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ON THE STRUCTURE OF INFINITELY
DIVISIBLE DISTRIBUTIONS

J. R. BLumMm AND M. ROSENBLATT

1. Introduction and summary. Let F(z) be a distribution on the
real line. Then we may write

(L. F(x) = pFy(z) + (1 — p)Fy(«)

where F\(x) is a discrete distribution, Fy(x) is a continuous distribution
and 0 < p <1. We shall say that F(x) is discrete if p =1, F(x) is
continuous if p = 0 and F(x) is a mixture if 0 < p < 1.

oo

Let ¢(s) = ¢"*dF(x) be the characteristic function corresponding

to F(x). It would be useful to give a convenient ecriterion on ¢(s) to
determine when the corresponding distribution F(x) is discrete, continuous,
or a mixture. In §2 we give such a criterion for the class of infinitely
divisible (i.d.) distributions, utilizing the Khinchin representation of the
characteristic function of such a distribution. In §3 we apply the theorem
of §2 to characterize a certain class of stochastic processes.

2. The structure theorem. Let ¢(s) be the characteristic function
of an i.d. distribution. The Khinchin representation of such a charac-
teristic function takes the form

— . [ jws 1 tus |1 +w?
@21)  ¢(s) = exp {zrs + S_w[e 1 u] u2 dG(u)}
where 7 is a real number and G(u) is a real valued bounded nondecreasing
function. y and G(u) are uniquely determined by the conditions
G(— ) =0, G(u + 0) = G(v). We shall need the following two lemmas,
the first of which is well known.

LeMMA 1. Let X and Y be independent random variables. Then

(1) the distribution of X + Y is discrete iof and only if the distribu-
tion of each of the variables is discrete,

(ii) the distribution of X + Y is a mixture if and only if one of the
two distributions is a mixture and the other is either discrete or
a mixture.

Let F(zx) be a distribution. We shall define F®(z) as follows :
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2 J. R. BLUM AND M. ROSENBLATT

0 for x <0

, FO) = F(a) ,
1 foraso’ @ =F@)

FO(x) = {
and for &k > 2, F®(x) denotes the k-fold convolution of F(x) with itself.
LEMMA 2. Lot — o <a<b< o, and let F(») be a nondecreasing,

bounded function defined for o < x < b such that F(a) = 0, F(b) — Fla) =
¢>0. Then

(2.2) ¢(s) = exp {— ¢+ S fsmdF(x)}
8 o characteristic function corresponding to the i.d. distribution
F®
(2.3) H(u) = o 5, F P
k=0 !

If F(z) i3 a pure jump function then H(u) is discrete. If F(x) s
continuous, then H(u) is a mixture with a jump of magnitude ¢ ° at the
origin and continuous otherwise.

Proof. Tor every positive integer n let

mw =57 )(”)/ri

=0 =0 kg Y

and let

o =5 L[ emarw| B
=0 ! =0 ]{; 0
Then H,(u) is a distribution with characteristic function ¢,(s). Since
H,(u) converges to H(u) and ¢(s) converges to the continuous function
¢(s) it follows that H(u) is a distribution with characteristic function
¢(s). The fact that H(u) is i.d. is immediate from the form of ¢(s).
Now if F(z) is a pure jump function then (2.2) becomes

#6) = o 5[ S, |

where F(z) has its jumps at the points x; with magnitudes p;, and such
a characteristic function clearly corresponds to a discrete distribution.
Finally if F(z) is continuous we may write

_ epoq + L= ) $ FO@
A = P+ e B

and since the infinite series converges uniformly it follows that H(u) is
the mixture of a continuous distribution and the distribution with a
single jump at zero.

)



ON THE STRUCTURE OF INFINITELY DIVISIBLE DISTRIBUTIONS 3

THEOREM 1. Let ¢(s) be the characteristic function of an i.d. dis-

tribution F(x). Let G(u) be the function occurring in the representation
(2.1). Then

(i) F(x) is discrete if and only if r —Z];? dGu) < o and G(u) is
a pure jump function.
(i) F(x) is a mizture if and only if S —\1727 dG(u) < o and G(u) is
-
not a pure jump function
(iiiy F(x) is continuous if and only if S_ —;7 dG(u) = « .,

Progf. Suppose first that G(u) is a pure jump function with jumps
at the points u,;,j=1,2, --- and with corresponding magnitudes p; > 0,
such that 3,0, < . Then (2.1) (with 7 = 0) takes the form

— dsw, 1 — J“S;uf,i 1+ Zﬁ
(2.4) ¢(s) = exp Jl; [e i—1 1+ ] " pj} .

Now if >,p;/u} < o we may rewrite (2.4) in the form
#(9) = exp Jish — o + S‘” oM |

where

-3l = 1+uapj,
J ZL; J ’I/Lj

and where M(u) is a bounded, nondecreasing, pure jump function with
jumps at the points u, and corresponding magnitudes ((1 + u3)/u3)p;.
Consequently it follows from Lemmas 1 and 2 that F(z) is discrete.

Conversely we suppose that F(z) is a discrete distribution. We shall
show first that G(u) is a pure jump function. To do this write G(u) =
G(u) + Gu) where G,(u) is a pure jump function and G,(«) is continuous.
If G(u) is not a pure jump function there will exist a closed interval
[@, b] not containing zero such that Gua) < G«b). Then we may write
¢(s) in the form ¢(s) = M(s)N(s) where M(s) is a characteristic function
and

o = o[ 12, T )

= exp {— fisS: le AG,(w) — S }J’Ldaz(u) + S ““olH(u)}

where dH(u) = (1 + »’)[u?)dG(w). From Lemma 2 it follows that N(s) is
the characteristic function of a mixture and from Lemma 1 it then



4 J. R. BLUM AND M. ROSENBLATT
follows that F(x) is not discrete. Hence G(u) is a pure jump function,
and ¢(s) has the form (2.4).

We shall show that >},p,/u} < . Since 3);0; < o it is sufficient

to restrict attention to those u, for which |u,;] < 1. Since F(x) is dis-
crete it follows that ¢(s) is almost periodic and we have

(2.5) lim L S lo(s)|%ds > 0 .
Now

lp(a)]F = exp {5 [eosus — 11122 |
J

where

3y =201+ wle, .
Let

9(R) = b
YRETu st o

We have
(2.6) P <exp{ X [eosus — 1 7o)

l/RSlujl 1

SL > —R—Lexp {lecosus — 1]g(R)} .

g(R) 1R<Tu i<t u,§

The first of these inequalities is immediate and the second is an ap-
plication of Jensen’s inequality.
From (2.6) we obtain

@7 S:lsv(S)lzds

| =

1 L, 1 [
T e o g |, exp {feosuss — Lg(B)ds

Suppose R >1 and |u,| > 1/R. Then for every ¢ >0 there exists ¢
depending on ¢ only with 0 < 6 < 1 and with the following property:
If R/(¢) is the subset of [0, B] where cosu;s <1 — ¢ and R,c) is the
subset of [0, R] where cosu,s>1— 4, then the measure of R,(c) does not
exceed ¢R. Using this and (2.7) we find

(2.8) L 1eteypas <+ oo
R Je
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Now if 3},p,/u} = o, then clearly limg...g(R) = . This together
with (2.8) contradicts (2.5), thus proving (i).

Now suppose N 1/u*dG(u) < o and G(u) is not a pure jump func-
tion. Then we may write G(u) = G(u) + G, (u) where G,(») is a pure

jump function and G,(u) is continuous. Of course we have

r -;Tth(u)<oo, i=1,2.

Then from (i)

oo y 2
exp (" [om -1 e P2 a6}

is the characteristic function of a discrete distribution. Similarly from
Lemma 2 it follows that

exp { Sl I:e““ —1- I j_suuz } 1 —{u;uz dGz(u)}

is the characteristic function of a mixture. Thus F(zx) is the convolu-
tion of a discrete distribution and a mixture and from Lemma 1 it fol-
lows that F(x) is a mixture.

Conversely suppose F(x) is a mixture. Then

(2.9) #(s) = ppi(s) + (1 — p)p«(s)

where 0 < p < 1, ¢(s) is the characteristic function of a discrete distri-
bution and ¢,(s) is the characteristic function of a continuous distribution.
If we write ¢(s) = ¢?® then e¢*®/" is a characteristic function for every
positive integer n because Fl(x) is infinitely divisible. Clearly ¢#®/* must
be the characteristic function of a mixture, i.e.

(2.10) 'O = P01 1(8) + (1 — Du)@a,n(r)

where 0 < p, < 1, and ¢, ,(s) and ¢,,(s) are of the same type as ¢,(s)
and ¢ s) respectively. From (2.9) and (2.10) we obtain

¢(s)

2.11) o) = [ = pieta(o)

+ 3 OP L — B PEHES)

Now ¢7,(s) is the characteristic function of a discrete distribution
and the sum occurring in (2.11) is the product of (1 — »?) and a charac-
teristic function of a continuous distribution. Thus
p, = P" and [, (8)]" = ¢i(s) and we see that ¢(s) is the characteristic
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function of an i.d. distribution. Writing ¢(s) = ¢"1®, p =e° with
0 <¢< o we have

$(s) Rl

(2.12) enr = 3—%6 » 4+ (1 —e :‘T)gpzn(s) .

If we expand the exponentials in (2.12) we obtain
(2.13) im ¢,,,(5) = guufs) = 1 + L& = $:(8)
- ¢

Since ¢(s) and ¢,(s) are continuous it follows that ¢, (s) is a charac-
teristic function, say ¢,(s) = ¢"*"dH(z), where H(x) is a distribution.
Hence

(2.14) @(s) = e¥® = gh®+¢E -4,

— gt () +oley g (D-11 — e¢1<s>+S:[eisu“‘]“f"”)'
Now ¢%1® is the characteristic function of a discrete distribution. If we
equate formula (2.14) for ¢(s) with formula (2.1) for ¢(s) it follows
from the first part of the theorem and the uniqueness of G(u) that

N 1/uw*dG(u) < . It is also a congsequence of the first part of the
theorem that G(«) is not a pure jump function. Thus (ii) is proved and
(iii) follows from (i) and (ii), proving the theorem.

From (2.14) we are able to deduce additional information in the
mixed case.

COROLLARY. Let ¢(s) be a characteristic function corresponding the
i.d. distribution F(x). If F(x) is & mixture then F(x) is the convolution
of a discrete i.d. distribution and a i.d. distribution which has a jump
at zero of magnitude less than one and is continuous otherwise.

3. A class of discrete processes. Let X,(¢),t>0,7=1,2.--bhe
a sequence of independent stochastic processes such that for each 7, X,(¢)
is a process with independent increments and such that for 0 < ¢, < ¢,
the random variable X,(¢,) — X,(f,) has characteristic function

o } 1+ 4
(s, t) = exp {| ey — 1 T%Tj] ‘;“ [ot) — 81}
where u, is a real number and p,(t) is a nondecreasing function defined
for t > 0 with p;(0) = 0. Then each X,(f) is a generalized Poisson pro-
cess, i.e. X,(t) assumes values of the form y, = ku, — (p,(t))/u, with
probability

e NN

PIX,(t) =} = =,

’
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where 1,(¢) = (1 + w3)[ud)p,(t). Now if >, p,t) < o for every ¢ >0,
then we can define a process X(t) as the sum of the processes X,(t),
and the characteristic function of the process X(f) will have the form

_ s, 7 Suy 14 u) _
(3.1) (s, t)_exp{;[e s—1 1+u§:| = p](t)}.

It is an immediate consequence of Theorem 1 that for any ¢ > 0, X(¢)
will be a discrete random variable if and only if >}, (p;(£))/u} < o .

‘Conversely suppose for ¢ > 0, X(t) is a stochastic process such that
X(0) =0, X(¢) is a discrete random variable for every ¢ >0, and the
process has independent infinitely divisible increments. This will be true,
e.g. if X(¢) is a discrete process with independent increments and such
that X(¢) is continuous in probability. Then from Theorem 1 it follows
that the characteristic function of the random variable X(¢) is essentially
of the form (3.1) with p,(t) nondecreasing and 3;(p,(£))/u; < o for all ¢.
Consequently X(f) has the stochastic structure of a sum of independent
generalized Poisson processes. We have

THEOREM 2. Let X(t) be a discrete stochastic process for t > 0, with
X(0) = 0 and such that X(t) has independent infinitely divisible increments.
Then there exists a sequence of independent generalized Poisson processes
Xi(t),j=1,2 .- such that X(t) has the same stochastic structure as
205 X(#).

In the case when X(¢) assumes only integer values Theorem 2 wasg
already proved by Khinchin [1].

REFERENCE

1. A Khinchin, Nachwirkungsfreie Folgen von zufilligen Ereignissen, Teor. Veroyatnost. i
1, (1956).

INDIANA UNIVERSITY






ASYMPTOTIC EXPRESSIONS FOR 2 n%f(n)log™n

R. G. BUSCHMAN

In this paper some asymptotic expressions for sums of the type

2n®f(n)log ™ ,

where f(n) is a number theoretic function, are presented. (The sum-
mations extend over 1 < n < x unless otherwise noted.) The method
applied is to obtain the Laplace transformation,

P{F)) = S“ e F(t)dt = f(s)

of the sum and then use a Tauberian theorem either from Doetsch [2]
or its modification for a pole at points other than the origin, or from
Delange [1] to obtain the asymptotic relation. If f(n) is non-negative,
then F'(t) is a non-negative, non-decreasing function and hence satisfies
the conditions for the Tauberian theorems. In many cases the closed
form of a Dirichlet series involving the functions are known, and in
this case the relation

| S npm)lognl = (~1ys(djdsy Sne f(m)

1=n=e

can be used. The functions chosen for discussion and the Dirichlet
series involving them ecan be found in Hardy and Wright [3], Landau
[4], [5], or Titchmarsh [7]. We present first a few illustrations of the
method and then a more extensive collection of results is presented at
the end in a table.

First we choose o,(n) as an example of a simpler type. Since

Sn~oun) = ((6)(s — k),
we have

Ef{ > %”"‘kok(%)log%} =f(s)=(—1)ys7(d[ds) {{(s+1—b)(s+1—b+Fk)}.

1sn<el

For k > 0 the pole where Ns is greatest is at s =150 if b>0. At that
pole, since

(s +1—=b)~(=1)"m!i(s—b™",
the Laplace transformation of the sum has the form

Received October 10, 1958.



10 R. G. BUSCHMAN

F(8) ~ b7 (L + Eyr L (s — D)=

Now if b > 0, then by modifying Doetsch [2, p. 517] for poles not at
the origin or from Delange [1, p. 235] we obtain

S nttgy(n) log” mo~ bE(L + K)ett

1=n=et
or, if x = ¢’
St e (n) log™ n ~ b¢(1 + k)a® log™ x .
If b =0, then
f)~c(d +Fyrtsr?,
so that form Doetsch [2, p. 517] after substituting z = ¢’ we obtain
S Er(n) logm ~ (r + 1)"%¢ (1 + k) log™+'x .

The expressions for «(n) can be obtained by setting &k = 1.
For k = ¢, o,(n) becomes d(n) which will be covered as a special
case of d,(n).

For k< 0 the pole where Ns is greatest is at s=b — k so that
for b > k

FE) ~ 0= k)71 —Trl(s —b+ k).
Hence

Sk (n) log™n ~ (b — k)¢ — k)x*~*logx , for b >k ;
S nlo(n) log™m ~ (v 4+ 1)7¢(1 — k) log™ %, for b=~F%.

By analogy, since

S nmg(n) = s — DIL(s)
then

S nP=2p(n) log™n ~ {bZ(2)} "« logmx for b >0
St np(n) log™m ~ {(r 4+ 1)(2)} *log™ 'z , for b=0.

If y.(n) represents a character, mod &k, then the Dirichlet series can
be represented by

; Ny (n) = Ly(s)
so that if y, is a principal character then L,(s) has a pole at s=1and

Sttty (n) log™ ~ (k) (kb) ' log™x for 5> 0;
Sty () log™n ~ (k) {(r + 1)b}~*log™'x , for b=0.
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The Dirichlet series involving d,(n) vields a power of the ¢-function,
i.e.

S ndy(n) = C4(s)
1
so that for £k >0

(/{ S wi-idy(n) log"n} = (—1ys-(d/dsyci(s + 1 — b) .

1=n<e”

Now the Laplace transform can be written to show the behavior at
the pole at s = b,

F(s)~ @+ k— 1) bk — 1) 1}-Y(s — b)"" .
Thus

Sntdy(n) log™n ~ {b(k — 1) 1} 2 log™+* ¢ for b > 0;
Sintdy(n) log'n ~ {(r + k) — 1)1} tlog™**x, for b=0.

Special cases can be obtained for k£ =1,2, since d(n)=1 and
dy(n) = o(n) = d(n).
In an analogous manner we can obtain from

St nd(w) = £(s)/c(25)

the expressions

Sy nd(n?) log™m ~ {2b2(2)} ' log™ for b > 0;
Son7d(m?) logm ~ {2(r + 1)2(2)} * log" ¥z, for b=20.

Certain of the common number-theoretic functions have not been
considered and do not appear in the table (in particular p(n), A(n), and
¥:(n) for non-principal characters) because the sum F'(f) fails to satisfy
the non-decreasing hypothesis for the Tauberian theorems. 2(n) has the
additional bad characteristic as shown by the poles of the closed from
of the Dirichlet series

S0 (n) = £(29)/¢(9)

in that the pole of the numerator is on the line Ns = 1/2 which is
critical for the determinator, and thus this is not the pole where 9is
is greatest as required by the theorem from Delange.

Results which he has obtained for the case r = 0 and the functions
a(n), ox(n), d(n), and ¢(n), treated by a different method, have been
communicated to me in advance of their publication by Mr. Swetharanyam

[6].
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Table
Asymptotic expressions for Y, »n®f(n)log™n
General term of

the sum Asymptotic Expressions
b5>0 5=0

np 1~k (n) logrn b-1¢(1 + kb logre (r + D11 + k) logr+la

k>0
n® ~loy(n) logn (b — k)-%(1 — k)xb-*logre (r + D=1 — k) logr+x

(< 0) >k b=k
n®—2¢(n)logrn b-1((2)z? logrx (r + 1)~1{(2) logr+ix
7" ~1d(n) logrn {b(k — 1)! }=1gd logr+s-1g {(r +k ) — 1)!} -1 logr+ka
n®~1d(n) logrn b-1g? logr +1z (r + 2)-1logr+2x
n’~1log™n b-12? logrz (r + 1)-1logr+ix
n’~IA(%) logrn b-1a? logrm (r + 1)~-1logr+iz
n’~2¢(n) logrn {B¢(2)} b logra {(r + 1)¢(@)}-1logr+iy
7 ~1qi(n) logrn {b¢(T)} - 1a? logra {(r + 1))}~ logr+ix
71| p(n) | logrn {b¢(2)} ~1a? logre {(r + 1))} logr+1x
n? =120 logrn {6(2)} 2 logr+1z {(r + 2)((2)} 1 logr+w
n’~1d(n?) logrn {2b¢(2)}-1a? logr +2p {2(r + 3)¢(2)}~1logr+3
%’ ~1d%(n) logrn {6b¢(2)}-1a? logr+3x {6(r 4 4)¢(2)} 1 logr+ée
aa(n)oa(n) logn (A +a+d)A +a)f(1-+d) . (QFat+d){1+a)Q+d)

plrard—b bC2+atd) gy S @ ratrd) 08
(@a>0) (d>0)
sa(n)d(n) log™n ¢ +a . (1 +a
T plra-o mxb logm+ix (7%—)«_24%71_) logr+2x
(@>0)
n°—2a(n) log™n 2(3b) b logrx 2{3(r + 1)}-1logr+1x
n? -1y, (n) log™n ¢ (F) (kD) ~1ab logre S k(r + 1)} logr+iz
n?~1r(n) log'n 4b-1L4(1)a? logre A(r 4 1)=1L4(1) logr+1x
nb—-l/\(n>xk(n) ]Ogrn b—lxb logrw (7- + 1)—1 logr-ﬂx
7" ~2p(n)x(n) logrn d(){kbLy(2)} ~® logr $UM (r + DkLy(2)} -1 logr+lz
nb=120(0)y (n) log’n 4 () {3kcb((2)} ~1ab logr+1w 4 () 3k(r + 2)((2)} 1 logr+2w
1= n(n)~n(n—-1)} log'n p~1xb logr—lx r-1llogrx
(r>0)
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A CLASS OF RESIDUE SYSTEMS (mod 7) AND
RELATED ARITHMETICAL FUNCTIONS, L

A GENERALIZATION OF MOBIUS
INVERSION

EckrorD COHEN

1. Introduction. Let Z denote the set of positive integers and
let P and @ be nonvacuous subsets of Z such that if n, e Z,n,¢€ Z,
(1, m,) = 1, then

1.1) n=mnm,eP2n e P, n,eP;

suppose also that the elements n in @ satisfy the condition (1.1) with

P replaced by Q. If, in addition, every integer n € Z possesses a unique
factorization of the form

1.2) n=ab, aecP,be@,

then each of the sets P and @ will be called a direct factor set of Z,
while P and @ together will be said to form a conjugate pair. In the
rest of this paper P will denote such a direct factor set with conjugate
set . It is clear that 1 is the only integer common to both P and Q.
A simple example of a conjugate pair P, @ is the set P consisting of
1 alone and the get Q@ = Z.

