0, that t"\TJ){x) ->b as t -> 0,
completing the proof.

By the use of well-known smoothing techniques which exist on
a differentiable manifold we can conclude that if G is a Lie group or
if X is a differentiable manifold on which G acts differentiably, and
D(A) includes C°°(X) Π C(X), then Property III and Property II are
automatically satisfied.

We close this section by remarking that the only place where we
have used the homogeneity of Tt was in the proof of Theorem 2.1, so
that a strongly continuous semi-group on C(X) satisfying the conclusions
of Theorem 2.1 also satisfies the conclusions of Corollary 1 if its adjoint
preserves positivity.

3* The paths of a homogeneous process and Property IL Before
we discuss the nature of the paths of a homogeneous process it is
necessary to take certain precautions which will assure us that the
properties we want to discuss can be handled by the theory of probability.
Given a consistent set of transition probabilities for a particle moving in
a locally compact Hausdorff space it is possible, using a theorem of
Kolmogoroff s, to construct an infinite product space in which these
transition probabilities determine the finite dimensional distributions.
From this we can construct, in the usual manner, a set of paths and
a probability measure on this path space. Alternatively, we can consider
a process as a family X(t, ω) of measurable transformations from some
abstract sample space Ω to the range space X. Since there is some
freedom in the definition of X(t, ω) given only the finite dimensional
distributions, it is important to notice that the concept of separability
as used on the real line is available in this case.

DEFINITION 3.1. A process {X(t, ω), 0 < t) will be called separable
relative to the class A of closed subsets of the locally compact Hausdorff
space X if, and only if, (1) there exists a denumerable subset {tj} c [0, oo),
and (2) an event K c Ω with P{K} — 0, such that for every open in-
terval Ic. [0, oo), and every set F e A, the event

{ω\X(tjf ω) β F, tj 6 I Π {tj}} - {ω\X(t, ω) 6 F, t € 1} C K .

The importance of the concept of separability rests on the validity
of the following theorem.

THEOREM 3.1. Let Xbe a separable locally compact Hausdorff space,
and let {X(t, ω), t < 0} be an X-valued process. Then there exists an
X*-valued stochastic process {X(t, ω), t > 0} such that: (1) X{t, ω) is
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defined on the same ω-space, Ω, as X(t, ω) and takes values in the one
point compactification, X*, of X; (2) X(t, ω) is separable relative to the
class of closed sets of X* (3) for every t>0 {Pω\X(t, ω) = X(t, ω)} = 1.

Proof. This theorem may be proved in a manner entirely analogous
to the comparable theorem on the real line, and its proof is given, for
example, in Doob [2 p. 57]. We remark that the separability of the
space is necessary for this proof.

In the following we discuss the displacements of the path X(t, ω)
during a closed interval of time. The success of our technique depends
directly on the possibility of comparing two such displacements with
different origins. If our homogeneous space (X, G) is that of a group
acting on itself, we can translate all displacements origins to the identity
and their endpoints are uniquely determined. On a general homogeneous
space, however, the endpoint of a translated displacement is not deter-
mined by its new origin. We introduce several concepts from the
calculus of relations and a space of displacements to handle this ambiguity.

By a relation (U) on X we mean a subset of X x X which contains
the diagonal. The notations (U)-1 = {(y, x)\(x, y) e (U)}, (W) o (U) =
{(x, y)\ for some z, (x, z)e(U) and (z, y) e(W)}, and (U)[A]= {x\(y, x)e(U)
for some y e A} are standard. It is sometimes convenient to substitute
Ux for (U)[{x}] and in this notation (W) o (U)x = \Jveϋx Wy. A relation
(U) is called homogeneous whenever (x, y) e (U) implies (α[x], a[yj) e (U)
for all a e G, and it is convenient to describe a relation by giving
a property possessed by all the sets Ux. For example, we call a relation
(U) compact, open, closed, or a neighborhood relation if each Ux is
compact, open, closed or a neighborhood of x respectively. Using a double
coset representation it is easily shown that the class of homogeneous
neighborhood relations forms a base for the natural uniformity of the
homogeneous space (X, G). We say the displacement from x to y belongs
to the homogeneous relation (£7) if (x,y) e (U). The reason for this
mention of relations is that they appear to be exactly what is needed
to generalize the statement and proof of a theorem from Kinney [9],
p. 292-293.

THEOREM 3.2. Let (X, G) be a homogeneous space satisfying the
first axiom of countability, and let X* be the space X compactified by
adding a single point at infinity. Let {X(t, ω), t > 0} be an X*-valued
homogeneous stochastic process governed by the transition probabilities
δxTt. and separable with respect to the closed subsets of X*. Then if
T > 0, there is an ω-set Eτ with P{ET) = 0, such that ω 0 Eτ implies
the statements below.

(1) X(t, ώ) is bounded on t e [0, T). By which we mean
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Cl[{X(t, ω)\t β [0, T)}]

is a compact subset of X.
(2) X{t, ω) has finite right and left hand limits at every t e [0, T).
(3) The number of jumps in [0, T) whose displacements lie out-

side a homogeneous neighborhood relation (U) is finite. Furthermore,
for any homogeneous neighborhood relation, (U), the maximum number
of disjoint subintervals (t,s) o/[0, T) for which (X(t~,ω), X(s~,ω)) $ (U)
is finite, where X(t~, ω) = \imh]QX(t + h, ω).

In particular the use of the one point compactification of X was
only necessary to cover the processes constructed in Theorem 3.1 and
may be eliminated as soon as (1) is proved.

The displacement or jump of a particle from x to y can be considered
as a point in the space X x X. It is natural to consider classes of
similar displacements, and this involves the introduction of an equi-
valence relation on X x X, two points, (x, y) and (#', yf), being considered
equivalent if there is an a e G such that (a[x~], a[yj) = (xf, yf). This is
a closed equivalence relation and the quotient space is homeomorphic
to the space of double cosets {GxaGx} = Y. Let p : l x l - > 7 b e the
canonical projection. Y is a locally compact Hausdorff space known as
the space of displacements, and p is a continuous open mapping. If we
fix the first component at x, so we only consider jumps origination at
xf we get a mapp':X-> Y given by z-+p(x,z). Using this map the
commutativity of Tt with La shows that we can very properly place
the measures δxTt and Qx on the space Y without losing a thing. If
/ e CC(X), and m is the normalized Harr measure of Gx, the equation

δxTt(f) = [f(a[z})m(da)δxTt(dz) indicates a means of returning 3xTt and

Qx to X from Y. The following theorem is the key to the results of
this section. It and Theorem 3.4 are generalizations of similar results
for homogeneous processes on the real line which may be found, for
example, in Doob [2, p. 422-424].