Let 7 be a positive integer. In this paper we shall generalize the
notion of a reduced residue system (mod 7). If P is a given direct
factor set, then the elements a of a complete residue system (mod )
such that (a,r) € P will be called a P-reduced residue system (mod )
or simply a P-system (mod 7). Any two P-system (mod r) are equivalent
in the sense that they are determined by the residue classes of the in-
tegers (mod 7). A P-system chosen from the numbers 1 <a <r will
be called a minimal P-system (mod 7). The number of elements in
a P-system (mod ) will be denoted by ¢,(r) and called the P-totient of
r. Clearly, if P =1, ¢,(r) reduces to the ordinary Kulerian totient
$.(r) = $(r), while () = 7.

We summarize here the central points of the paper. Analogous to
the generalization ¢,(r) of ¢(r), we define in §2 a function p,(r) ex-
tending the Mobius function u(r) to arbitrary direct factor sets P. On
the basis of this definition we prove in Theorem 3 an analogue of the
Mobius inversion formula. This result is then applied in §3 to yield
an evaluation of ¢r(r). In §4 a generalization cp(n, ) of Ramanujan’s
trigonometric sum c¢(n, r) is defined and evaluated for arbitrary direct
factor sets.

Received August 26, 1958.
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14 E. COHEN

In §5 applications to two relative partition problems (mod 7») are
considered. In particular, in Theorem 12 we obtain a formula for the
number of solutions (mod #) of the congruence

1.3) n=,+ -+ 2 (mod r),

such that (x,,7)e P,(i =1, .-, s). In Theorem 13 a formula is deduced
for the number 0.(n, ) of integers a (mod 7) such that (a,r)=1 and
(n — a,r)e P. These two theorems are wide generalizations of results
proved by the author in [1], [2], and [3]. We remark that the method
in §5 and the latter part of §4 is based on the theory of even funec-
tions (mod 7) developed in the three papers cited above.

In §6 the results of the preceding sections are specialized to the
conjugate pair P, @, where P consists of the k-free integers and Q is
the set of kth powers. Precise criteria for the vanishing of 0:(n, r)
and #,(n,r) in these cases will be found in Theorem 14.

Regarding the theoretical foundations of arithmetical inversion, we
mention an investigation of Holder [6]. Additional references to the
literature appear in Holder’s paper.

REMARK. It is noted that several of the results proved in this paper
are valid for arbitrary sets P, as distinguished from direct factor sets
(for example, Theorems 6, 8, 9, and 13). In the general case, however,
the unifying method of arithmetical inversion is no longer applicable.
The broader topic of arthmetical functions in relation to arbitrary sets
P will be treated in ancther paper.

2. The inversion function z.(r). We recall the following funda-
mental property of u(r).

) — () — (1 (r=1)
2.1) %;(@—W%{O (r>1).

The p-function may be generalized to arbitrary direct factor sets by
writing

— ("
(2.2) ZOEDTIESP
aepP
where the summation is over the divisors d or » contained in P. It will
be observed that p(r) = p(r) and p,(r) = p(r).

By (2.2), (1.1), and the factorability of p(r), it follows that p.(r)is
a factorable function of 7:

THREOREM 1. If rie J,r.e J,(r, r,) =1, then
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(23) /IP(T) = /IP(7'1)/1P(7'2) ' (7‘ = 7"17'2) .

We next prove that the property (2.1) of x(r) can be extended to
the function pp(r).

THEOREM 2.

(2.4) ﬁ’@) = p(r) .

Proof. On the basis of (2.1), (2.2) and the uniqueness of the factori-
zation (1.2) one obtains

S D)= 5 5 M)

d!? ac=r e=8D

aeQ ser
=>pD) > 1=3 pD)=np(r).
D|r 8ad=7r/D Dlr
SEP,AEQ

This completes the proof.

By means of Theorem 2 we generalize the Mébius inversion formula
to arbitrary direct factor sets.

THEOREM 3. If f(r) and g(r) are arithmetical functions, then

(2.5) 1) = % ( D)2 o) = S r@ (%) -

Proof. Let f(r) be defined as on the left of (2.5). By (2.4) one
obtaing

d);gf(d)/lz{ 2 > = %;‘ <ge§= g(e))p <d>
= 2000 2 ) = R0, Z @)
= S o@n(L) = otr).

Conversely, let g(r) be defined as on the right of (2.5). Then again
by (2.4)

J0) 2% pp(0") = 2170 ) 24  1e()

= §r dae=r S
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—_— 7. —_—
= S f0p(L) = £

The proof is complete.
It is evident that if P =1, Q = Z, Theorem 3 becomes the inversion
formula of elementary number theory.

3. The totient function ¢,(r). The following principle is basic in
considering P-totients.

THEOREM 4. Let d range over the divisiors of r contained in @,
and for each such d let X range over the elements of a P-system (mod
rid). Then the set d X forms a complete residue system (mod r).

Proof. In the proof we suppose n to range over the positive in-
tegers < r. For a fixed divisor d of r,d € @, let C, represent the set
of those n for which (n, r) is of the form (n,r) =de,e e P. By the
uniqueness of the factorization (1.2), a given » lies in exactly one class
C,.; hence the set of elements in the classes C, consists precisely of the
integers 1, ---, r. Moreover, for a fixed divisor d of » such that d € Q,
the elements n = dx comprise C, if and only if (x,r/d) e P,1 <z < r/d,
that is, if and only if the elements x form a minimal P-system (mod
r/d). Replacing the particular P-system z (mod »/d), by an arbitrary
P-system X (mod r/d) the theorem results.

Theorem 4 leads immediately to

THEOREM 5.

(3.1) Y %({l) =r.

alr
aeQ

The evaluation of ¢.(r) follows from (3.1) on applying the inversion
formula of Theorem 3:

THEOREM 6.
. r
(3.2) be(r) = S 7).

In case P =1, Theorem 6 becomes the well-known evaluation formula
for ¢(r).

Since p,(r) is factorable (Theorem 1) the same is true of ¢ (r), by
(3.2):

THEOREM 7. If (ry, 7)) =1, then
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(33) ¢P(’r) = ¢P(’r1)¢P(T2) ’ (')” = 7'17'2) .

Next we show how ¢,(r) may be expressed in terms of the ordinary
¢-function.

THEOREM 8.

(3.4) pair) = S 9 (7).

Proof. By (2.2) and (8.2) it follews that

wir) = 2o 2 () = 22T

§7 dms' \ d 0
derP
and (3.4) results by (3.2) with P = 1.

4. The exponential sum c,(n, r). We define

(41) GP(’)’L, 7‘) = Z‘ e(mn, 7') , e(a’ /}") — 6‘21:1,@[1*’
P

(z,7)€

where the summation is over a P-system (mod #). In case P =1, ¢p(n, r)
reduces to the Ramanujan sum, ¢(n ). The next theorem generalizes
the familiar evaluation of ¢(n, 7).

THEOREM 9.

- r
4.2) cp(n, r) = dl%ﬂd/@( d> .

Proof. Placing 7(n, r) = c,(n,r), we have

_ _ [r (rin)
(4.3) 7, 7) —z(r% r)e(xn’ = {O (r +mn).
Furthermore, by Theorem 4,
r
(4.4) pnr) =3 3 edon, )= Seon, 7).

alr (z,r/A)EP
aeQ aeqQ

Therefore, by the inversion theorem (§ 2),

eotn, 1) = Sy, el 1)

and the theorem follows on the basis of (4.3).
The function c,(n, r) is a generalization of both ¢.(r) and pp(r):
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COROLLARY 9.1. If m =0 (mod 7), then
(4.5) cp(n, 1) = ¢p(T) .
COROLLARY 9.2 If (n,r) =1, then
(4.6) cp(n, 1) = pp(r) .
By (4.2) and (2.3) we have, in addition,
THEOREM 10. The function cp(n, r) is a factorable function of r;
that s, if (v, 1) = 1, then
(4.7) cp(n, 1) = cp(n, 1i)ep(n, 15) ' (r=mrmr).

In the proof of the next theorem we assume the results on even
functions (mod 7) proved in [1]. We first state a lemma which results
on applying the Mobius-inversion formula to (2.2).

LEMMA 1.
- _ _ {1 (repP)
(4.8) Seld) = 0 = {5 (16 B).

It is noted that p(r) = p(r) .
THEOREM 11.

(4.9) csln, 1) = 3, pP<-£ )c(n, =S¢ <n g) .

alr
aepP
Proof. By (4.2), cy(n, r) = cpx((n, r), r), so that cy(n, r) is an even
function of n(mod 7). Hence by Theorem 9 and [1, Theorem 4], ¢(n, 7)
has a Fourier expansion,

cp(n, r) = Zl a(d, re(n, d) ,
where
ad, 7) = 3, 1ale)

and the theorem follows by (4.8).
We note that (4.9) reduces to (3.4) in case n = 0, thereby providing
a new proof of Theorem 8, while in case n = 1, (4.9) becomes (2.2).

5. Relative partitions (mod 7). In this section we assume the results
of [2] and [3]. Let A{(n, r) denote the number of solutions (mod 7) of
(1.8), such that for each z,, (1 < 1 < s), («;, ) is contained in a P-system
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(mod 7). We deduce the following expansion for A(n, r).

THEOREM 12. For arbitrary positive integral s,

(5.1) A9, r) = L s, <c£, (; fr>>sc(n, d) .

Y a

Proof. We prove (5.1) inductively on s. Obviously AP(n, r) =
ps((n, r)). Hence applying [2, Theorem 3] to (4.9), one obtains

(5.2) A®(n, ) = % Se, (2 , 7~> e(n, d) .

ajr

This proves the theorem in case s =1. We assume the theorem for
s =1t >1. Then by [3, Theorem 1]

A¢ 0 (n, r) = > AP (a, r)AS(Db, )

n=q+b (nod 7)

=1 by (c,, (7’ , 7'>>ch(n, d).

r ar d

This completes the induction.

Next we derive an arithmetical formula for the function 60,(n, r)
defined in the Introduction. Equivalently 6,(n, r) may be defined as the
number of solutions, x,y (mod r) of

(5.3) n=x-+y (mod r), (@, V=1, (y,r)eP.

The proof will depend on the following lemma.

LEMMA 2. Let e be a positive integer. Then

Sl

(5.4) Se (5, e>,u(d) _ {/{%)?" i rle,

" 0 otherwise.

Proof. By the evaluation formula for ¢(n, 7),

Se(foe)ud) = Sm@) | 5 De()

arr Dpl(ria,e) D

- D](Ze‘,r)/l<_eD>D d%;D'U(d) ’

and (5.4) follows on applying (2.1) to the inner sum of the last expres-
sion.
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THEOREM 13.

N /"P(d)
(5.5) 0p(n, r) = P(r )(5:1 o)

where the summation is over the divisors of r prime to n.

Proof. Using (5.2) we apply [2 Theorem 6] to @0,(n, r) with
S, r) = A (n, r), obtaining on the basis of Theorem 11 and Lemma 2,

. 1 o« d o,
) = % o (3, o0 )
. 1 d o ’
71" Z (d) eez:; (882 0(5 6)#(5))
1
= > E
<>T #(d) :@i 1= (d% : ¢(d> P

and the theorem follows by definition (7).

6. Special cases. For a fixed non-negative integer k, let P be the
set of all k-free numbers and let @ be the set of all kth powers. Clearly
Pand @ form a conjugate pair of direct factor sets. We introduce the
following notation for the functions corresponding to these sets:

(1) = bp(7), (1) = (1), Gu(n, 7) = cp(n, 1), and Fy(r) = do(7), (1) =
2o(7), by, ) = ¢co(n, v). If (a,d), is defined to be the greatest kth
power divisor of a and b, then @,(r) denotes the number of integers a
(mod 7) such that (a,r), =1, while Z,(r) denotes the number of a
(mod 7) such that (a, 7) is a kth power, that is, (@, 7), = (a, 7).

It is observed that, in case k =1, @,(7), #(7), and g,(n, r) reduce
to ¢(r), p(r), and c(n, r), respectively. We also note that 2,(r) = A(r),
where A(r) represents the Liouville function. The conjugate totient
functions @,(r), and ¥ (r) were introduced by Rogel [9]. Regarding the
special case &k =2 of these two functions, @,(r) was evaluated by
Haviland [5] using a definition equivalent to that given here, while Z,(r)
was evaluated by the author in [2, Corollary 4.2]. For a further discus-
sion of the function @,(r) we refer to McCarthy [7].

The following evaluation arise as corollaries of the results proved
in §§3 and 4.

(6.2) Tr) = 5 dx,( &) 5 qs(a;) :

dlr
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(6.4) hy(n, ) = d[%)dzk(fg,) =5 c<n, »2 k) .

By (2.2) the functions g,(7) and 1.(r) may be written

(6.5) pn = = W 2) = e %),

7) =1 zl"[)

In view of the factorability of g#(r) and A(r) it is sufficient to evaluate
these functions for prime-power values of », » = p™ (p prime, m > 0).
In particular, it is easily deduced from (6.5) that

(6.6) ORI Wi 0

while for k& > 2,

1 (m =0 (mod k))
(6.7) 2(p™) = {— 1 (m=1(mod k))
0 (otherwise) .

The functions g#(n) and 2,(n) were introduced by Gegenbauer [4];
for a further discussion we mention Holder [6, §§6-7]. Note that
(1) = pr) = p(r), 2(r) = p(r).

The corresponding inversion formulas are contained in the following
relations (Theorem 3):

(6.8) 5 = 3 o) 2 o) = sl )
(6.9) =5 o(7)2om = r@u(7).

The case k =1 in (6.8) is the ordinary inversion theorem, while the case
k=2 in (6.9) yields the formula,

(6.92) fr) = 3 g(fi) 29 =%7 (dM( 2) ’

d
(1(@)70)

the summation on the left ranging over the primitive (square-free)
divisors of 7.

We now specialize the additive results of §5 to the particular
sets P, @ of this section. Placing R, (n, r) = AD(n, ), S; (%, 1) =
AP(n, r), we observe that R, (n, r) represents the number of solutions
of (1.3) such that (z,, ), = 1, while S, (n, r) represents the number of
solutions of (1.3) such that (x,,r) is a kth power (¢ =1,:--,s5). In
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particular, one obtains from Theorem 12,

(6.10) R, (n,7) = 7{ by (gk (% fr>>sc(n, ),
(6.11) S, (n, 1) = ;1” py (h,c(g_, 1ﬂ>>sc(n, d).

The case k =1 in (6.10) is Theorem 6 of [1], (also cf. [2, §2]), while
the case &k = 2 in (6.11) is Theorem 3 of [3] in an equivalent form.

If one places 0,(n, r) = 0,(n, ) and G,(n, r) = e (n, r), then G,(n, r)
denote the number of integers ¢ (mod 7) such that (a,r) =1 and
(n — a, ), = 1, while ¢,(n, ) denotes the number of a (mod 7) such
that (a,7) =1 and (n —a,r) is a kth power. We deduce then from
Theorem 13,

(6.12) 0,6(/”/’ 7/-) o= ¢(’Y') ((l’dgl)r:l . (,7), ,
_ 2 lk(d)<
(613) Ek(n’ 1 ) - (f)(] ) ((1]31)7‘_1 77¢7 (dj '

The case k = 1 in (6.12) is [2, Corollary 21] while the case k=2 in
(6.13) is [3, Corollary 38].

Finally, we investigate the conditions under which 6.(n, r) and
g(n, r) vanish. It is sufficient to consider these functions when 7 and
n are powers of the same prime p,r=p,n=p2,t>0,t>b>0.
A simple computation yields the following results. If & > 1, then

N (PHD = = 1) b =02k,
0:(p°, ) = {pt-l(p —1) otherwise .

Suppose ak < t < (a + 1)k where o is a (uniquely defined) non-negative
integer. Then, if k < 2,

P i(p — D(®* — 1),
(,pk, - l)ek(pb’ pc) — pt—k(a+l)(pk—1 . 1) _l_ pk+t—l(p . 2) _+_ pt—l
pt+k,—1(p _— 2) _I_ pt—-ak—l(pak . p _I_ 1) s

according as (i) b > 0, (ii) b = 0,¢ = (a + 1)k, or (ili) b=0, t < (a + 1)k.
From these results it is easy to deduce that 6,(p° p') = 0 if and
only if p =2,k =1,0=0 and that e,(p® ») =0 if and only if p =
2,t <k, b=0. We are therefore led, on the basis of factorability
considerations, to the following criterion in the general case.

THEOREM 14. If k> 1, then O(n,r) =0 tf and only if k=1, r
18 even, and n 1s odd.

If k> 2, then e,(n,r) =0 of and only +f » is of the form 2'R
where R 1s odd, 0 <t < k, and n 1s odd.
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The above result for ,(n, r) in case £k =1 is due to Ramanathan
{8, p. 68]. The result for e n,r) in case k =2 was proved in [3,
Corollary 38.1].
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NON-ABELIAN ORDERED GROUPS

PauL CONRAD

1. Introduction. In this paper we prove some theorems about non-
abelian o-groups, and give some methods of constructing such groups.
Most of the literature on o-groups is conecerned with abelian o-groups,
and the examples in print of non-abelian o-groups are few. Iwasawa [8]
proves that any free group can be ordered, and he also gives some
additional examples of o-groups. Vinogradov [15] shows that the free
product of two o-groups A and B can be ordered so as to preserve the
given orders. Chehata [1] gives an example of an o-group that is simple.
[3] and [11] contain examples of o-groups. Most of the theorems in
this paper give methods for constructing o-groups. For example, in §3
we study the o-automorphisms of an o-group &. For every group A of
o-automorphisms of G that can be ordered we can construct a new o-group
H that contains A and G. H is the natural splitting extension of G by
A. In §5 the relationship between central extensions and bilinear map-
pings is exploited. It is shown that any skew-symmetric real matrix can
be used to construct o-groups. In §6 some o-groups of rank 2 are con-
structed. In §4 a study is made of the ordered extensions of a subgroup
of the reals. One of the main results is a necessary and sufficient
condition for such an extension to split. The principal tool used through-
out is the extension theory of Schreier [14].

2. Notation and Terminology. The notation of [3] is used through-
out. In particular, the notation and results from §2 [3, pp. 517-518] are
used repeatedly. Unless otherwise stated the group operation will always
be addition and 0 will denote a group identity. N and N’ are o-groups
with elements a, b, ¢, --- and o, ¥, ¢, --- respectively. G is a normal
o-extension of N by N’. We identify G with its representation G' =
N’ x N, where

(@, a) + @', b) = (& + b, fla, ) + ar®') + b)

and («', @) is positive if @’ >0 or &/ =0 and a > 0. See [3] for the
properties of the factor mapping f and the representative function 7.
# will always denote a trivial homomorphism of a group onto the
identity element of some other group. For an o-group H, let A(H) be
the group of all o-automorphisms of H. For an abelian o-group K, let
D(K) be the d-closure or completion of K. In particular, D(K) is a vector
space over the rationals and there is a natural extension of the order

7 Ré(rzréiivred August 25, 1958. This work was supported by a grant from the National
Science Foundation.
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of K to an order of D(K). Finally let R be the additive group of all
real numbers, P be the multiplicative group of all positive real numbers,
R be the additive group of all rational numbers, P be the multiplicative
group of all positive rational numbers, and I be the additive group of
integers—all with their natural order.