THEOREM 3.3. Let (X, G) be a homogeneous space satisfying the first
axiom of countability, and X{t, ώ) a separable homogeneous process on
X governed by the transition probabilities δΣTt{ ). Suppose that for
some sequence of t-values, t5 -> 0, there is a not necessarily bounded
regular Borel measure Qx on X — {x} for which f e CC(X), x 0 sup-
port (/), imply t]1(Ttif)(x)-+Qx(f) as t3 -> 0. Let Y be the space of
displacements of (X, G), and denote the measures δxTt and Qx after
transference to Y by the same symbols. Suppose X(0, ω) — x a.s,, C(D) =
{ωllim^ooPίXίί - n~\ ω), X(t + n'\ ω)) e D for some t e [0, I7)}, and
let P* and P* be the inner and outer measures induced by P on Ω.

(1) Then for any compact subset D of Y — {x}:
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1 - exp {T\imsuv3tj
1δxTt(D)} < P*{C(Z>)} P

(2) If D is a compact subset of Y — {x} satisfying, either
(i) there is a Uopen c D for which δxTt(U — D) = o(t) as ί -• 0, or
(ii) £Λere exists a sequence C^ compact c interior (D) for which

Qx(Ck) -> QX(D) as k -> oo,

= P*{C(Z>)} = 1 - e-Γβ«w

Proof. Using the monotone sequence t3 -> 0 we define a sequence
of partitions of [0, Γ). The ith partition being given by

{[0, tj), ltJf 2tj), , [(kj - l)tj, kjtj), [kjtj, T)} ,

where k3 is the largest integer < Tjt3. Define Y-valued random variables

= p(X({n - l}tj'f ω), X{ntf, ω)) l < n < k3

+ l) = p(X(kjtf9 ω)X(T-, ω)) ,

where as usual X(t~, ω) — limsTcX(s, ω). For any measurable subset
FdYwe put F(j, n) = {ω\H(j, n) eF} and F(j) = (JV1 F(j, n). Since
{H(j, ri)yl <n < kj} are independent and identically distributed random
variables, it follows that

P{F(j)} = 1 - {1 - δ*Tτ_kjtj(F)}{l - δ*Ttj(F)}*> ,

where 1 > ε, -> 0, 0 < T - kόt3 < t5 \ 0, and k5 = Ttf1 - ε3. Let D be
a compact subset of Y, and Z7 an open neighborhood of D whose closure
does not contain x. Our knowledge that the paths have right and
left hand limits at every point shows that C(D) c lim inf3 U(j). If
ω e lim sup^ D(j), choose a sequence of semiclosed intervals [n3t3, (n3 + l)t3)
which converge to a point, and across whose length the path ω has
a displacement H(j, n3) e D. By passing to further subsequences if
necessary we can assume that the sequences of endpoints are monotone.
There are four cases;

(a) njtj f, (nj + ΐ)t31 leads to ω e C{D)
(b) itjtj I, (n3 + l)tj t is impossible; while
(c) n3t3 f, (n3 + ΐ)tj t and
(d) n3t31, (n3 + l)t31 both lead to ω's having infinitely many dis-

placements close to D in [0, Γ), and, accordingly, occuring with proba-
bility zero by condition (3) of Theorem 3.2. Therefore, lim sup^ D(j) c
C(D) c lim inf 3 U(j) which in turn implies

1 _ exp {- Tlimsup^r^CD)} <

and

P*{C(D)} < 1 - exp {-
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It can be shown by a standard arguement that if V open 3 U and x 0 V,
then QX(D) < lim inf} tfιdxTt){U) < QX{V), and by letting Fand Ushrink
to .D it follows that

P*{C(D)} < 1 - e-^^) .

If in addition D satisfies either (i) or (ii) in (2), it is easy to see that

which implies the conclusion of (2).
We now show that the conditions (i) and (ii) placed on the compact

set D in (2) of Theorem 3.3 are sufficiently unrestrictive for us to prove
Property II for homogeneous processes.

THEOREM 3.4. Let (X, G) be a separable locally compact homogeneous
space, and let Tt be a homogenous process on (X, G). Then there exists
a unique not necessarily bounded Borel measure Qx on Y — {x}, the
space of displacements of (X, G)> such that f e C(X) and x $ support
(/) imply

t'\Ttf){x) -> Qx(f) as £->0.

Proof. The use of the Hille-Yosida theory of strongly continuous
semi-groups shows that when restricted to the complement of any neighbor-
hood U of x e Y, the family of measures t~1δxTt is bounded. We compact-
if y Y by adding a point at infinity and denote the compactified space by
Y*. Using the compactness of bounded sets in the weak star topology,
and the first axiom of countability for Y, we can find a sequence tό -> 0
and a not necessarily bounded Borel measure Qx on F* — {x}, such that
for any feC(Y) = C{ Γ*), x φ support (/) implies tfιdxTtμ) as t3 -> 0.
There remain two problems.

(a) to prove Qx is unique, and
(b) to show that Qx({^}) = 0. Using the separability of (X, G)

construct a representation, X(t, ω), of the paths of Tt satisfying all the
conditions in Theorem 3.2.

Suppose that sf1SxTSj -> QJ were another limit and let C be any
compact subset of 7 - {x}. For an arbitrary ε > 0 let Us be chosen
so that C a Uζ open c Us compact c Y- {x}, QX(U,) < QX(C) + ε, and
QX'(US)< QX'(C) + ε. Now construct a function f e Ce(Y), such that
f(U,c) = 0, 0 < / < 1, and f(C) = 1. Select a 6 e (0,1) such that

\f() - ί>}) - o

and put D = {x\f(x) < b}. Note that

C compact c interior (D) c D compact c UC9
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Qx (interior (D)) = QX(D), and QJ (interior (D)) = QJ(D). Accordingly, D
satisfies condition (ii) of Theorem 3.3 (2), and thus for any fixed T > 0,

P*{C(D)} = 1 - e~τQx(D) = 1 - e-
rρ*'W ,

so that QX(D) = QJ{D). This shows

\QΛC) ~ QX(C)\ < \QX(D) - QX(D -C) + QΛD - C) - QX'(D)\ < 2ε

for every ε > 0; so Qx = Qx

r.
To show that Qx is really a Borel measure on F - {x}, and not on

F* — {x}9 we must show that Qx({oo}) = 0. In order to do this we
make a final appeal to the paths. Except for an event of probability
zero we know that Cl[{X(t, ω)\t e [0, T)}] is a compact subset of X, and,
consequently, its projection on Y will also be compact. Using the
method above, choose a sequence of compact sets Dn[ {cχ>} in F* and
satisfying condition (ii) of Theorem 3.3 (2). Then if Qx({oo}) ψ 0,

P{C(D)} =l-e-τQx(Dn)>r>0,

and P{f\ n-\ C{Dn)} > 0. Any path with a jump in every Dn during the
time interval [0, T) certainly contains co as a limit point. Thus our
process violates the condition that the paths are a.s. bounded. Hence
Q,({«>}) = 0.

The temporal continuity (weak continuity) of Tt enables us to restrict
consideration to a sigma-compact subset of X, namely U t > 0 support (δxTt).
As a consequence of the preceeding theorem this remark proves the
following corollary.