3. Order preserving automorphisms of G. If H is an o-group and
A is a group of o-automorphisms of H that can be ordered, then the
group H' = A x H, where («, a) + (8, b) = (af, a3 + b) for o, B in A and
a,b in H, can be ordered. Simply define («, a) positive if « is positive
in A or « is the identity and a is positive in H. Then clearly H' is a
splitting o-extension of H by A. Thus if A contains more than one
element, then H' is a non-abelian o-group. If A is the group of all
o-automorphisms of H, then H' is called the o-holomorph of H. In [5]
it has been shown that a certain class of o-groups with well ordered
rank have ordered o-holomorphs. In this section we investigate the
o-automorphisms of G.

Let = be an o-automorphism of G for which (0 x N)z =0 x N. and
let .9 be the group of all these o-automorphisms. If G has well ordered
rank or if N’ or N has finite rank, then &7 = A(G). For (¢',a) and
(o', b) in G.we have

(o', a)r = [(a/, 0) + (0, @)z = (&, O) + (0, @)7
= (d/a, d'f) + (0, ar) = (¢, &'B + ar) ,
where
(1) 08=0.

W', @) + @, 0)]r = (o + ¥, f(a', b)) + ar(d’) + b)n
= (&' + ), (&' + )8 + (f(a', V') + ar(®’) + D)) .
(o, a)yr + (', b)r = (¢, /B + ay) + Ve, V'3 + by)
= (@'« + Va, fla'a, ba) + (&' + ar)r®a) + '8 + br) .
Thus « € A(N') and
(@ + )8+ (f(a, V) + ar(V') + b)y
= fld'a, ba) + (&'B + ar)r(®a) + b'pB + by .

When o' =8 = 0 this reduces to (a¢ + b)y = ar + by. Thus 7y e A(N).
The following two equations are the result of letting o’ =b = 0(a =0 =0).

(2) VB + ar(®)r = arr@ a) + b'p
(3) (@ + ) + fla, b)r = flda, ba) + a'fr(b'a) + b'F .
Conversely suppose that a € A(N'), 7 € A(N), 3: N'— N, and (1), (2), (3)
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are satisfied. For (¢’ @) in G define (¢, a)r = (¢'a, ¢'3 + ay). Then by
straightforward computation it follows that = € .o~

For mappings » and v of N’ into N and &' € N’ we define oa'(u + v) =
@'u + a'v. Then each 7 € %7 has a matrix representation

apf
Or

where ¢ is the trivial homomorphism of N, into N’, and the mapping
of = onto its matrix representation is an isomorphism of .o~ onto

{[;}ﬂ we AN), 7 e AN, 3: N' — N, and (1), (2), (3) are satisﬁed} .

For, let = = (a, 3, 7) and 7 = (@, /4, 7), then
(@ a)ir = (&'Q, &' f + af)r = (WA, /T3 + (a'fF + a7)r)
= (¢aa, /(@3 + ) + air)

and

(4) [P of] [ @0+ 5]
or JLor ;|0 r
We shall frequently identity the elements of .o with their matrix

representation. Let <7 be the set of all 3: N’— N that satisfy (1), (2), (3)
when « and 7y are the identity automorphisms of N’ and N respectively.

LEMMA 3.1, <7 4s an additive group that can be ordered.

Proof. From the matrix representation of o7 it follows that <7
is a group. Well order the elements of N’ and define 5 e <7 positive
if B+ 0 and o’'8 > 0, where o is the first element in the well ordering
for which a’f =+ 0. It is easy to check that this definition orders <7

COROLLARY I. The group of all mappings of & set onto an o-group
can be ordered.

COROLLARY II. The group of all o-automorphisms of G that induce
the identity automorphism on G[(0 x N) and on 0 x N can be ordered.
Now suppose that <7, A(N’) and A(N) are o-groups and let

_[ap] - _[aB
i _[ﬁr] ”—[07]
be elements of &4 Then

Lo et = a‘lﬁr“l] G [a*b?a (@B + fr) — a’lﬁr“?r]
(5) T ~[0 71 T T = 0 7Ty
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DEFINITION 3.1. = is positive if « is positive in A(N’) or « is the
identity and 7 is positive in A(N) or « ond y are identity automorphisms
and f is positive in <7

Let <” be the set of all positive elements in &7 It follows from
(4) that <7 is closed with respect to multiplication. It follows from the
first part of (5) that for each = € & either = is the identity or z € &7 or
7' e & Unfortunately <7 is not in general normal. For suppose that
7 € 7 then if @ is positive or 7 is positive, then = 'z =z is positive.
Finally assume that @ and 7 are identity automorphisms, then

e = [ Fr =),

where ¢'(¢) is the identity of A(N')(A(N)). Thus our definition orders

o7 if and only if a (8 + fr — f) = a~'f + a~'fr — a~'@ is positive. If
we use the ordering of <7 defined in the proof of Lemma 3.1, then it

suffices to show that ¢’a~'# > 0, where o' is the first element in the
well ordering of N’ such that «/a~'f # 0.

THEOREM 3.1. If A(N) can be ordered, then the group of all o-auto-
morphisms © of G such that (0 x N)r =0 x N and = induces the identity
automorphism on G[(0 x N) can be ordered.

We next consider the special cases where G is a central extension
of N or where G is a splitting extension of N. TFirst assume that N
(actually 0 x N) is in the center of G. Then » =0 and N is abelian.
In particular, (1), (2), (3) reduce to

(¢ + 08 + fla, b))y =flda, b)) + a'f + b8

and 08 = 0. Thus <% is the torsion free abelian group H(N’, N) of all
homomorphisms of N’ into N. Let I” be the set of all ordered pairs
of convex subgroups N'', N’, of N’ such that N covers N’,.

THEOREM 3.2. Suppose that G is a central extension of N, A(N) can
be ordered, I' is well ordered, and for each pair « € A(N') and v € I” there
ewists a vair of positive integers m and n such that nga = mg modulo N',
for all g e N". Then A(N') and 7 can be ordered.

Proof. By the theorem in [5], A(N’) can be ordered. As in the
proof of Theorem 3[4 p. 388] we well order the elements of N’ so that

0= gn—=>0u— 2 u>>0n> | GG "

N er\N12 N N’w\N’m Tt
For each 0+ fe <& there exists a least element L(5) in this well
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ordering such that L(8)3 # 0. Define 5 positive if L(B) > 0. As before
this orders <. Thus to complete the proof it suffices to show that if
f is positive, then «f is positive for all a e A(N'). Let g e N”|N',.
Then there exist positive integers m and n such that n(ga) = mg -+ d,
where d € N',, hence d —g. If g — L(5), then

n(gaf) = (mg + d)B = m(gf) + df = 0.
Thus gap = 0. If g = L(p), then

WIAB)ap) = (mL(B) + d)f = m(I{B)f) + df = m(L(B)F) > 0 .
Thus L(B)af > 0.

COROLLARY. If N s in the center of G, A(N) can be ordered and
N’ = R, then A(G) can be ordered.

One should be careful not to place too many restrictions on G. For
A(G) may become trivial (consist of the identity only). de Groot [6] has
shown that exist 2° non-isomorphic archimedean o-groups that admit only
the identity automorphism. Suppose that G admits no proper o-auto-
morphism and that N’ and N are non-trivial. Then, since an inner
automorphism is an o-automorphism, G is abelian. Hence N is in the
center of G. Thus in order to construct a non-archimedean o-group that
admits only the trivial o-automorphism, it suffices to find non-trivial
subgroups N’ and N of R such that neither admit proper o-automorphisms
and the only homomorphism of N’ into Nis #. Then G = N'P N will
do. One such pair is

N=1Tand N' = {m/2":m,n € Ile + {p/3:p,qe I},

where ¢ is trancendental.

For the remainder of this section assume that G is a splitting extension
of Nby N’ and that N = R. Without loss of generality f(a/,b') = 0 for
all o/, in N’ and A(N) < P. Thus »®'), 7y ¢ P, and ar(b’), ar repre-
sent ordinary multiplication, where ae€ N, b’ € N' and ye A(N). In par-
ticular, (2) and (3) reduce to

(2" (') = r(b'a), and
(3) (@ + D)3 =a'fr) + V3.

Pick an element ke N and define «'S = k(r(2') — 1) for all 2’ e N'.
& Brd’) + '3 = k(r(@) — Dr@') + k(r@®') — 1) = k(r(a)r@®) — 1) = k(r(a' +
V) —1) = (¢ + b)3. Thus e <. Suppose that there exists an ele-
ment o in the center of N’ such that r(a’) = 1. Let ' be any other
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element of N’, and let fe . Then apfr(@)+ o'f =@ + &')g =
(¢ + &')F = a'Br(@') + «'f. Thus a'f(r(a’) — 1) = ¢'f(r(@') — 1) or

6) wf = [ r(a‘f)' P ) ][r(w’) _17.

Therefore /8 is determined by a'f.

LeMMA 3.2. If there exists an element o in the center of N’ such
that r(a') + 1, then <z s tsomorphic to a subgroup of R that contains N.

Proof. For e <% we define ffo = (a'ff)/(r(a¢’) — 1). Then

(B + o = d' (B 4 B)l(r(a)) — 1) = (a'B)](r(a) — 1)
+ (@ B)(r(a") — 1) = fro + Byo .

If 0= fo = (dF)/(r(a') — 1), then ¢’3 = 0. Thus by (6), 7 = 0. There-
fore o is an isomorphism of <Z into R, and by the preceding discussion
B a2 N.

If (@) <1, then 1 < (@) =r(— a’). Thus we may assume that
r(a’) —1 > 0. Define fe <& positive (notation) 7 > 0) if fo > 0. Then
<7 is ordered and A(N)< P hasa natural order. fo = (a'8)/(r(a’) —
1) > 0 if and only if &’f#>0. Thus f >0 if and only if o'f > 0.
Suppose that A(N’) is also ordered. Then Definition 3.1 orders A(G) if
we can show that [ > 0 implies that a~(8 + Br — 8) > 0 for all fe 7,
and all 7 = («, f, 1) € A(G). But

wai(f + Br — f) = da”ify = (@a )Py
= [@p)(r(@a™) = Di(r(@) = DI 7 = a/fr .

But since «'7 > 0 we have &' > 0.

THEOREM 3.3. If G splits over N, N R, A(N') can be ordered and
there exists an element o in the center of N’ such that r(a') + 1, then A(G)
con be ordered.

COROLLARY. If H 4s a non-abelian splitting o-extension of a subgroup
of R by a subgroup of R, then A(H) can be ordered.

This is an immediate consequence of the theorem. If N’ = R, then
(2") is equivalent to 1 =7(b'(a —1)). Hence either r =0 or a =1.
Thus if N’ = R, then this corollary is an immediate consequence of
Theorem 3.1.
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4, Ordered extension of subgroups of R. Throughout this section
assume that NV is a subgroup of R and that N’ is abelian. In particular,
r is a homomorphism of N’ into the group A(N), and without loss of
generality A(N) © P and ar(d’) is ordinary multiplication, where a € N
and b’ € N.

(¢', ) + (0,0) = (&', @ + b) and (0, d) + (¢, a) = (¢, br(a') + @) .

These are equal if and only if bir(a') = b. Thus G is a central extension
of N by N’ if and only if r = 6.

LEmMMA 4.1. Suppose that N' is d-closed. Then there exists a non-
central o-extension of N by N' if and only if there exists 1 ++ p € P such
that PN = N for all s e R.

Proof. First suppose that G is a non-central o-extension of N by
N’. Then r+0. Pick a'e N' so that 1+ r(¢’)=peP. For each positive
integer n there exists ¥ € N’ such that nb’ =a’. Hence p = r(@) =
r(nb’) = r(d')*. Thus »(d') = p'. For m € I, we have r(mb) = r(0')" =
pm", Thus p™"N = N for all rational numbers m/n.

Conversely suppose that there exists 1 #+ p ¢ P such that pN=N
for all se R. Pick 0+ 0 ¢ N'. Then N’ = Rb @ D, where Ra’ is the
one dimensional subspace of N’ that contains ¢’ and D is a subspace
of N'. Each o’ € N’ has a unique representation a' = sb’ + d, where
seR and deD. Define q(a') = p*. Then H = N' x N, where (a/, a) +
(b',b) = (¢ + ¥, ag(b’) + b) is a splitting extension of N by N’ that is
not a central extension.

COROLLARY. If N' is d-closed and N < R, then G is a central extension
of N by N'.

THEOREM 4.1. Suppose that r + 0. Then G splits over N if and only
if there exist @' € N' and o € N such that

(a) ra)+1

(b)) [1r(@) — Dlla(r®’) — 1) + A, 1) — [, a’)le N for all ¥ e N,

Proof. First suppose that G splits. Choose a group H of repre-
sentatives of G/N, and pick one element (o', @) of H such that »(a’) + 1.
Let (¥, b) be any other element of H. Then since H is abelian,

(' + o, SO, &) + br(a) + a) = (b, b) + (¢, @) = (¢, @) + (¥, b)
= (a' + 0, fla, V') + ar(®) + b) .

Thus
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b(r(a) — 1) = a(r(®') — 1) + fl@, ¥) — f¥', @) .
(b) is satisfied because
[1/(r(a") — D][a(r(d") — 1) + Aa’, o) — AV, a)] = b .
Note that
H = {(t, [1/(r(a) — DI[a(r(¥') — 1) + fla', b') — A, a)]): ¥ € N'} .

Thus H is uniquely determined by (¢, @).
Conversely suppose that ¢’ € N’ and « € N satisfy (a) and (D).

Let
S={¥,b)eG:(¥,b) + (¢, a) = (a',a) + (¥, )} .
Clearly Sis a group. By the above computation it follows that (b’,b)e S
if and only if
b = [1/(r(a") — D][a(r(®) — 1) + fa', b)) — f(b', )] .

Thus for each b’ € N’ there is one and only one (,5) in S. Therefore
S is a group of representatives for G/N.

The factor mapping f is symmetric (skew-symmetric) if f(a/, V') =
SO, ) (e, b)) = —f(,a)) for all &/, in N’

COROLLARY I. If r+6 and f is symmetric, then G splits. Moreover

fl@,b) =0 for all a/,b" in N'.

Proof. Pick o/ € N’ such that 7(e¢’) #+ 1 and let ¢ =0. Then (a)
and (b) are satisfied, hence G splits. Also by the proof of the converse
of the theorem, S = {(#',0):¥ € N’} is a group of representatives.
Thus (a', 0) + (&', 0) = (&' + ¥, f(¢/, b)) € S. Therefore j(a',b') =0

Let /(N’, N') denote the range of f.

COROLLARY II. JIf there ewists an & € N' such that r(a') +1 arnd
[1/(r(a)—1)]f(N', N') & N, then G splits.

Proof. Let @ =0. Then (a) and (b) are satisfied. Moreover,
{@, /(@) — DILf(a', b)) — f(b', @')])} is a group of representatives.

COROLLARY lII. Jf N s a field and r + 0, then G splits.

Proof. Pick a’e N’ such that »(a@’) = 1. Since 1e N and r(@')N =
N, r(@)e N. Thus 1/(r(a') — 1) € N and

[1/(r(a’) — DIAN', N') = [1/(r(a@') — 1)IN= N
REMARK. Rich [13] proved that if NS R, N’ =R and » # 0, then
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G splits. This is a special case of Corollary III. Corollary III can be
stated independently of the representation of G as follows: If Hisan
o-group, C is a convex subgroup of H that is o-isomorphic to the additive
group of a subfield of R, and H/C is abelian, then either H is a splitting
extension of C or H is a central extension of C.

COROLLARY IV. If there exists an a' € N' such that r(a¢') = (n + 1)/n
Sor some positive integer n, then G splits.

Proof. 1)(r(@)—1)=n. Thus [1/(r(a’)—D)I/(N', N)=nf(N', N')SN.

COROLLARY V. If N is d-closed and there exists an o' € N' such
that 1 =+ r(a’) is rational, then G splits.

Proof. 1/(r(@’) — 1) is rational, hence [1/(r(a’) — 1)]N < N.

By Theorem 3.3 [3, p. 522] there exists an a-extension H of G such
that the convex subgroup K of H that covers 0 is o-isomorphic to R and
H|K is o-isomorphic to N’. Thus by Theorem 4.1 either H is a splitting
extension of K or H is a central extension of K.

REMARK. If H is a splitting o-extension of K, then without loss of
generality H = N’ x R, where (¢/,a)+ (b',0) = (@' + b, as®')+ b).
s is a homomorphism of N’ into P. For each x in D(N) there exists
a positive integer n such that nwxe N’. Define t(x) = [s(nx)]'”. Then ¢
is the unique extension of s to a homomorphism of D(N') into P.
D(N’), R and t determine a splitting o-extension M of R by D(N). M
is an a-extension of H and M is d-closed. Thus by Theorem 3.2 [3 p. 519]
there exists an a-closed a-extension @ of M with each component
o-isomorphic to R. @ is an a-extension of G.

A mapping g of N’ x N’ into N is called bilincar if for all x,y, 2z
in N’

9@+ y,2) = g(x,2) + 9y, ?),

and
g,y +2) =g y) + 9@, 2) .

Yamabe [16] and the Neumanns [12] have shown that if N = I, and the
cardinality of N’ is at most &, and g is bilinear and satisfies g(z, ) = 0
only if 2 = 0, then N’ is a free abelian group. Hughes [7] has classified
the groups of class 2 in terms of some special bilinear mappings. Iwasawa
gives an example ([8] Example 2, p. 7) of an o-group that is determined
by a bilinear mapping. For let N'=1Ix I and N=1. Define g((a,b), (x,y))=
ay. Then G=1x1Ix I, where (a,b,¢)+ (%,9,2) =(a+ 2,0+ y,ay + ¢+ 2),
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and (a,b,c) is positiveif ¢ >0 or ¢ =0 and >0 or a=b=0 and ¢ >0,
is an o-group of rank 3 that is isomorphic with Iwasawa’s example. In
fact, G is generated by a = (0,0, 1), = (0,1, 0) and ¢ = (1, 0, 0) and has
generating relations a +b=b+a,a +c=c+aand c+b—c=a +b.

The last example can be generalized because the bilinear form is
a product of homomorphisms. For example, let NV be the additive group
of an ordered ring, and let « and r be homomorphisms of N’ into
N. For o,b in N’ define g(a’,d') = o(a')(b’). Then H = N' x N,
where (a/,a) + (0',0) = (¢’ + V', g(a’,b') + @ + b) is a central extension
of N by N'.

LEMMA 4.2. If f is bilinsar, then G is a splitting extension of N or
G s a central extension of N.

Proof. For z,y,z in N' we have

S, y) + flz, 2) + fy, 2) = flz,y +2) + Y, 2) = fle+ 9, 2) + flz, Yr(z)
= flw, 2) + fly, 2) + fl@, Yr2) .

Therefore f(x, ¥) = f(x, y)r(z). Thus either r(z) =1 or flz,y) = 0.

COROLLARY. If N 4s abelian (not necessarily a subgroup of R),
[ 18 bilinear and f(N', N') generates N, then G is a central extension of N.

5. Central extensions and bilinear mappings. Throughout this section
assume that N is in the center of G. Thus G is determined by the o-group
N, the abelian o-group N, and the factor mapping f: N’ x N’ — N that
satisfies

(1) f(0,¥) = fla, 0) = 0, and
(2) fa +0,0) + A, o) = Aa, b + ¢) + A, ¢) .

In particular, any central extension of N by N’ can be ordered. A central
extension H of N by N’ with factor mapping % is equivalent to G (nota-
tion H ~ G) if there exists an isomorphism a of H onto G such that
(0, @) = (0, @) and (o, @) = (¢/, @) modulo 0 x N for all @ in N and all
a' in N’. If His ordered in the usual way, then « is an o-isomorphism.
It is well known that H ~ G if and only if there exists ¢t: N’ — N such
that ¢(0) = 0 and

fa, b)) = ko', b) — ta' + b)) + tla) + tOd)

for all @/,% in N’. In particular, G~ N'@ N if and only if there
exists ¢: N’— N such that ¢0) =0 and f(a, b') = —t(a’ + b') + t(a’) +1(D')
for all o/, in N'.
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It is easy to verify that if g is a bilinear mapping of N’ x N’ onto
N, then g satisfies (1) and (2). Moreover, such a ¢ exists if and only
if we can choose a representative function r: N' — G such that

o' +0 +¢) =r(@+b)+r@+¢)+r® +)—r(a)—r@®)—r()
for all a',¥’,¢ in N'. From (2) we have
A +0,¢) = Ad, ") =V, ¢) =fa, b + ¢) = fle,b) = fl, ¢)
Thus f is bilinear if it is linear in one variable.

LEMMA 5.1. Suppose that f is bilinear, then for a,b in N and o' ,b',c'
an N' we have:

(i) —SfAa,b)=f—a,b)=[fla, —b).

(i) fle', b)) =/(— o, =b').

(iii) (o', a) + ', 0) — (@' ,a) — (b, b) = (' + b — &' — ¥, f(a', ") — f(V, a')).

For 0 =f(a' —a',b") =fa',b") + f(—a',b). Thus — f(d',0)=f(—a',b)
and similarly — f(e/,d') = f(¢/, — b’). (ii) is an immediate consequence of
(i), and (iii) follows by computing the left hand side.

Let D(N) be the d-closure of N, and let H= N’ x D(N). For (¢, a)
and (¥, b) in H define (¢, a) + (¥, 0) = (&' + V', f(&/, ') + @ + b). Then H
is a central extension of D(N) by N’, and G is a subgroup of H. There
is a natural extension of the ordering. of G to an ordering of H. If
G~N@N, then H~ N'@P D(N), but the converse is false. For in [2]
there is an example where N'=D(N)=R, H~N'@P N and GaN' PN
[2, p. 862].

THEOREM 5.1. Suppose that N' is abelian and let H= D(N') x D(N).
Also suppose that for all o,b wm N' and for all positive integers m,f
satisfies

(3) nfl@, V') = flna', b') = fla', nb') .

Then there exists a unique g: D(N') x D(N') — D(N) that satisfies (3) and
such that g(a',b") = f(a', V') for all «’,b" in N'. For (x,y) and (u,v) in
H define (x, y) + (u, v) = (@ + u, gz, u) + y + v).

(@) H s a central extension of D(N) by D(N'), and G 18 a subgroup
of H.

(b) H 1s d-closed.

(¢) For each h in H there ewists a positive integer n = n(h) such
that nh € G.

(d) There exists a unique extension of the ordering of G to an ordering
of H. H will be called the d-closure of G.

Proof. For each pair @,y in D(N’) there exists a positive integer
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n=mn,, such that nz, ny e N', define g(x, y) = (1/n?) f(nx, ny). This defini-
tion is independent of the particular choice of »n. For if ma, my € N/,
then m*f(nx, ny) = f(mnx, mny) = v’f(mz, my). Thus (1/n*)f(ne, ny) =
1/m?) f(ma, my). Let x,y, ze D(IN') and choose a positive integer » such
that nx, ny, nz, n(¢ + y), and n(y + z) belong to N’. Then

9@ + y,2) + 9(z, y) = n’) f(nx + ny, nz) + f(nz, nz)]
= (1/n’)f(nx, ny + n2) + flny, ne)] = g(x, y + 2) + 9(y, 2) .

By a similar argument ¢ satisfies (1) and (3). Also if ¢’ is any other
extension of f to D(N') x D(N') that satisfies (3), then »’¢'(x, y) =
g'(nx, ny) = f(nx, ny). Therefore ¢'(x, y) = (1/n?) f(nx, ny) = 9(x, y) for all
xz,y in D(N').

Clearly (a) is satisfied. To prove (b) it suffices to show that n(z, y) =
(a, b) has a solution in H, where n is a positive integer and (a, b) € H.
By induction

n(, y) = (nw, [(n — n/2]g(z, x) + ny) .
Thus « = (1/n)a and
= (1/n)(d — [(n — 1)n/2]g((1/n)a, (1/n)a))

is a solution. Consider (x,y) in H, and let m be a positive integer such
that ma € N’ and my € N. Then

2m(z, y) = (2m(mzx), (2m* — 1)m’g(z, ) + 2m(my))
= 2m(mz), (2m?* — 1) f(mx, my) + 2m(my)) € G .

Thus (c) is satisfied. The orderings of N and N’ can be uniquely ex-
tended to orderings of D(N) and D(N’). Define (x,y) € H positive if
x>0o0r =0 and y > 0. This extends the ordering of G to an order-
ing of H. But for any extension of the order of G, A e H is positive
if and only if nk is positive in G, where n is a positive integer such
that »~ € G. Thus this extension is unique.

REMARK. If f is bilinear or symmetric or skew-symmetric, then so is
g. By Theorem 3.2 [3, p. 519] there exists an a-closed a-extension of
H with each component o-isomorphic to R.

Suppose that f is bilinear. Let x,y,z2e N’ and let w=a+y—2x—y.
Then

S(w,2) +f(y,2) +f(@,2) =f(w +y + 2,2) =f(@ + y,2) =1(«,2) +f(,2) .

Thus f(w, z) = 0. Similarly f(z, w) = 0. Therefore f(c, 2) =f(2,¢) =0 for
all 2 in N’ and all ¢ in the commutator subgroup of N’.

LEMMA 5.2. If f is bilinear and N' coincides with its commutator
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group, then G = N' P N.

Newmann [11] exhibits an o-group that coincides with its commuta-
tor group.

Suppose that 2N = N and f is bilinear. Let p(x, y) = (1/2)[ f(x, v) +
Sy, )] and let q(x,y) = 1/2)[f(z, v) — f(y, x)] for all z,y in N'’. Then
p(q) is a symmetric (skew-symmetric) bilinear mapping of N’ x N’ into
N, and f(x, y) = p(x,y) + q(x,y). Moreover, as in matrix theory, this
representation is unique.

THEOREM 5.2. If 2N = N and f s bilinear, then G ~ H, where H
18 the central extension of N by N' that is determined by the skew-sym-
metric part q of. If f is symmetric, then G~ N' @ N. Thus if G s
abelian, then G ~ N' @ N.

Proof. For each x in N’ define t(x) = (— 1/2)f(x, ). Then

— e +y) + @) + Uy) + @, )
= 12)[f@ +y,x + y) — fAa, ») — [y, v) + A2, 9) — [y, 2)] = flz, y) .

Thus G~ H. If f is symmetric, then H= N'@P N, and if G is
abelian, then f is symmetric.

Suppose that N and N’ are abelian and that f is bilinear. Then by
Theorem 5.1, we can embed G into its d-closure H = D(N’) x D(N). The
factor mapping ¢ associated with H is bilinear, and by Theorem 5.2 we
may choose ¢ so that it is skew-symmetric and bilinear. Moreover,
sg(x, ) = g(sw, y) = g(x, sy) for all se R and for all «,y in D(N). For

ng((m/n)x, y) = g(n(m|n)z, y) = g(mz, y) = my(x, y) .

Thus (m/n)g(x, y) = g((m/n)x,y). Let «ay, a,, ---Dbe a basis for the rational
vector space D(N') and consider X =z + --- +2,a; and Y =yaq, +
«os + 4, in D(N'). Then

(X, Y) = S ag(as, a

Thus ¢ is determined by the skew symmetric matric A = [g(«,, ;)] with
components in D(N). Conversely any such matric determines a bilinear
skew-symmetric factor mapping of D(N') x D(N') into D(N).

THEOREM 5.3. If N' is abelian and f is bilinear, then G is a sub-
group of its d-closure H and H is completely determined by N, N' and
a skew symmetric matric with entries from D(N). The dimension of this
matric 18 equal to the rank of the vector space D(N').

If the rank of D(N’) is finite, say »n, and D(N) = R, then by a suitable
choice of coordinates for D(N') we can get a canonical form for A.
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Thus H is determined by »# and the rank of A. For example if N’ =

R x R x R and N= R, then we have two non-trivial choices for f. One
of which is

f((wlv wz; mﬁ)’ (ylr yzy yd))

0 1 0wy
=[z@as]| -1 0 1|y, |=—ay + @ — @)y, + 2,95 .
0—1 0JLy,

and the other is obtained by using the cannonical matrix of rank 2.

Thus for any ordering of N’ we have at least two non-trivial central
o-extensions of N by N'.

LEmMMA 5.3. If A and B are elements of an ordered semigroup S and
A+ B< B+ A, then nA + nB <A+ B) < n(B+ A)< nB + nA for
all integers n greater than 2.

Proof. 1If
A+ m—1A+ (rn—1)B+ B=nA+ nB > n(A + B)
=A+®m—-1)(B+A4)+B,
then (n — 1) A+ (n — 1)B>(n — 1)(B + 4) . If
B+ (n—1(A+ B)+ A=nB + A) >nB + nd
=B+(mn—1)B+nr—-1)A+ A,

then (n — 1)(4 + B) > (» — 1)B + (n — 1)A. Thus the lemma follows
immediately by induction on .

THEOREM 5.4. If 1€ N' C R, then G s abelian.

Proof. By a simple induction argument (see [9] p. 265), f(x,y) =
fly, ) for all integers  and y. Let A = (¢',a) and B = (¥, b) be ele-
~ments of G. Then since @’ and ¥ are rational numbers, there exists
a positive integer n such that nd = («’, ) and nB = (¥, y), where &'
and y' are integers.

nd +nB = + v, (&, Y) + x4+ v)
=W+, f¥,2)+y+z)=nB+nd.

Thus by Lemma 5.3, we have A+ B = B + A.
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6. o-groups of rank 2. Throughout this section we assume that
N and N’ are subgroups of R. By Theorem 8.5 [3 p. 523] there exists
an a-closed a-extension H of G such that both components are ¢-isomor-
phic to R. By Theorem 4.1, either H is a central extension of R or H
is a splitting extension of R. A splitting o-extension of R by R is
determined by a homomorphism of R into P. If H is a central extension
of R by R with a bilinear factor mapping, then H is determined by
a skew-symmetric real matrix.

If N’ is cyclic, then G is a splitting extension of N. Thus if N’is
cyclic and N admits no proper o-automorphisms, then G = N'P N. In
particular, if N' = N=1, then G = N'@P N. In fact, as Loonstra [9]
shows, there are only two normal extensions of I by I (not necessarily
ordered) For if H is a normal extension of I by I, then H splits over
I. Thus H=1x I and (a',a) + (%', b) = (¢’ + V', as(d’) + b), where s is
a homomorphism of I into the multiplicative group {1, — 1}. Either
s(I)=1or s(1)=—1. If (1) =1, then s=0 and H=IPI. Ifs1)=
—1, then s$(2r)=1 and s(2rn+ 1) = —1 for all nel. Thus the addition
rule for H is

(@, y) + 2m, n) = (x + 2m, y + n)
@,y +Cm+1L,n)=&+2m+1,n—1y).

In this case H can’t be ordered because — (1,0)-(0,1) - (1,0)= —(0,1).
Thus (0, 1) can’t be positive or negative.

If N=N’'=R, then G is o-isomorphic to R R. For by Lemma
4.1, ¢ is a central extension of N and by Theorem 5.4, G is abelian.
Thus G is an abelian o-group of rank 2 with both components o-isomor-
phic to R. By Hahn’s embedding theorem (see [2]) G is o-isomorphic to
RP R.

Ezample of a non-abelian o-group of rank 2 that is isomorphic to its
group of o-automorphims. Let N=N'=R. For a’,b' e N’ define f(a/,V') =
0 and 7(a') = ¢, where e¢ is transcendental. Then (a',a)+ (¥',0) =
(@ + ', ae” +b). By the remark at the end of §3, an o-automorphism

7n of G has a representation 7 = B g,], where C e P and 2/ = 18(e” —

1)/(e — 1) = Bo(e” — 1) for all 2’ € N’'. The mapping of = onto [(1) %T]
is an isomorphism of A(G) onto the multiplicative group A =
%B J(ﬂ BeRand Ce P}. The mapping of (a’,a) e G onto[gu O:I is an

1
isomorphism of G onto the multiplicative group B = {[Z (H x € P and
0 -1

Yy e R}. The mapping of [Z 1] onto [m (1) is an isomorphism of A onto

B. Therefore G is isomorphic to A(G). In particular, there exists a non-
trivial splitting o-extension of G by G.
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We conclude by giving an example of an o-group of rank 2 that is
not & central extension mor a splitting extension of its comver subgroup.
Let G be the o-group of the last example, and let H be the subgroup of
G that is generated by {(a,a):a e R}. We have (—1, — 1)+ (1,1) =
(0,1 —e¢). Thus H has rank 2.

LD+0,1-¢)=12—-e)+1,e—e+1)=(0,1—0¢)+(1,1).

Thus H is not a central extension.

LEMMA. If (b/,b) € H, then b= >"be%, where b, c,€ R and S\"b, =10'.
For (V',b)=P,+ P,+ -+« + P,, where P, or — P, is a generator. A simple
anduction on n proves the lemma. In particular, (b', 0)e H only if b =0.
It can be shown that H = {(a, >, ae%): a, a;, b, € Rand > a;, = a}, dut we
will not need this.

Now suppose (by way of contradiction) that H is a splitting ex-
tension of its convex subgroup C. Pick a group K of representatives
of H/C, and let (1,a) be the element in K with first component 1.
o = >,ja,e%, where X {a, = 1. In particular, ¢ #= 0. By the proof of
Theorem 4.1

K= {®,ae —1))(e —1)):¥ € R} .

Let d be the least common multiple of the denominators of the a; and
let ¥ = 1/p, where p is a prime and p>d. Then d(Sa;e%) = S.c,e% has
integral coefficients. By the above lemma

(Zc e%)(eb' D s

e—1 1

(1)

where ¢, d;, € R. Let ¢ be a positive common multiple of »p and the
denominators of the b, and the d;,. Then

J
[Seemfey -1
(2) I (e'9)r — 1 T 2 e ()"

where u;, w;, v € I. Without loss of generality we may assume that the
u, and the w, are positive integers (multiply both sides of (2) by a suitable
power of %), ¢'¢ ig trancendental. Thus (2) is essentially an equality
of elements in the simple transcendental field extension R(X) of R.

(3) [Z”; ][_X1 T S
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O = 1/p =v/q = v/pv. Thus there exists a positive integer n such that
p" divides ¢, but p” does not divide v. The cyclotomic polynomial

-1

FX) =1+ X" 4 X2 ¢ ol Xm0

is an irreducible factor of X?— 1, but it does not divide X* — 1.
Therefore f(X) divides S\¢,X%. Thus Y, X% = f(X)9(X), where g(X)
is a polynomial with integral coefficients. Now let X =1. Then d =
Se, = f(1)g(1) = pg(1). Thus since p and d are positive and g(1) is
an integer, d > p. But this contradicts our choice of p.

Note that the example on page 526 of [3] is a splitting extension
of N by N’; and that {(¢/, —1):0 #a’ € N'} U {0,0)} is a group of
representatives.
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ON THE VAN KAMPEN THEOREM

RicHARD H. CROWELL

1. Introduction. The van Kampen theorem provides a defining set
of generators and relations for the fundamental group of the union of
two topological spaces X and Y where the fundamental groups of X,
Y, and their intersection are given by defining sets of generators and
relations. An intrinsie, purely group-theoretic formulation has been
given by Fox using his direct limits of systems of groups [4]; however,
the corresponding abstract proof had not been worked out. The present
paper supplies such a proof (distilled from an earlier proof by Fox of
the van Kampen theorem) to a natural generalization of the van Kampen
theorem, which includes for example, in addition to the original theorem,
the determination of the fundamental group of the union of an increas-
ing nest of open sets each of whose groups is known [2].

In proving the principal result, Theorem (3.1), we depart from the
usual development of the fundamental group in that paths and loops
are not required to have the fixed unit interval as domains. In
particular, a patk a is a continuous mapping of the interval [0, |{ail]
into the space in question for some |||l > 0. For paths a: [0, ||a}l]] > X
and b: [0, || b{]] » X which satisfy a (J]a|]) = 8(0), we define the product
path a-b by

a-b(t) = {a(t) for 0 <t < lall
bt — llall) for {lall <t < llall + |[b]] .

Thus, path multiplication is associative. Paths a and b, having the
same initial and terminal points, are equivalent, denoted by a ~~b, iff
there exists a collection of paths %,: [0, || A, |]] = X, 0 < s <1, such that

ks = a and A, = b,

hy(0) = a(0) = b(0),

Rl Ao 1)) = a(lla ) = b(l|b1]),

1251l is a continuous function of s,

hy(t) is simultaneously continuous in s and ¢.

We note that, for any path o and positive number ¢, there is a path
b equivalent to a with ||b]] =¢. Furthermore, ||A,|| can always be
taken as a linear function of s and thus, in view of the preceding
sentence, may be arranged to be constant. The induced multiplication
of equivalence classes of paths and the definitions of the fundamental
groupoid and group of X are made in the usual way.

" Received July 8, 1958.
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2. Systems of groups and direct limits (cf. [4]). A system is any
collection & of groups and homomorphisms such that if 4;G,— G is
in &, then G, and Gg are in &. A homomorphism ®; S—>G of «a
system & into a group G is a function which assigns to each group G,
in & a homomorphism ¢, : G, — G such that, for every 0: G,— G; in
&, we have ¢, = ¢gf. The image of ® is the smallest subgroup of G
which contains the image of every homomorphism ¢, in &, and ® is
onto iff its image is G itself.

A homomorphism ®: & — G is a direct limit iff (i) ® is onto and
(ii) for any group H and homomorphism ¥ : & — H, there exists a
homomorphism 1:G — H such that ¥ = 1@, that is, for every group G,
in &, ¢, = l¢,.

(2.1) THEOREM Any system & has o direct limit unique to within
isomorphism.

The proof is straightforward and is given in [4]. As a result of
(2.1), one may relax the above terminology and speak simply of the
group G as the direct limit of the system &.

A given system © may always be enlarged to a system & by
adjoining all, or any number of, identity homomorphisms and finite
compositions of homomorphisms of &. It is obvious that any homomor-
phism of & is also a homomorphism of &', and conversely. Thus,

(2.2) Any direct limit @ : & — G is a direct limit @ .S — G, and
conversely.

3. The generalized van Kampen theorem. Consider a collection of
pathwise-connected, open subsets X, of a topological space X closed
under finite intersections and such that

X=UX.

p € (1 X,, for some point p
The set & of fundamental groups G, = =n(X,, ) and all homomorphisms
0 : G, — Gs induced by inclusion is a system, and the homomorphisms

¢y Gy, —> G = n(X, p) induced by inclusion constitute a homomorphism
?.8—G.

(8.1) VAN KAMPEN THEOREM. @ :& — G is a direct limait.
Proof. There are two propositions to verify :
I. @ is onto. Consider an arbitrary non-trivial element A € G and

a loop a representing A. Since A +# 1, we know that |jal| > 0. We
construct a subdivision.
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0=t <t <+ <t,= |lal]

such that each ¢, — ¢,., is less than the Lebesgue number of the open
covering of [0, ||a]|]] consisting of all inverse images a~'X,. We then
choose X%’ 4 =1, -+, n, such that

a’[ti—-ly tz.] c Xwi '2: _= 1, e, n.

For each point ¢, =20, ---, n, of the subdivision, we select a path b,
in X subject to the conditions :

(1) b(0) = p and by(|lb; ) = a(t,)

(ii) If a(t;) = p, then b, =p

(i) b(f) e X,, N X, 0<e<||b;lland i=1, ---,n — 1.

t+1’

Note that (iii) uses the fact that the collection of subsets X, is closed
under finite intersections. Next, consider paths a,:[0,¢, — ;] > X, ¢ =
1, «++, n, defined by a,(t) = a(t + ;,_,).

Clearly,

and

Each path b,_, - @, - b;' is a p-based loop whose image lies entirely in
Xwi and which, therefore, is a representative loop of Pa, A, for some
A, e Gwi - Thus,

A= [[1 ﬁpwiAi
and the proof of I is complete.

II. For any group H and homomorphism ¥ : &S — H, there exists a
homomorphism 2 :G — H such that ¥ = 20,
Proving II obviously amounts to proving that, for any A, e Gmi,z’z
1’ e, T,

»

1T ¢aA; = 1 implies ] ¢u 4, = 1.
i=1

i=1
We select representative loops a; € A;,%4 =1, ---, . Then the product
a = I_[_l Pa, By

is contractible (We denote an inclusion mapping and its induced homo-
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morphism of the fundamental groups by the same symbol), and there
exists a homotopy A : R — X, where R = [0, || al{] x [0, 1], which satisfies
h(t, 0) = a(?)
10, 8) = h(t, 1) = Mllall, s) = p
The vertical lines ¢ = i |la.ll,2 =1, ---,r, provide a decomposition
of B, and we consider a refinement
O:to<t1< b <tn: ”a’“
0:30<31< coe <sm::1
into rectangles

Ryy={(ts)|ti-i <t <t and s, <5< s}

the maximum of whose diameters is less than the Lebesgue number of
the open covering of R consisting of all inverse images #27'X,. Con-
sequently, there exists a function «fz, 5) such that

MEq;) C Xua,p t=1---,mand =1, «-+, m.