COROLLARY. Let (X, G) be a homogeneous space where every compact
subset of X is separable. Then every homogeneous process on (X, G)
possesses Property II.

The following theorem gives an accurate description of the important
set support (Qx).

THEOREM 3.5. Let (X, G), Y, X(t, ω), δxTt, and Qx be as in Theorem
3.4. For those ω's which have one sided limits let

F{ω) = {limp(X(ί - n~\ ω), X(t + n~\ ω))\t > 0} .

Then F(ώ) = support (Qx) U {x} a.s..

Proof. By definition CflJΛ) = U«C(Fa) for FΛ measurable c Y.
Now choose a sequence of compact sets Di9 such that U<A =
{support (Qx) U {̂ }}c. P*{C(D)} < 1 - <rΓ ° = 0, so

- 0 ,
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which shows F(ω)dsupport(QX)U {#}. Let Uopenc Ucompactc Y— {x},
and U Π support (Qx) =£ φ. Choose / e Cc( Γ), such that 0 < / < 1, sup-
port (/) c U, and Qx(f) > 0. Let

r(U) = lim sup t'^xTt(U> Qx(f) > 0 .
£->U

If {Ui9 i = 1, 2, , n} is a finite class of such U's, let

P*{ω|ω has a jump in every Ut when ί < ϊ7} = A(T)

P*{ω|ω has a jump in C7fc when T(k - l)^" 1 < ί < Tkn"1}

= 5(fc, Γ) .

We have the following inequalities relating the above numbers

A(T) > J5(l, Γ)5(2, Γ) B(n, T)

> (1 - exp {- ^^ΓrίC/,)}) . (1 - exp {- n-ιTτ{Un)}) .

Letting T approach infinity one sees that

P^{ω\ω has a jump in each ί7έ for some t > 0} > 1.

If we now choose a countable sequence of finite classes of the type {[/«}
above, and let their sets become arbitrarily fine while their unions swell
out and eventually cover support (Qx),

P* {ω I ω has a jump in each Z7t of the fcth covering} = 1 .

Hence the inner measure of their intersection is one. Now the paths
in their intersection have jumps in the closure of each of the finer and
finer covering sets, and consequently for these paths Cl [F(ω)] D sup-
port (Qx). The existence of left hand limits for X(t, ω) implies x e [F(ω)].

4. Compound Poisson processes* The poisson process with rate
parameter r > 0 on the real line is a homogeneous process with transi-
tion probabilities δ°Tt(E) = exp {triδ1 - δ°)}(E). It can be generalized
to a compound Poisson process by replacing δ1 by any positive regular
Borel measure μ of norm one. Probabilistically one thinks of a compound
Poisson process in the following manner. A simple Poisson process is
run at a rate r, and when a jump occurs in this simple process, the
particle ruled by the compound Poisson process jumps from its position
x into the set E + x with probability μ(E).

Suppose we observe two Poisson processes, exp {tr^δ1 — δ0)} i = 1, 2,
running simultaneously. We can then define a new process as follows.
The state of our process will be described by a finite sequence of x^s



308 JOHN W. WOLL, Jr.

and x2's called a word, and we change states when a jump occurs in either
of our two simple Poisson processes. If a jump occurs in the ΐth process
we lengthen our state by placing the symbol xt to the right of the
current word. One can calculate that the probability of starting with
the empty state at time zero, and being at a fixed state with nxXi$
and n.zx2'$ at time T, is independent of their order, and given by
exp { - (n + r2)Γ}(r1T)wi(^22

7Γ2/(^i + njl. To give an alternative de-
scription of this process, let H be the free group generated by the symbols
{xl9 x2}. Topologize H with the discrete topology, and consider the
compound Poisson process on H given by

δeTt = exp {tin + r2)(pδxi + qδx2 - δe) ,

where p = rλ{rx + r^'1 and q = r%{rι + r2y\ An elementary expansion
shows this process is identical with the word generating process defined
above. It would seem natural to define the superposition of the two
Poisson processes exp {trt(δxi — δe)} to be the process δeTt. This symbol
generating process can also be interpreted by running a simple Poisson
process at the rate rλ + r2, and each time a jump occurs, multiplying
on the right by xι with probability p and by x.z with probability q.

The analogue of the compound Poisson processes for a homogeneous
space (X, G) is the class of processes of the form Tt = exp {tr(P — 1},
where P is a homogeneous transition probability of norm one. We shall,
accordingly, call these processes compound Poisson processes. An easy
computation shows that the infinitesimal generator of such a process is
A = r{P - 1) and D(A) = C(X). Thus the superposition of the two
processes in the preceeding paragraph corresponds to the addition of
their infinitesimal generators. We use this last remark to define the
superposition of an arbitrary homogeneous process and a compound
Poisson process.

DEFINITION 4.1. The sequence T^ of semi-groups on C(X) is said
to converge in the sense of Bernoulli {strongly} to the semi-group Tt if,
and only if, whenever / e C(X), (Tipf){x)-+{Ttf)(x) for each fixed x
and t as n -» oo {if, and only if, the following condition is satisfied.
For each δ > 0 and each / e D(A) where A is the infinitesimal generator
of Tt1 there exists an integer Nstf, such that n > Nstf implies
\\(T^f- Ttf\U < St for all ί > 0}.

It is an elementary consequence of this definition that T^ -> Tt

strongly implies T£° -> Tt in the sense of Bernoulli. We now recall a fact
from the theory of semi-groups which we need in the proof of the next
theorem. Put As - ε'\T9 - 1), then \\etA*f - TJW- -> 0 as ε -* 0 for
any f e C(X), and uniformly for t e (0, M), M < oo. More precisely,

(4.1) | |(e"β - Tt)f\U < ^ limsup||(A2 -
S > 0
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which for fe D(A) becomes \\(etA* - Tt)f\U < t\\(As - A)/|U.

THEOREM 4.1. Every homogeneous process is a strong limit of
a sequence of compound Poisson processes.

Proof. Let Tt be a homogeneous process, / e D(A), and A,Q be as
above. Then ||(exp {tAtQ\ - Γt)/IU < tδtQ, where StQ~>0 as ΐo-> 0.

We now study the concept of strong convergence in more detail
for compound Poisson processes. Our main results are stated in Theorems
4.2 — 4.5, but before proceeding to these theorems we establish the
following useful lemma.

LEMMA 4.1. Let πntt n = 1, 2, , oo be positive Borel measures on
(X, G) while t ranges over the compact separable set F. Suppose for
each f e C(X), πΛtt(f) is continuous in t> and πnti(f)-+ π*>tt(f) as n-+ oo
uniformly for t e F. Under these conditions

sup {\πnΛ(Laf) - π^t{LJ)\: a e G} -> 0

uniformly on F as n -> oo.