For each lattice point (¢, s,), we select a path e¢;, in X subject to the
following conditions.

(iv) The initial and terminal points of ¢;; are p and A(¢;, s)),
respectively.

(v) If A, s,) = p, then ¢, = p.

(vi) The image of ¢;, is contained in
Xw(i,j) n Xw(i+1,j) N Xw(z,;n) n Xa’/(i+1,j+l) .
(Assume X, p=Xif 1=0,n+ 1 or if 7 =0,m + 1).

(vii) If SiZille |l <t <t < Sl agll, then the image of e,
contained in X, )

Next, cf. Fig. 1, consider paths

() = h(t + tiy, 8)) 0<t<t, —t,,
dii(s) = Mt;, s + 5;5-1) 0<s<s; — sy,
and set
a’iJ:et—l,j'Cij'ei—jl t=1,---,nmand =0, ---, m
b“:eiy]_l'd“‘ei;l ’I;:O,'--,’)’Landj:L--',m
Ciy
_— _ Sj
di—l J RH d“
S B 8,
Ci5-1
tt—l tg
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The image points of the loops a;y, by, @; ;-1, and b, all lie in X, p,
Consequently, they define group elements A,,, B;,, 4;;, and 3;, respectively.
Guu,p. The product @, ,_, - by, - a7} - bk, is obviously contractible in X;
moreover, since the image of R;, as well as the images of the four
paths lies in X, 5, the product is also contractible in X, ;. We may
conclude that

(1) AB A (B ) =1,

The central idea in the proof of II is the fact that if group elements
AeG, and Be Gg possess a common representative loop, then ¢, A =

¢s B.

The proof is easy: By assumption the system & contains the
fundamental group G, of the intersection X, = X, N X; and the homo-
morphisms

0, 0,
Gw e Gy _— GB

induced by inclusion. The assertion that 4 and B possess a common
representative loop states that there exists a p-based loop ¢ in X, such
that 6,ce A and 0,c e B. Thus, if ¢ defines C e Gy, we have

0,C=A4 and 6,C =B
Since ¥ is consistent with the mappings 6,
$od = ¢.0,C = ¢,C = $p0,C = ¢pB .
Applying the central assertion, we obtain

( 2 ) S/’m(z,pAw = Slja(i,)ﬂ)A;,JH
‘/’w(i,;)Bu = ¢m(t+1,J)B;+1,J

Equation (1) says that the result of reading around each R;, under the
homorphism ., ;) is the identity. Equations (2) show that edges of
adjacent rectangles will cancel. It follows (by induction) that the result
of reading around the circumference of the large rectangle R is the
identity. Furthermore, only the elements along the bottom edge, s = 0,
are non-trivial. We conclude, therefore, that

g ¢w(i,o)Ai1 =1.

Since each of the numbers >/_.lla.ll,7=1,---,7, is a member of
{t,, -+, &,}, there exists an index function i(j) such that ¢(0) = 0, and

tip = Stiallagdl g=1 e r
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Then,

o) .
Uiy = Pu B g=1,00,m
1=0(I=1) +1 J
However, by virtue of (vii), we may assume that the equivalence is in
ij. Thus, each loop ay, ¢ =4 — 1)+ 1, ---,4(j), determines a group
element A; e G, ; and
1O) ,
Ai == A_; .

1=1(i=1)+1

Since A4,, and A; possess a common representative loop a,, it follows
from our central assertion that

Sbw(i,D)Azj = sbij; 1= %(.7 - 1) + 1! ) 7’(.7) y
Finally, therefore,

r 1(5) r i ,
1=11 I dacndn =11 ) 11 S!’ain
Je1 d=t(i=1) +1 J=1 t=i(j-1)+1

”
= H Sbmj AJ
j=1

and the proof of the generalized van Kampen theorem is complete.

4. Generators and relations. Since generators and relations describe
a group only to within isomorphism, we shall speak of the image group
of any direct limit of a system as the direct limit of the system. To
obtain a presentation of the direct limit of a system of groups which
are given by generators and relations is a simple matter of setting up
the proper homomorphisms and chasing around a batch of consistent
diagrams. Consider a system &, each group G, of which has a pre-
sentation (cf [3])

sz(wL!ny "‘27"},,7‘;, "')'

Each mapping 0 :G, — G in & is deseribed by giving the assignment
O0xi e Gg,2=1,2, ---. Then, the direct limit of & has the presentation

(1) G = ({a} : {ra}, {ah(0 z2)™*})

i.e., all generators a7, all relators »%, and all elements ai(0z.)~! (a proof is
given in [4]). The presentation (1) can be simplified in that, for each
homomorphism 6 : G, — Gg, the relators »%,¢ =1, 2, ---, may be dropped.
The reason is that, in the free group F generated by all the generators
in (1) and of which G is the homomorphic image, the relators %, are a
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consequence of the relators +} and the elements 2i(fx%)~*. To prove this

assertion consider the diagram
]
Gw h— G/_J,

T N 4
TJ

inclusion——>/——inclusion
F

F, is the free group generated by %, ¢=1,2, ---, and ¢, is the con-
onical homomorphism whose kernel is the consequence of },7=1,2,«--,

The mapping 6, which strictly speaking should be used in (1), is simply
0 lifted to the free groups. Consider an arbitrary homomorphism 7 of
F' which maps 74, zi(0 2%)"',¢=1,2, -+, onto 1. Then, for any u € F,,

nu=n0u.

Since
Lollr, =0C,7r =1,

each 7. is a consequence of the elements rs.  Hence,

nlr,=7ri=1
and the assertion is proved.

Consider a topogical space X which is the union of two pathwise-
connected open subsets X, and X, whose intersection X, = X; N X, is
also pathwise-connected and contains a point p. Suppose we are given
presentations of the fundamental groups G, = =(X;, »),? = 0,1, 2,

G1: (mhxz, e iy, Ty, "')

G2 = (yl,ym cee 18, 8, ...)

Gﬂ - (Zu Zyy ot :tb tm “')
and the mapping 0,: G, — G,, ¢+ = 1, 2, induced by inclusion are described
by assignments 6,2, ¢ G;,1 =1,2,5 =1, 2, ---. By our principal Theorem
(3.1) and the results of the preceding paragraph, the fundamental group
G = n(X, p) has the presentation

G = ({@;}, (W5}, {5} : {5} {85} {=3(0:25)7'})

This presentation is equivalent to (cf. [3])

G = ({w;}, {g;} : {rs}, {s;}, {02, (02)7'})
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which is the assertion of the usnal formulation of the van Kampen
theorem.
Consider a system & of groups and mappings

0, g, 0,
Gy G, G, .-+ with presentations
(2) Gy = (@l @y« i1l 1, 00 0)
such that
(3) 0,2 =}, and 0,v] = r],,

(G;+1 may have more generators and relators than G;,). We may define
a group

(4) G:(yby‘z"":shszv“')
and a homomorphism @ : & — G such that
o] =y, and ¢! = s, .

It is easy to check that G (more precisely, @:& — G) is the direct
limit of &.

Finally, we consider an ascending chain of non-empty, open subsets
X, X, C --- of some topological space. We have by (3.1) and (2.2)
that the fundamental group G of the union is the direct limit of the
system

0, 0,

Gl E— Gz — e,

where G; = n(X,, ) is the fundamental group and 6, is induced by
inclusion. Using the results of the preceding paragraph, we obtain a
presentation (4) for G, if presentations (2) satisfying conditions (3), are
given. This procedure is used in [1] to obtain (among other examples)
a presentation of the group of the exterior of the Alexander Horned
Sphere.
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CONVOLUTION SEMIGROUPS OF MEASURES

IRVING GLICKSBERG

Let S be a compact topological semigroup, C(S) the Banach space of

all continuous complex valued functions on S, and S the normalized non-
negative regular Borel measures on S'.~ Under convolution and the «*
topology of C(S)*, S and the unit ball S of C(S)* each form a compact
semigroup. The main purpose of this paper is the determination of all
subgroups of S and S when S is abelian.

In the case in which S is a group, J. G. Wendel [10] has determined
the idempotents in S: they are just the Haar measures of subgroups of
S. This fails to hold for the general compact semigroup S, but does
remain valid for compact abelian semigroups, due primarily to the fact
that the least ideal in a compact abelian semigroup is a group. Indeed
it is just this feature of the abelian case which allows one to complete
the one point in Wendel’s argument where essential use is made of a
group structure, rather than a semigroup structure, for S, and further
allows one to determine the subgroups of S.

The structure of the subgroups of S (when S is abelian or a group)
is quite simple : each subgroup I" of S consists of the G — translates
of Haar measure on g, where G is a subgroup of S, and g a normal
subgroup of G. Thus I" is just the set of point masses on G/g imbedded
in S in the natural fashion, and we arrive essentially at the fact that
the only subgroups of S are the obvious ones. But a consequence of
this knowledge is an extension of the Weyl equidistribution theorem :
for g in S, N n-1/" —— Haar measure of the least ideal of the sub-
semigroup of S generated by the carrier of g (in the group situation
this is convergence to Haar measure of the subgroup generated by the
carrier).

Finally, in the abelian case, the determination of the subgroups of

S is obtained as a consequence ; by virtue of a theorem of Eberlein [3]
we can apply our results to obtain the subgroups of the convolution
semigroup formed by the unit ball of Cy(<)* where ¢ is a locally com-
pact abelian group.

It is a pleasure to record the author’s indebtedness to K. de Leeuw
for his stimulating comments and suggestions, which were directly

Received July 14, 1958. Presented to the American Mathematical Society, June 21,
1958.
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responsible for many of the results; our indebtedness to Wendel’s paper
will be self-evident.

1. Preliminaries. We begin with a résumé of the facts and nota-
tion we shall use in connection with semigroups, ideals, measures and
convolution ; for standard results on measure theory and topological
groups the reader is referred to [5, 6,9]. Let S be henceforth a compact
semigroup, i.e. a compact (Hausdorff) space with a jointly continuous
(binary) operation (multiplication) under which it forms a semigroup.
By a subsemigroup of S we shall implicitly mean a closed subsemigroup ;
a not necessarily closed one will be called an algebraic subsemigroup.
By a subgroup G of S we shall mean a (closed) subsemigroup which
algebraically forms a group under our operation ; since G is compact, in-
version (as is easily seen) is automatically continuous and G is & compact
topological group.

(1.1) Suppose now that S is abelian. An ideal I of S is a nonvoid
subset closed under multiplication from outside (SI — I), and a con-
sequence of compactness is the fact that S contains a least ideal I =
N.es@S; for ayS c xS N »S implies {xS:x € S} has the finite intersec-
tion property while xS is trivially closed so that I+ ¢. And clearly
I is a (closed) ideal contained in any other ideal. Moreover

(1.11) of E is dense in S, then I = (Nyez2S.

For given an open set V containing I we have an « in S with xSc V
(otherwise the filter generated by {«S:« in S} has each of its elements
meeting the compact complement V' of V, whence I N V' +# ¢). Thus
by compactness and the continuity of multiplication we have a y in E
near z for which ySc V, I  MN,exyS € V, and (1.11) follows. Further
I is a subgroup of S as well [8]: for « € S= 2zl is an ideal contained
in I, so «I = I. Thus if x ¢ I we have an ¢ in I for which we = =z,
whence ywe = yx ; since Ix = xl = I, ¢ is clearly an identity for I. On
the other hand yI = I implies that there is a 2z in I with yz = ¢, and I
is a group.

For a non-abelian S we have the usual variety of ideals and the
above facts are of course invalid; however it will be convenient to note
that if S is a group any sort of ideal must coincide with the full group
S, and all of our remarks retain their full force.

(1.2) With S abelian or not the fact that S is compact allows us to
identify C(S)* with the space of (integrals with respect to) complex
regular Borel measures of S. We shall use the same letter to denote

the functional and the measure, writing p(f) = S Sf(@)p(dx). The norm
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Il2]] of 22 in C(S)* is of course its total variation, and the unit ball of
C(S)*, S = {p: ¢l £1} is compact in the o™* topology, as is its sub-
space S = {g: 20, [lp]] =1}

For f e C(S) let f.(y) = flzy), f*(v) = f(yx), so that f, and f* are
in C(S). The compactness of S and the continuity of multiplication
combine to yield the maps = — f,, « = f* of S into C(S) continuous, and
thus for g in C(S)*, \ Axy)x(dx) is continuous in y. Consequently we
can form the iterated integral SS flay)p(dx)(dy) which, as a function of
S, lies in C(S)*. The corresponding measure pv, the convolution of #
and v, thus satisfies

(1.21) Sf(x)p»(dx) = SSf(xy)u(dm»(dy)

for fin C(S). Moreover using the monotoneity arguments of [6] we
have (1.21) holding for bounded Baire functions f. Since the associative
law is easily verified, and g, » = 0 implies g = 0 while ||g¢|| = Q) =
Sp(dm) for o = 0, S clearly forms a semigrogp under convolution, abelian

if S is (by Fubini’s theorem); similarly S forms a semigroup since
clearly |l Z ll2ll- llvll. If we now add the o* topology we obtain
compact semigroups: for since y— f? is continuous for an f in C(S),
F={fv:y e S} is a compact subset of C(S), and thus pointwise con-
vergence of an equicontinuous bounded net of function§ on F' implies

uniform convergence by Ascoli’s theorem. But S and S are equicon-
tinuous sets of functions on F' and w* convergence amounts to pointwise
convergence, 80 /5 —> [, ys — v imply S Slay)ps(da) — S Sley)r(dz) uniformly
in y and therefore

|| @oprmtnratan) ~ (| s oo, or mo— pm .

Finally we note the existence, for each non-negative regular Borel
measure ¢, of a unique closed set A = carrier # C S with the property
that A = || ¢#|] and 2 U > 0 for each open U with AN U +# ¢ [10];

1 1777671:7/1, v==0 one argues as follows: the set of non-negative Baire f for which
1'@) = { flow) A1 uda)
defines a Baire function f’ and for which
([ s A1 dznan = (2 AL i)
is clearly a monotone class containing the non-neg"ative elements of CR(S), and thus includes

all non-negative Baire f. For general p,v the decomposition p = p ~ ps + ¥(us — ), and
the obvious distributivity of convolution suffice. Also monotoneity shows f Baire on S im-

plies f‘: (=, ) > flzy) is a Baire function on S x S, and thus Fubini’s theorem may be
applied to f.
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it is simply the complement of the union of all open sets of p measure
Z€ro.

2. Idempotents and subgroups. The fundamental tool in our an-
alysis is the following extension of Wendel’s Lemma 4.

LEMMA 2.1 For p and v in S,

carrier py = (carrier p) - (carrier v) .

Proof. Let A and B be the respective carriers of ¢ and v. Since
each is compact so is A - B, which in particular is then a Borel set.
Thus by the regularity of pv, for ¢ > 0 we have an open U containing
A - B for which p(U) < m(A - B) +¢. Since S is normal Urysohn’s
lemma applies to yield an F' in C(S) with ¢,., < F' < ¢, (where p, is
the characteristic function of E), i.e., 0 <F<land F=0on U, =1
on A - B. But it is clear that ¢,(z)¢s(y) < F(zy) for all x, y in S, and thus

1 = p(A) - o(B) = SS%(@%(Z/)#(dw)v(dll) = | [ Fewndap(ay)
= [P = m) s - B 41 4c.

Since ¢ > 0 is arbitrary, #(A - B) = 1. Moreover if U is now anopen
set with (4 - B) N U + ¢ then we can find open sets ¥V and W for which
VNA=+¢, WNB=+¢, and V- - W- ¢ U; choosing an F' in C(S) with
Op-w- = F' < ¢, again yields (V=) - W-) < w(U), and this combines
with (V=) =2 (V) > 0, u(W-) = (W) > 0 to show m(U) > 0. Hence
A - B ig indeed the carrier of pw.

If /2 is now an idempotent in S,
(carrier sy = carrier p* = carrier p .

In the group situation this guarantees the carrier is a group [4, 7], but
in the case of an abelian semigroup S we must go further.

THEOREM 2.2 Let S be abelian or a group, and = p € S.  Then
carrier # is a subgroup of S and p is its Haar measure.

Proof (Following Wendel). For completeness we shall include both
cases in our proof, although in the group situation we have Wendel’s
Theorem 1. Let H = carrier #, so H* = H. For f in C*(S) (the space

* For non-abelian S this and our subsequent results fail in general. For take S=

[0,1] under o, where @ o y =y. Then py=v, for s, v¢ S and each element of S is an
idempotent,



CONVOLUTION SEMIGROUPS OF MEASURES 55

of real valued elements of C(S)) let f'(x) = S Syx)(dy), © € S, so that

f' e C¥S). Since H is compact [’ assumes its supremum over H at
some x, in H, and

Fia) = Sf”o(y)#(dy) = (o) = (2(F70)
- Sgﬂyzxo)p(dy)p(dz) - Sf’(zwo)ﬂ(dZ) < F/(x)

since f’ < f'(«,) on (carrier ) - x, = Hx, € H* = H. Consequently f’(x,)
=\ f'(zw,)(dz) and, since [ is continuous and H = carrier ¢, f’ assumes

its supremum over H on all of Hzx,; in particular then on the least ideal
I of the subsemigroup H of S.

(In case S is a group our proof is complete: for H is a group,
I =H, and f’ constant on I = H=> ¢ is right invariant).

Now suppose H\I +# ¢. Then we can find an 2, in H and non-
negative f in C(S) vanishing on I for which f™ does not vanish on all
of H; otherwise for each f = 0 in C(S) with f(I) =0 we have f*(H)
= f(Hz) = 0 for all « in H, and thus f(H) = f(H?) = 0. Hence for this
S and =z, we have p(f®) >0 while, for y in I, f'(y) = S fley)p(dz) =
SO/J(dm) = 0 since Hy c I and f vanishes on I. But since f’ assumes

its supremum over Hon I, 0 = f'(x,) = p(f™) > 0, the desired contradic-
tion, and H = I, a subgroup (of H and thus) of S. Moreover since f’
is constant on I = H, ¢ is invariant and our proof complete.

For a subset E of S we shall refer to ({J,escarrier ¢)- as the carrier
of E, which is obviously consistent with our former use of the term.
It should be noted that if E is a subsemigroup of S then carrier E is a
subsemigroup of S. For by Lemma 2.1 {J.czcarrier ¢ is closed under
multiplication, and therefore its closure is also. Moreover carrier £~ =
carrier K ; for if carrier # ¢ carrier £ then there is an fin C(S) vanish-
ing on carrier E with p(f) -+ 0. But then »(f) =0 for v in E and
therefore for v in E- as well, and x ¢ E-.

THEOREM 2.3 Lot S be either abelian or a group, and let I' be a
subgroup of S. Then the carrier G of I' is a subgroup of S while the
carrier g of the identity y» of I’ is a normal subyroup of G. If T, de-
notes the map of (Glg)™ — S defined by

Tuf) = | | fewmdomans) , fe ),

@/9

then T, takes (G|g)~ onto the w* closed convex hull & (") of I', the point
masses (G[9)* of Glg onto I', and in each case is & (topological) isomorphism
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between these semigroups.

COROLLARY 2.31. [ is the set of G—translates of Haar measure on
g. For 7 is Haar measure on g by Theorem 2.2 and thus for v = mass 1

at gy ¢ GJg we have T, (f) = S f(@y)y(dx), which of course corresponds
to the Haar meagure of ¢ transiated to the coset gYy.

Proof of Theorem 2.3. Consider first the case in which S is abelian.
Let S, = U,ercarrier ¢, an algebraic subsemigroup of S with Sy =
carrier I = G. Since p = n¢ for g in I', carrier # = carrier 7 - carrier ¢
= gearrier # by Lemma 2.1, and thus ¢S, = S, and therefore ¢G = G.

But for z in S, we have x e carriery, # € I', so x - carrier ™' C
carrier p~t = g and G N g + ¢. Further, since xyG < G N yG for
z,y € S, G we conclude from the compactness of ¢ that ¢ meets
N.es, @G, the least ideal I of the compact semigroup G (cf. (1.11)). Con-
sequently g c I; for 2 € g N I implies g = ¢g < I since g is a group and
I an ideal. Since ¢G = G we obtain G I C G, and since I is algebraical-
ly a group, G is a subgroup of S.

Now evidently 7', maps (G/g)~ into S. Let f be in C(S) and vanish
on G. Then clearly Tv(f) = 0, v € (G/g)~, so that G contains the carrier
of any measure in the range of T,. The subset M of S of elements
with carriers contained in G may be considered as a subset of either
C(S)Y* or C(G)*; in each case we obtain the same o* topology since by
Urysohn’s lemma C(G) is exactly the set of restrictions to G of the
elements of C(S), and p(f) = #(f|G) (where ¢ on the left is in C(S)*,
and on the right in C(G)*). For the same reason we may evidently
form the convolution of two elements of M in either place, i.e. M may

be considered as a subsemigroup of either S or G. Thus it will clearly

suffice to consider 7T, as a map of (G/g)™ into G.
But now we recognize T, as (a restriction of) the adjoint of the map

F—= 1 of C(G)— C(Glg) defined by setting f'(yg) = g S(xy)y(dx). Thus
Jg
T, is (0* - 0™) continuous, and since f— f' is onto [6, 9], T, is one-to-
one, hence a homeomorphism on (G/g)~. Further T, is an isomorphism
since for f e C(G)
T Toolf) = | | (| Fowewm@ar@yonazyawg)
o) = | |, fewnaomsam
=, |\, sevom@apyoidng)
GlgJ6&lgJ9

- S /e S alo S p S gf(wz yw)n(dx)p(dz)v (dyg)v(dwg)
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since 7 = 7, and thus multiplicativity follows from Fubini’s theorem and
commutativity.

Now let p be the canonical homomorphism of G — G/g and, for £ in
I" define ¢ € (G/g)” by a(F) = p(F o p), F' e C(G/g). Then for f e C(G),

#6y =) = | | wmidapan = | ravyannayg)

Gl9
=T,p(f), so I'c T\(Glg).

Thus the (compact) preimage of /" is a subgroup of (G/9)~ whose identity
is the mass 1 at the identity ¢ of G/g (for clearly this measure maps
onto » and T, is one-to-one). Since G/g is a group, Lemma 2.1 implies
each element of the preimage is a point mass; indeed the preimage
consists of just those obtained from a closed subgroup of G/g since as is
well known the map from points to point masses (in the o™ topology) is
a homeomorphism [2] and trivially a group isomorphism. Hence we may
identify the preimage as (G,/9)?, the point masses on G,/g where G, is
a subgroup of G containing g (G, is closed since G,/9 and ¢ compact
imply G, is compact). But obviously the carrier of each element of
T.(G,/g)* is contained in G, so that carrier I"' =G C G,, and G, = G,
T,(Glg) = I.

To complete the proof in the abelian case we need only note the
well known fact [2], that (G/g)” is the o* closed convex hull of (G/g)?,
so that T,[(G/g)"] = &({I") follows from linearity and continuity.

Now suppose S is a (non-abelian) compact group with identity e.
Since we clearly have G = carrier I' = G*, G is a subgroup of S [4, 7].
Moreover g is a normal subgroup of G. For « € carrierp, ¢ e I', im-
plies = carrier #=' € g by Lemma 2.1 so that if y € carrier x°%,

zy==2z¢€ g, ' = yz7' € (carrier ') - g = carrier p" .
Thus
x~'gx C carrier = - g - carrierpz = ¢,

and 2-'gx C g for a dense set of « in G; if y € g then z~'yx € g for all
x in G, by continuity, and ¢ is normal in G.

Now if we omit the first two paragraphs of the proof for the abelian
case, each step will apply here with one exception : the proof that T,
is multiplicative. But (applying Fubini’s theorem) this follows from the
fact that

Lf(wyzw)v(dZ) = Saf(xzyw)v(dz)

or equivalently
|, st = | riema)

and thus ultimately from yg = gy.
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2.4 REMARK. If I' is an algebraic subgroup of S then '~ is a sub-

group of S 80 that /" consists of the G- translates of a Haar measure,
where G is an algebraic subgroup of S. For if the net {y4} c 1" con-
verges to ¢# € /', then any cluster point » of {y;'} must satisfy m =7

as a cluster point of {57!} ; and clearly g = .

3. Least ideals and carriers. Our next result gives the relationship

when S is abelian, between the least ideal of a subsemigroup of S and
the least ideal of its carrier: the carrier of the least ideal is the least
ideal of the carrier.

THEOREM 3.1. Let S be abelian and let 3 be a subsemigroup of S with
least ideal _# ; let S, = carrier X with least ideal I. Then I = carrier. 7.

Proof. We know that _# is a subgroup of ¥ and thus of S. Hence
by Theorem 2.3 its carrier is a subgroup G of S. Let S, = U,excarrier g,
a dense algebraic subsemigroup of S;. Let « € S, so that x e carrier ¢
for some ¢ in 3. For v in .7, v € _# s0 xcarrier v C carrier ;v C G
by Lemma 2.1, and thus S, N G # ¢ and xS, N G +# ¢. Since I =
MNaes, @S by (1.11) we conclude as in the proof of 2.3 that G N I+ ¢
and therefore G C 1.

But the fact that x carrier v C G for @ € S, v € _~ clearly implies
G c G for x ¢ S,. Consequently for y in G,ay € G for all z in S,
by continuity, and thus S,G C G, or G is an ideal in S,. Hence G con-
tains the least ideal I and I = G = carrier _~.

THEOREM 3.2. Let ¢ e S, with S abelian. Then N-' S¥_u* — Haar
measure on the least ideal of the subsemigroup of S generated by carrier .
If S 4s a (not necessarily abelian) group, N~' SV — Haor measure
of the subgroup of S generated by carrier .

Proof. Let 5, be the subsemigroup of S generated by ¢, vy =
NS un and let » be any cluster point of {v,} which of course must
lie in &°(¥,). Since ||y — vy |l — 0 we have ;v = v and thus v = » for
each 1 e #(2,). Since #(3,) is abelian this clearly implies » is the
unique cluster point of {vy} so that v, ->» by compactness. Moreover
v =y, 2 e Z(2,), says {v} is the least ideal of the subsemigroup = (2,)
of S’, and an idempotent, so that » is Haar measure of its carrier by
2.2.

Now if S is abelian the carrier of v is the least ideal I of carrier
%(2,) by 3.1. Evidently the carrier of the algebraic convex hull of
3, coincides with the carrier of ¥,, and since carrier E- = carrier E, we
have carrier z°(3,) = carrier X, and our proof is complete in this case.

If S is a group with identity e, let G be the subgroup of S generated
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by carrier #. Since a subsemigroup of a compact group is a group,
carrier {¢#": n = 1} is a subgroup of S and clearly must coincide with
G. Thus if f(G) =0, f e C(S) we have f vanishing on carrier #*, hence
() =0, all n, and (f) = 0; consequently carrierv ¢ G. On the other
hand ¢ = » so that by 2.1 carrier p* - carrier » = carrier » and thus

U carrier ¢ = |J (carrier p"e) < U (carrier ¢* - carrier v) = carrier v

so (¢ ¢ carrier v and our proof is complete.

3.3 REMARK. More generally we can follow Alaoglu and Birkhoff [1]
to obtain a stronger assertion. Let E be a commuting subset of S, and
let ¥ be the abelian subsemigroup of S generated by E. We can regard
z (%) as partially ordered by ¢ =<v<é&s v e ¥, and then & (2) forms a
directed set (v = p,v). If we regard z°(X) as indexed by itself then
(%) 1s a net and the net converges to Haar measure on the least ideal
of carrier 3. For given ¢ € (%) and & > 0 there is a », in (%) for
which || v — v|| <& v =y, : simply choose v, = N-' ¥ p* for N large
enough to yield |lpyv, —ull <e; then v =y =v =14, |lw—rll=
ol — vl Il < e — w0l - 11 2]] < e. Consequently we obtain a unique
cluster point v of our net to which the net must converge, with # =,
¢ e (2) and the remainder of our proof applies.

3.4. Our next result gives more explicit information about the least

ideal of a subsemigroup of S when S is abelian.

THEOREM 3.5. Let S be abelian, and X be the subsemigroup of S

generated by a subset E of S, with carrier S,. Let .7 and I be the
respective least ideals of 3 and S, with identities 7 and e respectively.
Then _# s the set of I-translates of Haar measure 7 of the subgroup h
of I generated by {(ecarrier p)(e carrier #)~': ¢ € E}.

Proof. We already know from Theorem 3.1 and Corollary 2.31 that
_# is the set of [—translates of Haar measure 7 of some subgroup g
of I; we have only to show g = h. But each subgroup g, of I is deter-

mined by its orthogonal subgroup g;- = {« e I: a(g) =1} in the
character group I of I, so we need only show g~ = A*+. Moreover the
elements of g+ are just those « in I for which Na) = Sa(m)p(dm) =1

(for all others 7(«) = 0), hence g~ = {«a ¢ Iile)l =1, pe 7).
Now for ¢ in ¥, e carrier # C carrier » carrier # = carrier y# C I and
since npp € _#, carrier p¢ is a coset yg < I. Thus

(e carrier p)(e carrier #)™' C yg(yg)™" =g,
and « € g+ implies @ ¢ A~. To see that 2+~ C g~, note that each «
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in I has a continuous multiplicative extension a* to S,: simply set
a*(x) = a(ze), « € S,. Further a* has a continuous extension a’ to all
of S by Urysohn’s lemma, and, for #in ¥, (') = p(a*); thus if pz— p
in 3, p(a*) — p(a*). But since a* is multiplicative if we define the
(Fourier) transform /j e C(f) of ¢ in ¥ by setting p(a) = pla™) =
Sa*(x)p(dw), we have (#v)" = £t - ¥ (ordinary product in cd )), with f(a)
= p(a) for ¢ in . 7 (since carrier ¢ is then C I).
Let « € A+~. Then

a((e carrier p)(e carrier ¢)~') = a(e carrier ) - a(e carrier p) = 1

for ¢ in E which implies « is constant on the sets ¢carrier y, ¢ in E.
Thus

i) = (e @ptda) = [at@orn(aa)

is a unimodular complex number. But then ()" = f#- ) implies that
| /()| =1 for ¢ in the algebraic subsemigroup of S generated by E;
since p;— ¢ in Y implies f(a) = (™) — p(a*) = f(a) the same must
be true for all ¢ in ¥. In particular for # in .7, |pa)| = |ia)| =1
whence « € g~ and g~ = h*.

4, The semigroup S. When S is abelian the subgroups of S, the
convolution semigroup formed by the unit ball of C(S)*, can be deter-
mined from those of S. R

Let I be a non-trivial (i.e. #= {0}) subgroup of S, with identity 7.
Clearly 0 ¢ I' and consequently ||g|l=1 for ¢ in I"; for |[z]l <1
implies #* — 0 and thus 0 € /. Now by the Radon—Nikodym theorem
we can associate with each complex measure ¢ a non-negative measure
[#] and a unimodular Baire function p, for which p(dx) = p.(x)| x| (dx)
(we shall express this by writing # = p, - [#]) and |[[z#||] = ||¢#]l. For
write ¢ = p — g, + i(p; — p) with ¢, = 0, and let v = g, + 1, + 5 + .
Each p, is absolutely continuous with respect to v so there are functions
f; in L,(v) (which we can take to be Baire functions since each v integrable
function is equivalent to a Baire function) for which z#, = f; - ». Set

f=fi—fH+dfs—1), lelde) = ()] v(d)

and p,(x) = f(x)/|f(®)| unless f(x) =0 when we set p.(x) =1. Clearly
p. and |#| have the required properties.
Thus for # and v in " we have

@1) 1=lmll= Sl | | (da) = gp 1@) , féoy;p(dw)»(dy)

- Sj @) | 1) () || (dy) < Hl ) (d) || (dy) =1 .
Pus(@y)

puida) = (|
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Consequently we have a |v| null set E for which y ¢ E implies there
is a || null set E, for which x ¢ E, implies p,(x)p.(y) = p..(xy). Hence
for f in C(S)

B 1 B R
|| (F) = Sf(x) g M) = ng(xy)p;v(xy) p(da)(dy)
- g §f<xy> 2LEOAY) (1 (de) [ | (dy)
Pusl@y)

- ggf@y)m(dw)\»\(dy) =10,

so that ¢ — || is an (algebraic) homomorphism of 7" onto an algebraic
subgroup I, of S, whose identity is obviously |7|. Let G = carrier I,
= carrier I'y, so that I’y consists of all G-translates of Haar measure
7| of a subgroup g of G. We shall see later that #— |#| is also con-
tinuous, so that I’y is compact and coincides with 7I7;.

Now each Baire function f on S has its restriction to g a Baire
function of ¢ (for the set of real valued f’s for which this holds is a
monotone class containing C#(S)). Thus p,|g is a Baire function on g¢.
Applying (4.1) to the special case ¢ =» =7 we conclude that there is
an |7| null set £ of g for which y ¢ E implies there is an |7 | null set
E, of g for which « ¢ E, implies p,(®)p.(y) = p,(xy). For simplicity let
us now write p, = p, and, restricting our attention entirely to g, write
da for |7|(dx), the element of Haar measure on g, and speak of |7]
null sets as null.

For f € L/(g) (which we take as a Baire function of g) let M(f) =

S S(@)o(x)dx. Since y - E, is null by translation invariance, and = ¢ yE,

implies ¥~z ¢ E, and thus p(y'2)p(y) = p(y~'2y) = p(x) for y& E, we can
write (with f % the usual convolution in L,(g))

M(F» 0y = | £+ by = [{ b opoiyds
= | [rome-ap@nady = ([ romerzpt-opowiedy
= { )My = mer) - My

s0 that M is a multiplicative functional on L(g). Thus we have a
character # of g for which p = fmod |[7| on the carrier g of |7|, and

clearly then y(dx) = B(x)|7|(dx). Moreover since § = G/g~ we have an
a in G for which alg = B, so that y(de) = a(x) |7y |(dx) as elements of

S, or y=a- 7). (Note that essential use is made here of the abelian
nature of S).
Now a™' can be extended continuously to all of S; since each element
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of I" vanishes on subsets of G’ the mappx— a~'- ¢ is clearly a one-to-
one continuous map on I°, and therefore a homeomorphism. Further
it is clearly multiglicative, 80 ¢ — a ' ¢ is an isomorphism of I with
a subgroup /', of S. The identity of I', is |7|, and thus for » in I,

[ [daran) = 1 71da) = 1

whence

1§S

Consequently (1) is a unimodular complex number [A(v), and since
(1) = v, (1), B is multiplicative ; evidently j is continuous and thus

a character of /';. Moreover |(1/f())(dx) =1 implies (1/8(x))» = 0, so
the map r : v - A(v)~' is a continuous homomorphism of 77, into a subgroup
of S. Further the composition of r with g — a' - g, taking

Su(dx)

v i dy) = 1) - [l =1

patte po flat e p)lat e p= 2

clearly must map ¢ — | | since ¢ = Bla~'p) - 2 with 2 = 0 and f(a- - p)a
unimodular on G. Thus our original map # — |#| was continuous and
iy — B(v)""v maps I'; onto I',, which now appears as the full set of
G-translates of Haar measure |7| on g.

For v in I'y let =% = @, - v where 6, is a closed subset of the circle
group 7, and in particular 6 = 6, is a subgroup of T. Since I, =
Uyepo@\, - v it remains to find the #,. But v e Iy, t e T and tv e I,
imply f(tv) =t since v = 0 and pA(&) 'ty = 0; thus 5O, - v) = 6,. More-
over since yv— 0, .y maps I, (topologically and) isomorphically onto
I'/@ 7| and £ (taking @ |7| onto #) maps the quotient group 7I7,/@|7|
of cosets into T/® in a homomorphic fashion, and continuously (as is
easily seen), the composition v — #(@, - v) = 6, € T|0 is continuous. We
now distinguish two cases: ® = T so that, as we could have seen earlier,
I', = Ty (clearly this occurs iff I" is circular in the sense that 7" < I'),
or O is the group of nth roots of unity, » = 1. In the latter case we
may apply the natural isomorphism o(: & — &%) of 7/@ onto T to map 6,
into 7. Writing |%|,(¢["y) for the translate to g of |»| we thus have
¢(@) = o(@,,,) defining a character of G lying in g~: for the map
x> |7n|, of G into I'y is a continuous homomorphism as the composition
of G- Glg, the map from G/g into (G/g)? (C G) (continuous by [2])
followed by T, (cf. 2.3). Consequently @, consists of just the nth
roots of ¢(x) and we may express our general element of I, as ¢(x)'"] 7|,
where ¢ € G and ¢(x)'* denotes any root. In summary then, we have

THEOREM 4.2. Let S be abelian and I any non-trivial subgroup of
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S. If I' is circular in the sense that TI" C I" then there are subgroups
g and G of S, with gC G, and o fived « in G for which I =
{taa« p,it € T, x € G} where p is Haor measure on g, p, its translate
to 2g. If I' 4s not circular then in addition to g, G and a we have an
integer n =1 and a ¢ in g~ C G for which I' = {o(@)"a - p,: ¢ € G}
where ¢(x)'" runs over all nth roots of ¢(x). Conversely any such set of
measures forms a subgroup of S.

There remains only the last point which is fairly obvious in the
circular case. In the non-circular case any subset /7 of the type described
is algebraically a group, and one need only verify its closure. But if
(@) e - s~ v then by virtue of the compactness of G we can find a
confinal subnet for which a;, — 2, an element of G, whence « - Py =
o - o, since ¢(wy) = ¢(x) some nth root ¢(x)'™ of ¢(x) is a cluster point
of ¢(zs )" and ¢(x)'"a - p, is thus a cluster point of our convergent net,
hence —p and v € I'.

REMARK 4.3. The first portion of our proof identifies the idem-

potents in S when S is a compact non-abelian group. For the argument
shows 2 = p 0= |pP = |p¢l, so that | ¢| is Haar measure of a sub-
group g, while p, again appears as a multiplicative character of g.

4.4. It may be worthwhile to note the analogue for S of Theorem
3.2: for S abelian and p, € S, N S pp — 0 unless there is an a in
C(S) which is unimodular and multiplicative on S, (the subsemigroup
of S generated by carrier |y ) satisfying to = « - | 1], in which case
NI >« - (Haar: measure on the least ideal of S,,LO(). For if 5 is
the subsemigroup of S generated by p, then as before N-' S¥_.u2 — v,
the unique element of the least ideal of the semigroup #(2). Clearly
v=01if 0 e &(2); if 0 ¢ & (2) then

(4.41) re zQ)=llerll=1,
and

(4.42) the least ideal _# of I is a non-circular subgroup of S as in
4.2 with n = 1.

For otherwise, in each case, we may conclude that 0 ¢ ¢°(2). Con-
sequently . # = {f-9,:2x e G} where § ¢ G, G is a subgroup of S and
» is Haar measure of a further subgroup.

But just as in the proof of 4.2, #— |¢| is an algebraic homomor-
phism of &(%) into S. Moreover the image of .~ = {5,:2x € G} is
closed and is easily seen to be the least ideal of the closure 2, of the
image of ¥. Thus by Theorem 3.1, G is the least ideal of S, = carrier ¥,
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and as in theorem 3.5 we can extend /3 to a continuous unimodular
multiplicative function £, on S, by setting A(x) = f(ze), = € S,, where
¢ is the identity of the least ideal G of S,. Since /7' is multiplicative
on S, and all # in Y vanish on all Borel subsets of S}, p#— f7t- p is

a homomorphism on ¥ which in particular maps .~ into S. As a con-
sequence it must map all of ¥ into S: for if v = f;' - ¢ is the image of

p € 3 then, since (f-7)u e .7 we have 7w e S whence 1 = 7u(1) =
7(Lp(A) = »(1), so ||vil=1, »=0. Evidently then B{'-pz=|zg|. In
particular ¢, = £, | # | and we may take a as any continuous extension
to all of S of $,. Finally if such an « is available then

-l =(a-mh)" so N30 =a - (N7l
and the final assertion follows from theorem 3.2.

5. Application to C(Z)*. Let 2 be a locally compact abelian
group and Cy(%’) the Banach space of continuous functions vanishing
at oo, so that Cy(<')* consists of the finite regular Borel measures on
% . Uniform continuity of each element of Cy(%) allows one to define
convolution just as in § 1, and Cy(2)* is easily seen to form an abelian
semigroup. However, the natural choice of the »* topology of Cy(%)*
will not yield the unit ball a topological semigroup®; rather it is the
topology of pointwise convergence of Fourier—Stieltjes transforms (in
which g —» ¢ & () — () for each « e %) which does, and it is
this topology we shall adopt.