Proof. We show first that given ε > 0 there exists a compact set
B, for which πnίt(BG) < ε whatever n and t. Choose {ίj as a countable
dense set in F, and consider the union, E, of the supports of all πntH.
E is sigma-compact as the closure of a sigma-compact set in a uniformly
locally compact space, and includes the supports of all the measures
πn>t because by the continuity of πntt(f) if a point does not lie in Έ it
cannot lie in the support of any πn>t. Select a sequence of functions
Λ 6 C(X), such that fn I 0 on E, fn(0c

n) - 1, and fn(Vn) = 0, where Vn

is a compact set contained in the open set 0n c Vn+1. For fixed k the
sequence of continuous t -> πhft(fn) converges monotonically to zero on
the compact set F a s n -> CXD . This convergence is then uniform. Ac-
cordingly, we can find an Mk, such that n> Mk implies 0 < πktt(fn) < ε/2
all t 6 F. Using the hypotheses of the lemma, we can find a Kn, such
that k > Kn implies \π^t(fn) - π^t(fn)\ < ε/2 for all t. Put n' = Mco.
Then for any Knf < k < oo, and every ί e F ,

< π»tt(fnf) + \πktt(fn>) ~ π-Λfn,)\ < e .

Whereas for k < Knn and every t e F,

If we put Ws equal to the union of 0n, and \J^0M , Bs — Ws satisfies
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the desired condition.
Now put / = 1 and observe that from πΛtt(f) -> π^^f) uniformly

on Fj we can conclude there is an M, such that 0 < | |7r n > ί | |< M, and
II^Λ.ίll-^lk o.ίH uniformly on F. This shows we need only to prove the
lemma for / e CUX). Choose a δ > 0, an / e CΌo(X), and put Dδ =
{x: \f(x)\> δ}. D8 is compact. If H8 = {a e G:a[Dδ~\ Γi B, = φ}, H8 is
open, and a e H& implies.

\π%ti(La-J) - π-tALa-J)\ < 2 ε | | / | U + 2SM .

In this paragraph we show that

lim supwsup {\πntt(La-jf) - ^ ( L ^ / ) | : t e F, a e Hi} = 0 .

Regard a -> \πnΛ{La^f) — π^^L^jf)] = hatfi(t) as a map from the com-
pact set HI to the space of continuous real valued functions on F.
If b is sufficiently close to α, | | I# α -i/—Z/ 6 -i/IL < s', from which
l̂ α.w(̂ ) — Λ'&.nOOl ^ 2Mε', so that the maps ha,n( ) are equicontinuous in
α. Now lim^oo hatn(t) = 0 uniformly in ί by"hypotheses, so that we have
a sequence of equicontinuous functions, a —> ha<n( ), defined on a compact
set, Hξ, with values in a normed vector space and converging pointwise
to zero. As a trivial consequence, they converge uniformly to zero and

lim supw sup {ha>n(t): t e F, a e iίg} = 0 .

Collecting results we have shown

lim supw sup {ha,n(t): t e Fy a e G} < 2 ε | | / | U + 2δM .

Since ε and δ are arbitrary, this gives the conclusion of Lemma 4.1.

THEOREM 4.2. If rn->r and P ( w ) , P are homogeneous transition
probabilities, such that for each fe C(X), p(n>f-+Pf pointwise as n-> oo.
Then.

exp {trn(PW - 1)} -> exp {tr(P - 1)}

strongly as n -> oo .

Proo/. Given / 6 C(X) define W(n, t) by

ίlF(Λ, ί) = IKexp {trn(PW - l)} - exp {tr(P - l ) })/ |μ .

We must show that lim supw sup {W(n, t): t > 0} = 0 . An expansion gives

{\rne-tτnδ*P<v{LJ) - re~trδ*P(Laf)\:a e G}
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where Q%tt is a difference of two positive measures and satisfies:
HQS.ί II < 2; llί-'QS.t II -> 0 uniformly in n as t -> 0 t~ιQlt{g) -> 0 for each
g 6 C(X) as n -> oo uniformly in every compact t subinterval of (0, oo).
We handle these three terms separately. Clearly

lim supw sup {| t-\e'trn - e~tr) | : t > 0} = 0 .

Lemma 4.1 shows that the second term is also zero in the limit. For
the last terms we let t range over a bounded interval [t0, T] where
0 < ί0 and again use Lemma 4.1. If ί0 is small enough and T large
enough the extra pieces are arbitrarily small, so that for sufficiently
large n we can make this last term small too. This completes the proof
of Theorem 4.2.

For later use we weaken the hypothesis of Theorem 4.2 by gene-
ralizing the concept of a homogeneous process to allow an escape of
mass to infinity. Let X* = {X, x*} be the cannonical one point com-
pactification of X with x* denoting the point at infinity. Extend the
operations of G to X* as proper maps, so that G[x*] = se*. In order to
use our earlier notation we consider the spaces CJ.X), CC(X) as imbedded
in C(X*) = C(X). A homogeneous transition probability on (X*, G) is
a continuous endomorphism P : N(X*) -> N(X*) satisfying (i), (ii) and (iii)
of Definition 1.1. It follows as before that P satisfies equations (1.1),
(1.2), (1.3) and (1.4) of § 1 with / e C(X) and μ e N(X*). On the sub-
space N(X) of JV(-X"*), P can be expressed as

(4.1) P=P' + kS ,

where Pf is a homogeneous transition probability on (X, G) and μS =

A homogeneous process on (X*, G) is a weakly continuous one-
parameter semi-group of homogeneous transition probabilities of norm
one acting on C(X), or as adjoints on N(X*). If X is not compact it
is easy to show that whenever x Φ x* there is an r > 0, such that

(4.2) δ*Tt(E) = δ*Tt(X Π E) + {1 - e-rt}P*(E) ,

and

(4.3) δ**Tt(E) = δx*(E) .

THEOREM 4.3. Ifrn->r and P ( w ) , P are homogeneous transition
probabilities on (X*, G), such that for each fe C(X), P ( w )/-> P/ point-
wise as n —• oo. Then

exp {trn(P^ - 1)} -> exp {tr(P - 1)}

strongly as n -> oo.
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Proof. An expansion shows immediately that one only need con-
sider those / e CJJK) in the criterion for strong convergence. Since
for these /, Pf = P'f, the conclusion of Theorem 4.3 follows by the
methods used in the proof of Theorem 4.2.

THEOREM 4.4. Let exp{trn(P^n) — 1)} be a sequence of compound
Poisson processes on (X, G). Suppose rn<K< oo and exp{trn(Pw — 1)}
converges in the sense of Bernoulli to the homogeneous process Tt on
(X, G), where | ]Γ t | | = l . Then Tt = exp{ίr(P - 1)} is a compound
Poisson process on (X, G), and for some subsequence {wj of {n}, rn% -> r,
and P<V/ -> Pf pointwise whenever f e C(X)

Proof. Choose a subsequence {%J so that rn. approaches some r
and <$*P<V -> δxP' + kδx* in the weak topology generated by C(X). By
Theorem 4.2 it suffices to show k = 0. If & ̂  0 it follows from Theorem
4.3. that

Tt = exp { W ~ 1)} + (1 - e-*tr)δ* ,

violating the condition that \\Tt\\ = 1 on (X, G).
The following theorem is known for homogeneous processes on

a commutative group. A proof based on an analysis of characteristic
functions is given in Bochner [1, p. 76].

THEOREM 4.5. Let X be a discrete space so that every one point
subset of X is an open set, and let Tt be a homogeneous process on
(X, G). Then Tt is a compound Poisson process.

Proof. Select a sequence of compound Poisson processes

exp{ίrn(P<n> - 1)}

converging strongly to Tt and normalized by 3xP^({x}) — 0. Using the
discretness of X the characteristic function of the set X — {x0}, Ix-{Xo},
is in C(X). For any ε > 0 we can choose an f e D(A), such that
llίr-{»0} — / I U < e. By addition of the constant — f(x0) to / we obtain
an h—f — f(xQ) 6 D(A) which vanishes at x0 and is greater than 1 — 2ε
elsewhere. Using this h in the definition of strong convergence we find
that on the one hand

- 1)} - Γβ)(A)IL < δn -> 0

as n -> co, while on the other this first expression approaches

\\rn(P^ - l)(h) - Ah\U

&& t->0, From this it follows that
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(1 - 2ε)rn < rnδ*oPW(h) < δn + Ah(x0) ,

which implies

rn < {δn + Ah(xo)}(l - 2s)-1 < K < oo .

Then Tt is a compound Poisson process by Theorem 4.4.

5, Processes with continuous paths. We define in this section a
class of processes having continuous paths, and we give conditions
for a process to belong to this class.

DEFINITION 5.1. We say that a homogeneous process Tt on (X, G)
has the property Gw {GJ, or belongs to the class of processes designated
by the symbol Gw {Gs}, if, and only if, for any fixed x0 e X and any
neighborhood NXQ of xOf there is a sequence of compound Poisson proc-
esses exp{£rw(P(rι) — 1)} converging in the sense of Bernoulli {strongly}
to Γ£, with support (δaίx

oψ^) c a[NXύ] for all a e G

THEOREM 5.1. If TteGs and satisfies Property II of § 2, it follows
that δxTt(Nx) = o(t) as t -> 0 for every measurable neighborhood Nx of x.

Proof. Choose a compact neighborhood, Vx, of x contained in the
interior of NX9 and in accordance with Corollary 2 of Theorem 2.2 let
/ 6 D(A), 0 < / < 1, f(Vx) = 0, and f(N%) = 1. Now select a sequence
of compound Poisson processes exp{£rw(P ( w ) — 1)} converging strongly
to Tt and satisfying support (<TP(W)) c Vx. It suffices to show (Ttf)(x) =
o(ί) as ί-+0, or that for every ί Λ -^0, lim sup M C(2\/)(a0 = 0. It is
no restriction to assume tnrn and ίnrj are both less than n~\ The con-
dition of strong convergence applied to /, then shows that

lim suVntΰ\Ttnf)(x) = lim s u p ^ e x p {ίnrn(P<»> - l)}(/)](a?)

< lim supw t~1e~tnrn{etnrn — 1 — rntn)

< lim ^vφnt^e-tnrn{tnrnf

as we desired to prove.
In the proof of a partial converse to Theorem 5.1 we will need the

following lemma.

LEMMA 5.1. If t,ε,δ>0 and k > (te2 + l ^ " 1 + 1 - logδ, then

Σexp { - tε-^itε-γinl < εδ .
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Proof. Rather than prove this lemma in detail we will indicate
a method of proof. If the sum is overestimated by an integral and
the n\ in that integral is underestimated using (2π)1/2wn+(1/2)e~n < n\, one
obtains the statement that k > εΉe2 implies

Σ exp {- tε-^itε-^lnl < (2πk)-1'2 ex^ {- (k + te-1)} .

The desired conclusion follows easily from this estimate.
Lemma 5.1 gives more than we need to prove a weak converse to

Theorem 5.1, but not enough to prove a converse. The best we are
able to achieve in this direction using the above estimate is stated
below.

THEOREM 5.2. (i) / / SxTt(Nc

x) = o(t) as t -> 0 for every neighborhood
Nx of xe X, Tt e Gw.

(ii) / / SxTt(Nc

x) = o(t2) as t -> 0 fore very neighborhood
Nx of xe X, Tt e Gs.

Proof. These results are stated together because their proofs para-
llel one another. Let Tt be (at first) any homogeneous process, and
suppose NXQ is a compact neighborhood of xQ. Put WXQ = f\ae&x a[NXQ]
and Wy = b\Wa^ where b[x0] — y. This choice of WXQ insures that Wy

is well-defined, WaίXQl c a[Nx^\, and Wx is a compact neighborhood of x.
Now define a homogeneous transition probability, P ε , by SyTs(F) =
δ*Te(WyΓίF). Let s(e) = δ*Te{Wc

x), and q(e) = 1 - s(e) = δ*T9(WΛ).
We show that the compound Poisson processes exp {ίε"α([l — ̂ ( ε ) ] " ^ — 1)}
approximate Tt in the desired sense as ε -> 0. Since support
(3XPS) c Wx c a[NXQl whenever a[x0] = x, this will be sufficient to prove
Theorem 5.2. Since it is known that the processes exp {tε~\Tz — 1)}
approximate Tt in the strong sense, it suffices to show

U(t, ε) - |[ exp {tε-i[q(e)-ψζ - 1]} - exp {U~\TZ - 1)} | | -> 0

as ε->0 for fixed t in conclusion (i), and that t^Uit, ε) -• 0 uniformly
in t as ε —> 0 in conclusion (ii). Calculation shows

U(t, ε) < Σ e x p {- ί ε ^ K ί ε - 1 ) " ^ , e)lnl

where

Since δx(T? - P?) > 0, it follows that | | Γ? - P ? | | = 1 - g(e)n; so
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B{n, e) < 2g(6)-{l - ?(e)"} .

For large n there is a better bound because B(n, ε) < 2 in any case.
We will also use the fact that 1 > s > 0 implies log (1 — s) > — s(l — s)"1.

Proof of (i). Let s(ε) = /(ε)ε where /(ε) -> 0 as ε -+ 0, and suppose
t is fixed and ε small enough so that ε~~λK > (te2 + l)ε-1 + 1. Putting
δ = 1 in Lemma 5.1, and using the substitution

E(n, r) = exp {rε"1 log[l - εw/(ε)]} ,

we find

U(t9 e) < Σ {terms above} + Σ {terms above}

< £7(1, - £Γ){1 - £7(1, £Γ)} + 2ε ^ 0

as ε -> 0 .

Proof of (ii). For δ > 0. We will show lim supε_>0 sup^oί"1?/^, ε)<<5.