The possibility of applying our previous results to the (topological)
semigroup we thus obtain from the unit ball of C,(2)* arises from two
facts, both due to Eberlein [3]. Let ©* be the almost periodic com-
pactification* of 2. Then as Eberlein has noted there is an isometric
imbedding of C)(2)* into C(Z *)*: for pr € C(Z)* let p/'(f) = \ f(@)p(d)
for f almost periodic on %’. Since the almost periodic functions on &
are isometrically isomorphic to C(Z*) we obtain ¢ e C(z™*)*. The
clearly linear map ¢ — p’ then preserves norms by the following argu-
ment : select a compact K € & for which |#|(K’) < ¢ and an element

S of the unit ball of C,(%) for which .Sf(x)y(dw)‘ = llpll — e, so that
H J (x),u(dx)‘ > llpll — 26. Since ¥ has sufficiently many characters the

map of & into &* is one-to-one and thus a homeomorphism on K.
Consequently’ we can find an F in the unit ball of C(%&*) which extends

3 For example take u, = mass 1 at the integer » € R; then p, -0, and p-, >0 in
the »* topology of Cy(R)* as » —> + o while ppu-n = po-

¢ It will be convenient to view & asadense algebraic subgroup of <« %, and the
almost periodic functions on %7 as the restrictions, to % of elements of C( &¥), cf. [6, 9].

5 We can simply extend the real and imaginary parts of f| K separately by Urysohn’s

lemma to obtain an extension FV, and set F(z) = F'(z) - A A\ | F'(®) |~1) (=0 of course if
F'(x) =0).
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Sl K, a continuous function on the compact subset K of < *. Then we
have

@) = || Feman)| 2| r@pao)| - ezl - 3,

and |||l = ¢ll — 8e. Evidently || ¢/ || < ll¢ll, so # — ¢/ is an isometry.
Moreover it is clear that since both & and & * have the same algebraic

group of characters, the underlying group of £, we may write & = g’
since both of these Fourier—Stieltjes transforms coincide as functions

on the set &, and thus (since for measures 2, v on either group ()"
=p-9) () =pv. Consequently the map #— ¢ is an algebraic
isomorphism of the semigroup forrged by the ball of C)(2)* into that
formed by the ball of C(Z*)*, <*. Further, our choice of topology
is just that which makes the map topological as well.

The second and crucial fact for our application which we obtain
from Eberlein is the following corollary of the main result’ of [3]:
Consider Cy(Z)* as imbeded in C(Z*)*. Then its elements are just those

measures p on <* with ft continuous on . Thus we can eagily identify
the range of p—~ .

Suppose then we are given a non-trivial closed subgroug I" of the
unit ball of C,(Z)*, an let I, be its isomorphic image in < *. Then
I'; is a subgroup of £* and thus by Theorem 4.2 each of its elements
is of the form t« - 7,, where ¢t € T, « is a character of a subgroup G,
of &*, 7 is Haar measure of a further subgroup g, of G, and 7, the
translate of 7 to the coset xg, C G,; indeed since each character of G,
extends to one of & *, we shall take a« € £°*", i.e. as a character of
% . But the identity «a -7 of I'; was already present in Iy and thus

has a continuous Fourier—Stieltjes transform on £, whence % is con-
tinuous on & . Since 7 = ¢,+, the characteristic function of the sub-
group gi- of T *"( = < in the discrete topology) orthogonal to g,, we
obtain the fact that g¢;~ is an open and closed subgroup of £, and

ff/g; is discrete. But f&’/go* is the character group of that subgroup
g of @ orthogonal to g;-; consequently g is a compact subgroup of < .
If p denotes its Haar measure then 2 = ¢,. = @« =7 80 7 = ¢’ by the
one-to-one-ness of the Fourier-Stieltjes transformation.

Now consider a general element ¢« - 7, of Iy, The fact that its

6 Specifically Eberlein’s result may be stated as follows: for u € C( &%), € Ls( f&)
(in the usual sense) implies there is a v in Co( &7)* for which Y coincides with . in Lo(Z).

A LA A .
Since here our ; is continuous, as v must be, we obtain p = v as functions and thus p = v/
by the (one-to-one)-ness of the Fourier-Stieltjes transformation,
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transform is continuous implies (7,)" is continuous while

()" (B) = P@)7(B) = P(x)g,:+(B) ;
thus as a function of f3, A(x) is continuous on the open subset g;~ of

Z, hence on all of . By duality we then have a y in & for which
Bx) = B(y), all B, and we may identify x as an element of Z N G,.
Conversely each x in & N G, gives rise to elements of /"y which already
lie in 7", (for such measures lie in the image of Cy(%)* in which ', is
relatively closed by hypothesis) ; thus I", consists of just those elements
ta - 7, of I’y arising from z’s in & N G, = G, algebraically a subgroup
of «. But clearly G is closed in Z, and is thus a subgroup of %,
since the map ¥ — & * is continuous.

Finally it is clear that if I” (and thus I,) is circular so is Iy ; con-
versely if Iy is circular then T« - 7 C I'; and thus T« - y C I',, whence
Iy, and " are circular. We have proved

THEOREM 5.1 Let & be o locally compact abelian group and let
CAZ)* be topologized by pointwise convergence of Fourier—=Stieltjes
transforms. Then any closed convolution subgroup I’ bf the unit ball of
C(Z)* s determined as in Theorem 4.2 where g is a compact subgroup
of &, G is a closed subgroup, and a and ¢ may be taken as elements

of z.

5.2. It should be noted that the convolution semigroup formed by
the ball of Cy(&)*, although not compact, shares some properties of
compact semigroups: the closure of an algebraic subgroup is again a
group, indeed a topological group in the relative topology (thus the last
applies to an algebraic subgroup). For if I" is an algebraic subgroup
its image /') in C(£*)* is an algebraic group, so that I'; is a compact
topological group. But of course /'~ is just the preimage of the inter-
section of /'y with the image of C,(%)*.

Finally suppose /" is a non-trivial algebraic subgroup of the ball of
Cy(Z)* which in addition is »* closed (compact). Then /" is a closed
subgroup as described in Theorem 5.1 with G a compact subgroup of
% (and conversely). For, changing our notation, let G denote the sub-
group of & produced via Theorem 5.1 for I'~. Then the set H of =
in G corresponding to elements ¢« - g, in I" forms a dense algebraic
subgroup of G, as is easily seen. If G is not compact then we have a
net {x;} € H which tends to o, so that the corresponding net of
measures {t« - ..} tends to 0 in the »* topology (¢ being compact).
But this implies 0 € I”, which is clearly nonsense.

Consequently G is compact and, since the elements of I all vanish
off G, the w* topology on I" reduces to the topology of pointwise
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convergence of Fourier—Stieltjes transforms (by virtue of the Stone—
Weierstrass theorem and the existence of sufficiently many characters
of ). Therefore the image of 7" in C(z"*)* is compact and closed,
whence I" = I~
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LINEAR OPERATORS AND THEIR CONJUGATES

SEYMOUR (GOLDBERG

Introduction. In a paper of Taylor and Halberg ([3]), a complete
systematic account of the theorems about the range and inverse of
a bounded linear operator T and its conjugate 7' was presented. For
example, questions concerning 7' and the corresponding questions con-
cerning 7" such as the following were answered:

Does Tx = y have a solution z for each given y? If not, for which
y’s does a solution exist?

Does the operator 7' have an inverse 7!, and if so, is 7! bounded?

These matters were considered for a bounded linear operator T
defined on all of a normed linear space X with values in a second normed
linear space Y.

The purpose of this paper is to investigate the same questions for
T and T', where now T is defined on a linear manifold < dense in X,
and moreover, T need not be bounded. It is shown that most of the
theorems are still valid under these weakened hypotheses. KExamples
are constructed to show which theorems no longer hold.

Next, by imposing the condition that 7' be a closed linear operator
on <7, we show that we obtain the same results as for the case that
T be bounded on all of X.

1. The conjugate transformation. Throughout this paper we shall
use X and Y to denote normed linear spaces over the real or complex
scalar field. The space of all continuous linear functionals on X will be
written as X.

The following theorem is well known.

THEOREM 1.1. Let Y be complete. If T is a bounded linear trans-
formation on 7 < X to Y with norm ||T}], then T has o unique exten-

tion T on = and |7} = | Tl.

DerFINITION 1. Let T be a linear operator (not necessarily bounded)
with domain <7 dense in X and range <% C Y. The conjugate trans-
Sormation 1" is defined as follows: Its domain = (T") consists of the
sets of all y ¢Y’ for which y'T is continuous on &; for such a y' we
define Ty’ = 2/ where 2’ is the bounded linear extension of y'T to X.

THREOREM 1.1 assures the existense of such an z' which is unique.
Thus 7" is well defined. It is easy to see that = (T") is a linear mani-
fold and that 7" is a closed linear operator. We refer to 7" as the

Received June 17, 1958. The author gratefully acknowledges the advice and counsel
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conjugate of 7.
Unless otherwise indicated. T' and 7" will be as in Definition 1.

DEFINITION 2. A set F' contained in the space of all linear func-
tionals on X is called total if o’x = 0 for all o’ € F' implies « = 0.

The following theorem is due to Phillips [2, Theorem 2.11.9, p. 43].

THEOREM 1.2. If T is closed, then = (T) is total.

REMARKS. The converse of this theorem need not hold. For let &

be such that & = X but 7% X =Y, and let T be tne identity opera-
tor on . However, we easily prove the following.

THEOREM 1.3. If Z(T)= X and Z2(T") 1s total, then T s closed.

Proof. Let limz, = 2 and limTz, = y. All we need show is that
y = Ta. If this were not the case, there would exist a ¥ ¢ & (T") such
that y'(y — Tx) #+ 0. Since %'T is continuous on X, we have that

yy = limy'Tx, = yTx
which is a contradiction.

2. The state of a linear operator and its conjugate. To discuss the
range of linear operator T, we consider the following three possibilities,
where ZZ(T) will denote the range of 7.

I. Z2(T)=Y,

II. #ZT)+7Y, but Z#(T) is dense in Y,

III. .2Z(T) is not dense in Y, that is 2 (T) #Y .

If T has an inverse, then the inverse mapping 7' is a linear opera-
tor from the normed linear space .2 (T') into the normed linear space
X. As regards the inverse of T, we consider the following three pos-
sibilities :

1. T has a bounded inverse,

2. T has an unbounded inverse,

3. T has no inverse.

By the various pairings of I, II, or III with 1, 2, or 3, nine con-
ditions can thus be described relating to .<Z (T) and T-'. For instance,
it may be that . (T) = Y, and that T has a bounded inverse. This we
will describe by saying that T is in state I,, (written T e L,).

Since 7" is a linear operator from < (7T") into X', we can use the
above classifications for <#(1") and the inverse of 7". To the ordered
pair of operators (7, T") we now make correspond an ordered pair of



LINEAR OPERATORS AND THEIR CONJUGATES 71

conditions which we call the ‘“state’ of (T, 7"). Thus if T € I, and
T" e 111, we say that (T,T") is in state (I,, III,) (written (T, T") € (1,,11IL,)).

At times we shall use a notation such as (7, 7") e (L, 3) to mean that
Tel, and T’ has no inverse.

The question arises as to whether (7, 7") can be in each of the 81
states. It will be shown that only 16 states can occur if no additional
assumptions are made about X, Y or 7. However, if we require that
X be reflexive, Y complete and 7' closed, the number of actually pos-
sible cases drops to 7.

We shall now exhibit several theorems which will enable us to
determine which states can or cannot occur for the pair (7, I7).

THEOREM 2.1. If 1" has a continuous inverse, then F# (1) is closed.
(7" cannot be in IL,).

Proof. Suppose there exists a sequence {y,} from 7 (T") with
Ty, - «'. The sequence {y,} is a Cauchy sequence since ||y,—y,|| =
M\ Ty, — Ty, || where M is the norm of (7”)"' as an operator on
F(T"). But Y is complete, therefore there exists a ¥ € Y such that
limy, = ¢'. Hence y' € Z(I") and T'y = 2’ since T" is closed.

Theorems 2.2 through 2.5 are due to Phillips [2 pp. 44-45].

THEOREM 2.2. A necessary and sufficient condition that #(T)=Y
is that T have an inverse.

THEOREM 2.3. If <z (T') is w* dense in X', then T has an inverse.

THEOREM 2.4. If FZ(T) =Y and T~ ewists, then (T2 = (T')Y
Surthermore, T has a bounded inverse if and only 1f T' has a bounded
nverse defined on all of X'.

THEOREM 2.5. F(T") = X' if and only +f T has a bounded inverse.

The following theorem will show that three more states for (7', 1")
cannot exist if we require that Y be complete.

THEOREM 2.6. If Y s complete and F(T) =Y, then T has a con-
tinuous inverse. (States (I, 2) and (I, 3) cannot exist if Y is complete).

Proof. If 1" did not have a continuous inverse, there would exist
a sequence y, in Y’ such that ||y,||— o and ||T"y, || = 0. Since F#(T)=Y,
it follows that ||y.yll— 0 for each y e Y. Hence we can conclude
that the sequence {||y,||} is bounded, by a theorem due to Banach
[1 p. 80, Theorem 5]. We have thus reached a contradiction.

3. The state diagram of pairs (7', 7'). In order to present system-
atically which states can or cannot occur for pairs (7, 7"), it will be
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convenient to construct a ‘‘state diagram’’ conceived by Taylor [3 p. 100].
This diagram is a large square divided into 81 congruent smaller squares
arranged in rows and columns. We label each column at the bottom
denoting a given state for T, and each row by a ‘ state’ symbol placed
at the left, denoting a certain state for 7. The square which is the
intersection of a certain column and row will thus denote the state of
the pair (T, T). A square is crossed out by its diagonals if the corres-
ponding state is impossible without requiring X or Y to be complete.
As regards the remaining squares, we place the letter Y in a square to
indicate that the state cannot occur if Y is complete.

First Slale Diagram

1115
I
111,
111,
I3
Y
11,
I /
Is
I 5
v
v
I Iy I3 1T 11, I; I, I, IIL
A

Y: Cannot occur if Y is complete

4. Example of states which can occur. Excluding (I,, IIL), all of
the examples in this section will be taken in the space ~* with
X=Y= 2 The sequence space ~ is defined to consist of all sequences
{¢&,} = « such that 3°|&,|* < . The norm in ~* is defined by

el = (16,19 ™.

It is well known that the conjugate space (~?) of ~* is congruent to /%,
whence /2 is reflexive. In fact, every element in (~?) is representable
in one and only one way in the form
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(1) e =3 af,
1

where the sequence @ = {«,} is an element of ~°. The correspondence
between o’ and a is a congruence between (/% and /% We shall write
x = a.

The set of vectors u,, where u, =(1,0,---), u,= (0,1, ---), etec.
will frequently be used.

As the domain <7 of each linear operator 7' in the examples to
follow, excluding (I,, III,), we take the linear combinations of the u,.
Clearly <7 is a subspace dense in X = 2.

Taylor and Halberg [3 pp. 102-104] have shown that the seven states
d, L), €, 1IL), (1L, I1L,), (1L, IIL), (111, L), (IIL, IL;), (III,, III,) are all
possible even when ¥ = X = <& = /* and T is continuous.

We shall now demonstrate that the conditions corresponding to the
6 blank squares still unaccounted for in the state diagram can also
occur.

(IT,, I,): It is clear that if we let Y = X and T be the identity
operator on <, then (7, T") has the state (II;, I,).
(IIZ, IIII): Let Y:X. If x:(Eh Ez, ccy, Eny Oy "') )
define

Tx:(ijéj,éz’ -.-,6",0,...).

Suppose
Y = (a,a, --+)e IT(T)c 2.
From formula (1),
' Tu| = lak + o | = la ]k — || = aulk — (]|

for £ > 1. But ||us]| =1 and y'T is continuous on <7, therefore «;
must be zero. We now wish to determine the operator 7". If Ty =
(B, B., +++)e % then from formula (1),

B =Ty u, =y'Tu, = ay

whence we see that 7"y =y'. Since a; = 0, it is clear that = (T") #
X =% Thus T"elll,, Now Tz =0 implies that 0 =§¢, =& = ... =
€, =& 4 26, + -+« + nE, or that 2 = 0, that is T exists; furthermore
% (T) #+# Y. An inspection of the state diagram shows that 7" must be
in II,. For the state (I, III,), we present two examples for the cases
where X is reflexive and Y is not complete or where X is complete and
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Y is reflexive. We do not have an example for (I, III,) where X is
reflexive and Y is complete.

(I, III)): Take Y = < and let T be the operator in the above
example. If y= 0,7, +++,%,0,-++), then Tx =y where «=
(o — S8knky 99y =2+, 9, 0, -=+). Thus F(T)= < =Y. The above dis-
cussion now shows the existence of state (I,, III,).

In [3 p. 108] it is shown that (7', T") is in state (I,, III,) where T is
a bounded linear operator from a normed linear space Z, which is not
complete, into a reflexive normed linear sapce Y; for example, ¥ = /2,

Let X be the completion of Z. Thus Z= X and (T,7T") is in state
(L, III,) with respect to X and Y.

(II3, IIII): Let Y: .X. if T = (51, Ez, "'ygny 09 "')y let
Tx = (2527 "'ynsn’ Oy "') .

T is clearly in II,. Suppose ¥ = (o), a, -+-)e Z(T') and that Ty =
By Boy -+-)es* Now

Be = TYu, = y'Tu, = o (kuy_,) = ka—, ifk>1,
pr=0.
Hence #(T") + X' = »*. Moreover

o

1Ty = S ke = S a1 = NIyl

Thus 7" e I11,.
(I, I1L): Let Y=X. If 2 = (&, ++-, &, 0, ---), let

To = (64 L & 36+ o+ bidw &2 -0 Galn, 0, o )

where

n —

{I/n if n is even

n if » in odd.
Clearly T exists; however T-' is not bounded since
HTwol) = W 4 wo0)[2E )| = 1]k

and ||u,|| = 1. Furthermore, if ¥y = (r;, 7y ++*, 75,0, +++), thenTx =y
where

N
x:(Tl_Z‘T;w‘ZTz"',NTNyO: “.)

which shows that



LINEAR OPERATORS AND THEIR CONJUGATES 75

HA(T) = <, hence Tell,, Let xz,=(1,1/2,---,1/k,0,---). Then
To, =04+ 1/22+ 1+ -+« +bifk, /2%, -« 1]k, 0, ---) .
Set B,=1+1/2*+ 1+ -++ + b,/k. Obviously
B,—» o, If y=(x,q,---)e 2(T), then

x E
Vo' Ty = (B + 2 af?] = |au| By — 2| ay/7] -

But
ledi< S L S Gz s L
teor g T n

and 4’7 is continuous on <7 Since B, -> oo, it follows that «; = 0. If
Ty = (P, By ~-+)e? then B, = T'yu, = y'Tu, = 0 whence we see that
T e 111,

We shall now show that 7" does not have a bounded inverse.

Let y, = 1, for k>1. If = (5§,6,---,6,,0,---) and ||z|| =1,
then |y Tx| = |&/k] £ 1. Hence y,e Z(1"). Now

p o {0 i k+g
T'yu; = yuTu; = 1k if k=3

or || Tyl = lluy/k]| = 1/k, which shows that 7" is not in state 1. This
together with the fact that 7" e IIl and T e II, enable us to infer from
the state diagram that (7, 7") is in state (I1,, IIL,).

(111, I1I,): Let Y = % Similar to the preceding example, we
define

TQ? = (07 51 + 1/253 + eee bn/'nr 52/27 "';én/n, 0) "') .

By the same procedure as above, we see that T elll,; also if ¢ =
(ay, ay, +++,)e (T, it follows that «, = 0 and therefore 5, = T'y'u, =
yu, =0 Hence T"e Ill. From an inspection of the state diagram, it is
clear that 7" e I1L..

We have now shown that twelve of the thirteen states are possible
with X and Y reflexive. State (I,, III;) is also possible with X complete
and Y reflexive or with X reflexive and Y not complete. The state
diagram assures us that no other states are possible as long as Y is
complete. If X is complete and Y is not required to be complete, then
it is shown in [3] p. 106 that states (I, 1I,), (I,, ITIL,) and (I,, ITL,) can
oceur; i.e. the squares which have the letter Y become blank. Thus
we have the justification of the entries is state diagram.