Since Z7(ί, ε) < 2, we only need to consider those t < 2δ~\ For these
t choose K > 0 and a range of ε's sufficiently close to zero, so that the
hypothesis of Lemma 5.1 is satisfied for all ε's and t's which come
under consideration. Let s(ε) = ε2/(ε) where f(e) -> 0 as ε -• 0. Com-
puting as before and noting that

• Σexp {- ίε^Kίε-^'VVw! < ε'1 ,

we find

f'E/ίί, ε) < ε-χ{l - £?(2, £Γ)}£7(2, - £Γ) + εZε"1 Σ {terms above}
n>iΓε~1-l

- Kf(ε)e[l - ε2/(ε)]-}£;(2, - K)

+ 2eδK-1 -• 0

as ε -> 0, which completes the proof of Theorem 5.2.
In Euclidean spaces it is easy to see that δ°Tt(NG

0) = o(t) implies
δ°Tt(NQ) = o(tm) for any m -> 0 as t -> 0. Accordingly, in these spaces
the o(£) condition and the Gs condition are equivalent. This may be
true in general but we will not explore the question further here.

6. The commutative case. This section contains an independent
proof of Property II that is more general than the proof in § 3 in that
X need not be separable, and more restrictive because G must be
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commutative. LetG = {x,y,z, •} be a commutative, Hausdorff, locally-
compact topological group, and let G = {a, b, c, } be its character
group. Denote the Fourier-Stieltjes transform of the measure μ e N(G)
by μ(χ) = I (χ9 a)μ(da), and write μn -4 μ if, and only if, for every
g e C(G), μn(g) -> μ{g). If fn, f are uniformly continuous bounded func-
tions on G, we write / w - ^ / as a substitute for the fact that fn-+f
pointwise and uniformly on compact sets. It is convenient to denote
the Haar measure of a Borel set E by \E\, and to let N+(G) be an ab-
breviation for the cone of positive measures in N(G). We need the
following results which we state without proof from harmonic analysis.

(a) If μn, μ e N+(ό), then μn -4 μ is equivalent with μn -4 μ.

(b) If μn e N+(G) and μn ->/ pointwise, / being continuous at e e G,
then / is continuous on G and there is a μ e N+(G), such that f = μ and

(c) If μw 6 N+(G), μn~> μ almost everywhere with respect to the
Harr measure on G, and μn(

e)-* Ke) 1 then μnAμ.

(d) If G is connected, μn e N+(G)t\\μn\\ < M< + oo, and μn->M
on a set, A, of positive Harr measure in G then/^ -4 M on G.

(e) If \\μn\\ < M < + oo, then μn~> μ if, and only if,

for every compact E c G.
Let P+(G) be the cone of regular not necessarily bounded Borel

measures, Q, on G-{e} for which the integral Q'{x) = I {1 — (x, a)}Q(da)
exists and is continuous on G. If U is a compact symmetric neigh-
borhood of e e G, we define the function h on G by

and observe that this h has the following properties:
(i) h is real valued and continuous;
(ii) 0 < h(a) < 2
(iii) it G is connected, h(a) = 0 implies a = β
(iv) ft(α) -> 1 as a -> infinity, so that h e C(G).

By choosing if necessary a new Haar measure we can assume \U\ = 1.
We do this in the proofs below, and in addition denote the measure

μ{F) = f h(a)Q(da) by hQ.

LEMMA 6.1. 7 / Q e P+(G), 0 < U(α)Q((ϊα) - < +
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Proof. [ Q'(x)\dx\ = f \dx\ (Λ Λ {1 - (x,a)}Q(da) =[h(a)Q(da).
JU }u jG-{e} J

The first term above is clearly bounded, so \\hQ\\ is finite.

Let {Qq, q e L} be a directed set with Qq e P+(G), and g a con-
tinuous complex valued function on G. We say Qq-> g boundedly on
every compact set if Qq-> g pointwise, and for every compact set D c G
there is a positive KD and an JV̂  6 L, such that q > ND and x e D imply
\Q'q(x) \<KD. We denote this by Qq^> g. The following theorem collects
the Fourier analysis we need for P+(G).

THEOREM 6.1. ForQeP+(G) define Q\x) = Ux, a)h(a)Q(da), and let

Qq be a directed sequence from P+{G). Then

(1) Q'q\Q>^ Q* -> Q* pointwise ^ > QJ Λ Q ^ O hQq 4 hQ

(2) Qq^> g continuous =φ QJ -> some continuous / φφ QJ Λ / <̂ iφ &Qq -4

some /ί e N+(G).

Proof. Only the first implications need proof in each case. Cal-
culation shows

Qh(x) = J (x, α)Λ(α)Q(dα) = ̂  | # | j Q(dα){(a?, α)[l - (y, a)]}

Q(da){[(x, a) - 1] + [1 - (yx, a)]}

= \ Q'(yχ)\dy\ - Q'(χ).

The implications follow after an application of the Lebesgue bounded
convergence criterion.

THEOREM 6.2. Let Tt be a homogeneous process on G. Put δeTt — wt.
Then wt(x) = etf^ where f is a uniquely determined continuous com-
plex function on G.

Proof. This is an immediate consequence of the semi-group prop-
erty wt(x)ws(x) = wt+s(x) and Property I, wt 4-1 as t -> 0. For small
enough values of t we can even define / directly at a particular x e G
by putting f(x) = t'1 log wt(x) and using the principal branch of the
logarithm.

We can now prove a slightly weaker statement than Property II
for commutative groups.
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THEOREM 6.3. If Tt is a homogeneous process on the locally compact

abelian group G, there is an me N+(G), such that t~ιhδeTt A- m as t —> 0.

Proof, [(x, a)δ°Tt(da) = e~tgCx> from Theorem 6.2. If we put Qt =

t-\l - exp {- tg(x)}) = Q[(x) Λ g(χ)

as t —> 0, and Theorem 6.1 shows hQt -> some m e N+(G).
In general it is not possible to choose a single h in the above manner

which vanishes just at e. For example, if G is the real line with the
discrete topology, denoted by Rd, then in order to satisfy the condition
I U\ < + oo, U must be a finite point set and generate a proper sub-
group K of Rd. In this case the associated h will surely vanish on
K* = RJK which is certainly not equal to {e}. By K* we mean, as
usual, the set of characters identically equal to one on K. By varying
U we can, however, prove Property II. In the following we denote by

J the class of h's defined by h(a) = | U\~λ \ {1 — (y, a)}\dy\ for some

compact symmetric neighborhood U of e.

LEMMA 6.2. IfheJ, then Hh = [a:h(a) = 0} is a compact subgroup
ofG.

Proof. Hh is closed and compact because h-+l as a -> infinity.

Since a e Hh is equivalent to (x, a) = 1 for all x e U, Hh is also a sub-

group of G

LEMMA 6.3. For each a e G — (e) there is an h e J with h(a) > 0.

Proof. Choose a y e G for which (y, a) Φ 1, and for any U satisfy-
ing the above conditions construct a new U' = yU U U U ZT̂ /-1. i7'
satisfies the required conditions and since (x, a) Φ 1 for every x e IP,
the /t corresponding to IP satisfies h(a) > 0.

With this preparation Property II is immediate.

THEOREM 6.4. Given any open neighborhood N% of e e G and any

homogeneous process Tt on G, t~ι3eTt -^ some μ € N+(NΛ) when restricted

to NZ.
e

Proof. Compactify G by adding a point at infinity. Then taking
complements in the compactified space {H°h Π Ni: h e J} forms an open
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covering of the compact Ni. Choose a finite subcovering {Hc

h. Π Nϊ, 1<

i < n}, then Σ ? - A > 0 on NZ. By Theorem 6.3 htt-ψTt Λ mΛ i on G

as £ -> 0 and, accordingly,

so that

on iV;

c.

7. Subordination of stochastic processes • In this section we give
a new definition of the concept of subordination introduced by Bochner
for homogeneous processes on Euclidean spaces. Using this definition
we are able to show that there are a great many processes which are
not subordinate to any but themselves. We introduce this topic by
discussing subordination from the characteristic function viewpoint.

Bochner calls a map v: (0, + oo) -> (0, + oo) a completely monotone
mapping if for every completely monotone function f:R+-*R, the func-
tion / v: R+ -> R is completely monotone. A mapping, v, is a complete-
ly monotone mapping if, and only if, dvjdx is a completely monotone
function, or equivalently e~tυ is a completely monotone function for
every ί > 0. If v is a completely monotone mapping, it can be extend-
ed to a map v: R + + %R —> R + + iR of the closed right half complex
plane into itself, which is analytic on the interior of its domain, and
is of the form v(z) = c0 + cz + Qυ(z) where c0, c > 0

(i) SRe{QB(s)} > 0 ;
(ii) SteJQΛs)} - 0, 9te(z) > 0 implies Qυ = 0;
(iii) 9te{Qβ(s)} = 0, 9ΐe{̂ } - 0 implies 9fm{Qβ(2)} = 0;
(iv) ϊRt{Qυ(z)} = o(\z\) as \z\ -> + oo with 3ΐe(z) > 0. If v is a com-

pletely monotone mapping ^(0 + ) exist, and we call v a subordinator

when vifl + ) = 0. v is a subordinator if, and only if, e~tυ(-x) — \ e~xsπt(ds)f

Jo

where πt > 0, 1)̂ 11 = 1, πQ({0}) = 1, τrt*^s = π8+t9 and s -> ί implies πs -> π t.

If v is a subordinator and e" ί f t ( x ) = i (x, a)3eTL(da) is the family or Pourier-

Stieltjes transforms of a homogeneous process on G, then exp {— tv[h(x)]}

is also the family of Fourier-Stieltjes transforms of a homogeneous

process on G.

DEFINITION 7.1. (Bochner) A process e'thW = \ (x,a)δ°Tt(da) is called

subordinate to a process e-"ίΛ(Λ) = 1 (a?, a)δeTt(da) if, and only if, one of
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the three following equivalent conditions is satisfied.

S CO

e~sxπt(ds,) such that
0

v{h(x)} = h(x).

(2) e'ihW

(3) VTt = \~δsT,πt(d8) .
Jo

If Tt is a homogeneous process with infinitesimal generator A and
A; = ε'^Ts — 1), then the equation exp {— tv{— As)} — \ exp {sAB}πt(ds)
shows that subordination leads from a process with infinitesimal gene-
rator A to a process with infinitesimal generator — v( — A) when suitable
interpreted. Bochner has proven that an infinitely decomposable process
with a Fourier-Stieltjes transform of the form exp {— t(bx2 + ib'x)} on
the real line is not subordinate to any processes but those with ch.f ,(Xt) =
exp {— tcφx2 + ib'x)} and c > 0. In this case subordination is simply
a linear change of time scale. In general we denote the relationship
T[ is subordinate to T[ by T[ < Tt. If processes differing only by
a linear change of time scale are identified, it is easy to show using
Bochner's result that the relation < is a proper partial ordering of
homogeneous processes.

An alternative definition of subordination rests on a probabilistic
choice of time scale. If X(t, ω) is a measurable stochastic process and
Y(t, ω) is a non negative stochastic process which is independent of
{X(s, ω)}9 and whose paths are almost surely non decreasing in R + , we
can form the composite process Z(t,ω) = X(Y(t,ω),ω). Under special
circumstances this composition corresponds to subordination of the
X(t, ω) process by the Y(t, ω) process. In general the transformation
X(t, ώ) -* Z(t, ω) will preserve any of those properties of the X(t, ώ)
process which depend only on the order relations of the time scale.
For example, if X(t, ώ) is Markov, a semi-martingale, a martingale, or
spatially homogeneous, so is Z(t, ώ). The stationarity of X(t, ω), a prop-
erty depending not only on the order of the time scale but on the
magnitude of certain time differences, will in general not be preserved
unless Y(t, ώ) is a homogeneous process (i.e. spatially homogeneous
and stationary). In this last case if Y(0, ω) — 0 with probability one,
we say Z(t, ω) is subordinate to X(t, ω) with subordinator Y(t, ω).

After making the observation that P{Y(t, ω) e E\ Γ(0, ώ) — 0} should
correspond to πt(E) in Bochner's definition, we can show the coincidence
of transition probabilities in the two concepts of subordination. If X(t, ώ)
is a homogeneous process on the commutative group G with X(t, ω) — e and
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P{X(t + S, ω) 6 E\X(8, ω)} = δz«"*>Tt(E) ,

then subordinating by F(ί, α>) according to Definition 7.1, we get δeT[(E) =

\ δeTs(E)πt(ds). If we subordinate the same process using the definition

in terms of paths, we find

- P{Z(t, ω) e E\Z(O, ω) = β}

= \P{X{U, ω) 6 J£|Y(ί, ω) = u}P{Y(t, ω) 6 du}

- \P{X(U, ω) 6 £7}τre(dtt) = [δeTu(E)πt(du) .

Consider a homogeneous process on a not necessarily commutative
locally compact topological group, G, described by the transition proba-
bilities δxTt. For such a process, define the set F(Tt) = Πί>o support
(δeTt). F(Tt) is a closed possibly empty semi-group of G.

THEOREM 7.1. Let T[ be a homogeneous process subordinate to Tt

on G, and supporse t~1δeT[-^ Qe on G — {e} in the sense of Theorem 3.4
as t -> 0. The either T[ = Tct for some c > 0, or support (Qe) z> F(Tt).

Proof. Since the paths of Y(t, ώ) are non decreasing and accord-
ingly, of finite length in any time interval,

(7.1) #{exp {iuY(t, ω}} = exp {t(icu + ί°° [eixu -
J

where e > 0 and \ xJ{dx) < + oo for any ε > 0. If J = 0, Γ(ί, ω) =
Jo

cί a.s. and T[ — Tct. If J Φ 0, the F(£, ω) process will have jumps
with probability one, and during any of these jumps there is a positive
probability that the Tt process will move from its position to a neigh-
borhood of any specific point in F(Tt). This means the subordinated
process may have jumps anywhere in F(Tt), then from Theorem 3.3
F(Tt)d support (Qβ).

That support (Qβ) φ F(T[) in general can be seen by subordinating
a Bernoulli process on the real line (see Bochner [1] for definitions).
It is easy to refine Theorem 7.1.

THEOREM 7.2. Let T[ be a homogeneous process subordinate to Tt on
G. Let t-^eT't->Qf

e and t'^eTt->Qe as t -> 0 in the sense of Theorem
3.4. Let Y(t, ω) be the subordinating process as in (7.1). Then if c < 0,

support (Q'e) = Cl [ U {support (δeTs): s e support (J)} U support (Qθ)] ,

and if c = 0 ,
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support (Qί) = Cl [ U {support (δeTs): s e support (/)}] .

In particular, support (Q') = φ if, and only if, J = 0 and either Qe or
c equals zero.

Proof. Let z e support (δeTs) and s € support (J). Then given any
neighborhood Uz of z there is a neighborhood Vs of s, such that t e Vs

implies beTt{Uz) > 2~1δeTs(Uz) > 0. We can show this by choosing a com-
pact set Da Uz and a function / e CC(G), such that f(D) = l,f(Uc

a) = 0
and 0 < / < 1. If D is chosen so that δeTs(f) is close to δeTs(Uz) the
assertion follows from the continuity of δβTt(f). There is a positive
probability that Y(t,ω) will have a jump while ί e F s and the T[ proc-
ess a corresponding jump in t/z. Thus z e support (Qe). If c > 0 it is
clear from the definition of subordination, and the fact that the paths
of a homogeneous process can be chosen to have limits from both the
left and the right at all time points, that support (Qe) c support (Q'e).
If, conversely, y e support (Q'e), the subordinated paths will have a jump
in every neighborhood of y and the only manner in which this can
happen is for y to lie in the right hand side of the above expressions.

COROLLARY 1. // F(Tt) = support (δeTs) for every s > 0, and J Φ 0,
then support (Q'e) = F(Tt). If J = 0 support (Q'e) = support (Qe).

COROLLARY 2. If all motion in the Tt process occurs by jumps, as
is the case if Tt is compound Poisson, and J Φ 0, then

support (Q[) - F(Tt) = Cl [ U Γ-i {support (Qeψ] .

Proof. In this case F(Tt) = support (δeTs) for every s > 0 and the
first corollary applies.

If G is commutative we can use a different method of description.

THEOREM 7.3. Let T[ be a homogeneous process subordinate to Tt on
the commutative group G. Let t^δ'Tl -> Q'e and t-ιδeTt-+ Qe as t -* 0.
Then

support (Q'e) Z) support (Q[) support (Qe) .

Proof. In this case it is clear that

support (δeTt) support (Qe) c support (δeT)

and the conclusion follows from Theorem 7.2.

Let us now restrict our attention to Euclidean w-space. In Rn we



HOMOGENEOUS STOCHASTIC PROCESSES 323

denote the inner product by ζx,yy and the norm by \x\. The charac-
teristic functions of a homogeneous process X(t, ω) have the form

(7.2) #[exp {i<z, X(t, ω)>}] = exp {tS(b, A, F, z)}:

where b e Rn, A is a positive semi-definite linear transformation of Rn, F
is a positive, bounded, regular Borel measure on Rn — {0},

(7.3) S(b, A, F, z) = i<b, z) - (Az, z) + Q(F, z) ,

and

(7.4) Q(F, z) = f Γexp [i<u, z>} - 1 - - ^ ' - > Γ 1 ~P^- F(du) .
J | w ι > o | _ 1 + \u\2 J \U\2

Corollary 1 shows that if X'{t, ω) is a process subordinate to X(t, ώ)
in a non trivial manner and

(7.5) #[exp {i<z, X'(t, ω)>}] = exp {tS(V, Af, Ff, z)} ,

then support (F) contains the subspace of Rn orthogonal to {x|^4x = 0}.
If, in particular, A is positive definite support (F') — Rn. Theorem 7.3
states

support (Ff) + support (F) c support (F') .

This shows if support (Fr) is compact that X(t, ω) is not subordinate to
any process but itself and possibly a Bernoulli process of the form
X(tt ω) = tb. In the latter case X'(t, ω) — Y(t, ω)b and all displacement
of the X'(t, ω) process takes place along the ray {sb:s>0} = R+b.
These observations are summarized below.

THEOREM 7.4. Let X'(t, ω) be a homogeneous process on Rn for which
support (Ff) is compact, then X'(t, ω) is not subordinate to any process
but itself unless support (Ff) c R+b, and A' = 0. In the latter case
Xf{t, ω) is subordinate to the Bernoulli process Z(t, ω) — tb.

Theorem 7.4 does not exhaust the results which can be obtained
by the above technique. In particular we will improve Theorem 7.4 for
the real line.

Let X'(t, ω) be a homogeneous process on the real line subordinate
to X(t, ω) as above. For convenience put

Hf) = ί [f(x)ΓF(dx) ,
Jxφo

and

B(s) = [b + L(x)]s + Cl [ U »+-°ΐ {support (F)}n]
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when L(\x\) < + oo. Then if δ°Ts denotes the transition probabilities
of X(t, ω), and X(t, ω) has no Gaussian component, it is clear that
support (δ°T8) = B(s) when L ( | x | ) < + oo, and support (δ°T8) = R other-
wise. Using Theorem 7.2 this leads to the following.

THEOREM 7.5. Let the homogeneous process X'(t, ω) on the real line
be subordinated by Y(t, ώ) to the process X(t, ω), where their Fourier-
Stieltjes transforms are given by (7.1) and (7.2).

(1) / / A Φ 0 or L(\x\) = + oo, support (Ff) = R.

(2) / / A = 0 and L(\x\) < + oo, then

support (Ff) = [ U {2?(s): s e support (J)}] lj support (J)

if c > 0, and

support (F') = U {.B(s): s e support (J)}

ifc = 0.
It should be noted that we are using the notation of a multiplicative

group, so that U +Γi {support (F)}n in B(s) refers to the additive semi-
group generated by support (F).

If we use the easily proved fact that a closed additive semi-group
of the real line which contains both a positive and a negative number
is necessarily a subgroup of R, the following corollary of Theorem 7.5
is immediate.

COROLLARY. // X'(t, ώ) is non trivially subordinate to a homogeneous
process, then support (Ff) has one of the forms (H + S) (J W or H + S,
where W is a closed set which generates the closed additive semi-group
S, and H is not empty and is contained in either [0, + oo) or (— oo, 0].
// S is not a closed subgroup of R it is contained in either [0, + oo)
or (— oo, 0].

This rules out, among others, sets like {...,— 2, — 1, 0} U (0, + oo)

as the support of the F of a non trivially subordinated process.
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