The question now arises as to whether in considering the same type
of hypotheses on X and Y, that is reflexivity and completeness, we can
show that certain additional states are impossible if we put futher



76 SEYMOUR GOLDGERG

‘‘ reasonable ”’ hypotheses on T, for example T closed. The answer to
this query is in the affirmative as we show in the next section. An as-

sumption that X be reflexive played no part in Theorems 2.1 through
2.6.

5. The State of a closed operator and its conjugate.

LEMMA. If 1" has a continuous inverse, then for each « > 0, 0 s
an intertor point of TS, where S, = {x|xe Z||z|| < a}.

Proof. An inspection of the first part of the proof of Theorem 6
[3 p. 97] will exhibit the proof of the lemma. It is to be noted that
the argument does not depend on the hypothesis that 7" be bounded.

THEOREM 5.1. Suppose that X is complete. If T is closed and T'
has o continuous inverse, then #(T) =Y. Moreover, if T-' ewists, it
S CONELNUOUS.

Proof. Define S, = {z|lze “||z]| =1/2", n=1,2,..-}. By the
lemma, we can choose a sequence of positive numbers {¢,} such that

See, < oo,and V, = {ylye Y, |lyll <&,}c TS,. The existence of these
V. and the arguments used in proving Theorem 2.12.1, p. 46.2 [2] will
also prove this theorem. If, in the above theorem, 7' were continuous
on X, that is & = X, one could conclude that Y is complete. (cf. [3
Theorem 6 p. 97]) However, we cannot conclude that Y is complete in
Theorem 5.1 even if & = X. The following example illustrates this
assertion.

EXAMPLE. Let X be any complete normed linear space of infinite
dimension and let H be a Hamel basis of X with all elements %€ H such
that ||2]] =< 1. To each xe X there corresponds a unique finite set
hiyhy, +++,h, in H and unique scalars ay,a,, «--,h, such that = S ra.h,.
We now define another norm ||«||; on X by letting ||z||, = > |«;|. Taylor
and Halberg [3, p. 109] show that X with this norm, which we desig-
nate by X, is not complete. Define 7' as the identity mapping from X
onto X;. T has a bounded inverse, since

17wl = ol = Slal = Sladll = 1]l

In addition, 7 is also closed, for suppose =z, - « and T, — y. Since
Na, — 9l < l|l@n — yll = | T2, — il and ||T2, — y|l, =0, it follows that
Ta = =y. An inspection of the state diagram shows that 7" has
a bounded inverse. Thus the hypotheses of Theorem 5.1 are satisfied,
but .#(T) = X, is not complete.
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This example also serves to illustrate that in the hypotheses of the
‘“closed graph theorem '’ it is essential that the closed operator map
into a complete normed linear space.

DeriNiTION 3. If E is a subset of X, define
E°={a|a'eX; ¢’ =0 for all xe K} .
DEFINITION 4. If S is a subset of X', define
°S = {z|a'z = 0 for all z'e S} .

The following known lemma is easy to prove.

LEMMA. Let X be reflexive. If M s a closed linear subspace in X,
then M = (°M)°.

THEOREM 5.2. Let X be reflexive. If T-' exists and Z(1") is total,
then Z(T) = X

Proof. We first show that °Z(T") = (0). If xe°Z@(T"), then
yTo =Tyz =0 forally e Z(T"); but then Tw = 0 since Z (T") is total.
The fact that 7' exists implies that @ = 0. Clearly 0¢ °.2Z(T"), hence
°#Z(T") = (0). Applying the preceding lemma, we see that

(T = ("2 T))° = (0)° = X

COROLLARY. Let X be reflexive. If T is closed and T ewists, then
AT =X.

Proof. Theorems 1.2 and 5.2.

6. The second state diagram. The two theorems just proved as
well as the state diagram in §3 enable us to determine the state diagram
for a closed operator. We place X-R-t in a square to indicate that the
state cannot occur if X is reflexive and 7 (T") total. An X-c in a square
will indicate that the state cannot oceur if X is complete and T is
closed.

This diagram is a generalization of the Taylor-Halberg state diagram
for T bounded on all of X.

7. The spectrum of an operator and its conjugate., In the present
section we consider a linear transformation 7', not necessarily bounded,

with & = X and “Z(T) X, where X is a normed linear space. In
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this case, T\ = A — T is well defined on <, where 1 is a scalar.
DEFINITION 7.1. The values of 2 for which 7', has a bounded inverse

with domain dense in X form the resolvent set p(T) of T'; that is
T.e 1, U ll,. The values of 2 for which 7', has an unbounded inverse

Second  State Diagram

XR-L
111,
14
YRt Y YRt
111,
X-c X-c| X-¢
1L
s
Y
I,
10
I3
) B
e X-c
I i
L L, L, I, I, I I I, I
T/ —>

Y: Can’t occur if Y is complete.
X-c¢: Can’t occur if X is complete and 7' is closed.
X-R-t: Can’t occur if X is reflexive and </ (7") is total (in
particular if 7 is closed).

with domain dense in X form the continuous spectrum Co(T'), that is
T,e 1, U II,. The values of 2 for which 7', has an inverse whose domain
is not dense in X form the residual spectrum Ro(T), that is T, e 111, U IIL.
The values of A for which no inverse exists form the point spectrum
Ps(T), that is I, U I, U III,. The spectrum o(T) is defined to be the set
of scalars not in p(7).

These definitions can also be applied to 7”. We would like now to draw
inferences about the relationships between the above defined point sets
for T and 7'. Since 2 — T" = (2 — T), an appeal to the state diagram
in §3 easily verify the following.

THEOREM 7.1. (a) p(T) = p(T") or equivalently, o(T) = o(1").
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(b) Po(T) © Re(T") U Ps(T") .
() P(sT') < Rs(T) U Ps(T).
@) Cx(T) C Ro(T") U Co(T") .
(e) Co(T) < Co(T) .
¢) Ro(T)c Px(T").
(g) Ro(T') c Co(T) U P(T) .

Suppose we now require that 7' be closed, in addition to the other
hypotheses mentioned at the beginning of the section. It is easy to see
that 2 — T is also closed for 4 any scalar. Hence we can obtain the
following theorem together with Theorem 7.1 by referring to the
second state diagram in §6.

THEOREM 7.2. If T s a closed operator and X s reflexvive, then
Co(T) = Co(T") and Ro(T") C Po(T).

REMARK. Let X and Y be Hilbert spaces. If T is the adjoint
of T, then T* may be put in place of 7" in using the first and second
state diagrams. This is easy show by considering the fact that a Hilbert
space is isometric to its conjugate space.

REFERENCES

1. S. Banach, Theorie des opérations linéarées, Warsaw, 1932.

2. E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc.
Colloquium Publ., 31, (1957).

3. A. E. Taylor and C. J. A. Halberg, General theorems about a linear operator and
its conjugate, J. Reine Angew. Math. 198 (1957), 93-111.

UNIVERSITY OF CALIFORNIA, LOS ANGELES






MEAN PLAY OF SUMS OF POSITIONAL GAMES

OLOF HANNER

1. Introduction. In 1953 Milnor studied certain positional 2-person
games and defined what he called sums of such games [1]. He investi-
gated the optimal strategies for these games and gave some information
about them in terms of properties of the individual games.

In this paper we shall consider some other strategies for these sum
games. They are in general not optimal. However, the difference
between what a player gets when playing one of them instead of playing
an optimal strategy can be estimated. For the sum of n copies of the
same game this difference is bounded for all ». Hence, in mean this
difference is small for large n.

2. Description of the games. Essentially following Milnor [1] we
describe the games as follows.

Each game contains a finite set of positions P. There are two players,
A, and A4,. For each p e P and each player A4,, ¢ = 1, 2, there is a set
of possible moves M,(p) € P. For each p either both M,(p) and M.yp)
contain at least one move or they are both vacuous. In the latter
case p is called an end position. For any chain p, p, -+, p, with
D01 € M(p,) U M{p,), we shall have p, # p, for 7=+ k. The maximal
number [ of steps in all such chains starting with p, = p will be denoted
by i(p). Then

(2.1) p: € My(p) U My(p) implies I(p,) < U(p).

Note that a pass, p € M(p), is never possible. The positions with I(p) =0
are just the end positions.

For each end position the payoff functions k,(») = —k.(p) are defined.
They shall satisfy a condition given below. The players start with some
position and move alternatively until an end position is reached. Then
each player collects his payoff.

For each player A, and position p, let v,(p») be the value of the
game for A, when it is his turn to move at position p. It is given by

vy(p) = ki(p) for I(p) =0,
(2.2) v(p) = max {—v;_i() | ». € M(p)} for i(p) > 0.

Because of (2.1) these formulas define v,(p) by induction on I(p).
The numbers k,(p) are defined when p is an end position. We require
that they shall be given in such a way that
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(2.3) vi(p) + vp) = 0 for every p e P.

Since the value at p for A4, is v,(p) if he has the move and —uv,_,(p) if
the other player has the move, the amount v,(p) + v,p) is the gain for
a player of having the move. Inequality (2.8) therefore says that it is
at least as good to move as to pass (if this would be allowed).

3. Sums of games. We now define the sum of two games G and
'. A position in the sum game G + G’ is a pair (p,p)e Px P. A
move in G + G’ is a move in one of the games G and G’ and a pass in
the other. Thus the moves in position p + p' = (p, p') are

Myp + v') = Myp) x p'Up x M(p') .
We notice that

(3.1) Up + ') = Up) + UD') .

In particular the condition is still satisfied that in a chain of successive
positions all positions are different. The position p ++ p' is an end posi-
tion if and only if p and ' both are end positions. For the end positions
we define k(p + »') by

(3.2) ko + p') = kdp) + k(p') .

It is not obvious that the sum of two games satisfying condition
(2.3) also satisfies this condition. That this is the fact was proved by
Milnor [1]. It will also be proved in §8 below as a consequence of
Theorem 1.

It is clear that game addition is an associative and commutative
operation and that the formulas corresponding to (3.1) and (3.2) hold for
the sum of any finite number of games. A move in the sum of several
games is a move in one of them and a pass in all the others.

4. The main problem. The problem for us will be to give good
strategies for sums of games in terms of properties of the individual
games. Then we must decide what kind of strategies we shall consider
to be good.

One way to attack this problem is as follows. Consider » copies of
a game G and take their sum nG. Let them all be started in the same
position p. Then the value of the sum game is v;(np), where we have
written np instead of p + --- 4 p. Now, what happens to the mean
value v, (np)/n when n tends to infinity? In fact this number tends to
a limit sm,(p) which will be called the mean value of the game G at p.
In later sections we shall prove that m,(p) satisfies

4.1) my(p) + myp) = 0,
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(4.2) my(p) = vy(p) .

If we change 4 to 3 — ¢ in (4.2) and apply (4.1) we get

(4.3) —v5_(p) £ my(p) .

Thus m(p) lies between v,(p) and —w,_(p) which represent the values
for A, when the game is started at p by him or by A,_, respectively.

Of a good strategy we now require that it guarantees at least m,(p).
We see from (4.3) that though such a strategy may not guarantee v,(p),
A; will nevertheless get more by playing it than by passing (if this
would be allowed).

That the limit of v,(np)/n exists can be proved directly by an in-
equality given by Milnor [1, p. 294]:

V(D) — 5 (D') = v(p + ') = vi(p) + V(D) .
We get
vi((m + n)p) = v(mp) + vinp),

and the existence of the limit of v,(np)/n follows (cf. [2], Erster Abschnitt,
Aufgabe 98).

Another way of attacking our problem also leading to the number
m,;(p) will be used below. When a player shall move in a sum of games
he chooses one game, say G, and there makes a move. Thereby he loses
the possibility to make the move in one of the other games. If the value
of this possibility is put equal to ¢ it is natural to compare the situation
with the case when the player has to move in G and pay the amount ¢
to the other player when moving. This will lead to the games G, and
G given in the next section. In this approach the value m,(p) is defined
by induction on I(p), thus by a finite procedure and not by a limit process.

Conventions for the figures. When giving examples of games by
figures we use the following conventions. The positions are given by
points and the moves indicated by segments joining them. A move by
A, is a segment going down and to the left, a move by A, a segment going
down and to the right. At an end position we put the value k,(p) and
at any other position we put the two numbers (m, o), where m = m(p)
and ¢ = o(p) defined in the next section. Unless anything else is said,
the game shall be played with the highest point as starting position.

ExAMPLE 1. Let G be the game in Figure 1, and consider the sum
of n copiles of G. First let us start at p, in all games. Then of course
in about half of the games A, will get 7 and in the rest of them 8.
Hence the mean value m(p,) is (7 + 3)/2 =5. Analogously we get
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my(ps) = —1. If all games are started from p,, it can be proved that
an optimal play by both players is to choose the moves from p,, p,, and
p, in this order of preference. Thus
when both play optimally one move
will first be made in all games.
After these » moves the players start
P2(5,2) attacking the positions p, in the

0(2,3)

pEnn games where 4, made the move from

p,. At last the remaining games

4 with positions p, are played. About
0 -2 1/4 of the games will end in each

Figure 1 of the four end positions. Hence the

mean value my(p) is (7+ 34 0 — 2)/4 =2. The order of preference
between p,, p,, »; is to be compared with the numbers «(p,), o(p,), o(ps)
which are defined in the next section. As given in the figure, o(p,) =3,
a(p,) = 2, o(p;) = 1. The number o(p) is in a sense the value of the
move from position p.

ExaMpPLE 2. We change one of the payoff numbers in Figure 1 and
get the game in Figure 2. Let us again consider the play of the sum of
n copies of the game. If all the
games are started from p,, the opti-
mal play is now to choose the moves
from p,, »., v; in the order of prefer-
ence: p, P, U5, in accordance with
the fact that o(p,) = 5, o(p) = 4, and
o(ps) = 1. Thus if 4, moves from p,
to p,in a game, A4, will immediately
move in the same game. Thus all
games with only one possible excep- Figure 2
tion will end in the position with payoff k(p) = 8. Thus m,(p,) = 3. Only
if A, has the first move one game will end in another end position, the
one with k(p) = 0.

5. The games G, and G¥. Let G be a game satisfying as usual the
condition (2.3). Let ¢ be a real number = 0. When I(p) =0 put for
1=1,2,

vi(p; t) = k(D) »
mz(p) = kz(p) s
a(p) =0 .

For each p with I(p) > 0, we define four functions in ¢ :u(p;?), w(p;?),
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vp;t), v{p;t) and three numbers m(p), m(p), and o(p). They shall
satisfy (5.1)—(5.7).

(56.1) Each function u,(p; t) and v,(p ; t) is a continuous function for t = 0
with a derivative for all but a finite number of ¢-values. In each interval
between these exception values the function is linear with derivative 0
or —1. For ¢t greater than the exception values the function wu,(p;t) has
derivative —1 and v,(p;t) has derivative 0,

(5.2) vi(p 5 0) = v(p) ,

(5.3) ul(p ;) = max {—v,-(p; ) |1 € Mp)} — ¢,

(5.4) ulp; 0) = vip) ,

(5.5) o(p) =min {t |t = 0, ui(p; t) + ufp;t) =0},

(5.6) my(p) = (v ; o(p)) ,

(5.7) v(p ;1) = ulp;t) for 0 =t =< a(p),
= my(p) for t > o(p).

We shall see below that these conditions are related to two games
G, and GF. Let us first show, however, that they define our functions
and numbers by induction on I(p).

For I(p) = 0 the function v(p;t) is constant and equal to v,(p), hence
it satisfies (5.1) and (5.2). Let I(p) > 0 and suppose that for each p,
with I(p) < l(p) and in particular for each p, € M,(p) we have v,(p,;t)
defined satisfying (5.1) and (5.2). Then u,(p;t) can be defined by (5.3).
By (5.1) for each v,_,(p,;t) we get immediately (5.1) for u,(p;¢) and by
(5.2) for each v,_,(p,;t) and by (2.2) we get (5.4). By (b.4) and (2.3)
we have u,(p;0) 4+ u,(p;0)=0 and by (5.1) for u, p;t) we have
w(p;t) +ufp;t) > —oo when ¢t — . Hence, since up;t) is continu-
ous, the set in (5.5) is not vacuous and o(p) is defined and = 0. Then
(5.6) and (5.7) will define m,(p) and v,(p;t). That v(p;t) satisfies (5.1)
and (5.2) follows from the corresponding facts for u,p;?). Hence the
induction will work.

ExAMPLE 3. We give in the diagram in Figure 4 the functions
w(p;t), vi(p;t), —u(p;t), —v(p;t) for the game in Figure 3 and also
the values m(p) and o(p) for the same game.

Properties (5.1)—(5.7) give some further formulas. Since (5.1)—(5.7)
are only known to be true for {(p) > 0, we have to verify separately the
case {(p) = 0 each time we get a formula which has a meaning even in
this case. Note that u,(p;t) is not defined when i(p) = 0.
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Figure 3

v (p)

m{p)

—v.‘,(p)s

w(p;t): ACF, —uy(p;t): BCD,
vi(p ;1) ACE, —vyp;t): BCE.
Figure 4

Since by (56.1) u(p;t) is a decreasing function, (5.6) and (5.7) give
(5.8) v(p ; ) = max {uy(p; t), m(p)} .

Henece, in particular

(5.9) vi(p; ) = my(p) .
By (5.5) and (5.6)
(5.10) m(p) + myp) =0 .

Both (5.9) and (5.10) are true also when I(p) = 0 as is easily verified.
For any p they imply

(5.11) v(p;t) + v p;t) = 0.
By (5.2) and (5.9) we obtain
(5.12) v(p) = my(p) .

Since v,(p; t) has derivative 0 or —1, we have for ¢, < ¢,

0=v(p; b)) —vlp;t)=t, — ¢t .
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Apply this for ¢, = 0 and ¢, = o(p). Then by (5.2), (5.6), and (5.7)
(5.13) v(p) = my(p) + o(p) .

Both (5.12) and (5.13) are also true when I(p) = 0. For any p they give
a lower and an upper bound for v,(p).

We are now ready to define the two games G, and G mentioned
above. Both are defined for each ¢ = 0. They are played with the posi-
tions in G. The players play alternatively. But each time a player
makes a move into a new position in G he has to pay t to the other
player. Thus for large ¢ it will be expensive to make a move. Therefore
we introduce a new possibility. When A, has the move in G, he is allowed
to stop the game instead of moving. In G the same possibility is open
except in the starting position, where the player who begins really must
move (and pay t). When A, stops at p he eollects m(p). "Then A,._,
gets my_,(p) by (5.10). The value of G, at p is v(p;¢) and the value of
G* started at p is u,(p;t). This is seen by induction from (5.3) and (5.8).

For large ¢ it is a disadvantage to have to start in G. The starting
player will make a move and pay t and the other player will then im-
mediately stop the game. Thus if ¢ is great enough the starting player
will always lose. Thus G} does not satisfy (2.3). The game G,, how~
ever, satisfies (2.3) as is seen from (5.11). In fact we have introduced
the number m,(p) and the possibility to stop just in order to save this
property. The number m,(p) is defined by (5.5) and (5.6) as the value
of G¥ with starting position p, when t has become so large that it is no
more an advantage to have the first move in G;. The lowest t-value of
this kind is o(p).

6. The t-optimal moves. We will call a move in G a t-optimal move
if it is optimal in G,. Thus p, € M,(p) is t-optimal if

(6.1) vi(p;t) = —vy(py; ) — T

There is a t-optimal move at p for A, if v p;t) = u(p;t). Thus
we get from (5.7) the following important fact: If o(p) =¢ and if
p is not an end position there always exist ¢-optimal moves for both
players.

If o(p) =t we have v,(p;t) = m(p), and an optimal play of G, is to
stop the game at p and collect m,(p).

Now study a sequence p,, P, 0,y +++ , D, 0f positions that develop
when the players play alternatively and make t¢-optimal moves. If
o(p) > t, there are ¢-optimal moves at p,. Therefore the sequence can
be continued and we can go on in this way until we reach a position p
with o(p) < t. We suppose this already done, so that o(p,) = t.

We want to get some formulas for m(p,), 0 =< &k < [. Since all moves
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in the sequence are t-optimal we know that a player cannot get more
when playing G, by stopping at a position p,, & < [, than by moving into
Dp+1.  Thus if A, makes the first move and if we put v,(p,;t) = v, we get

6.2) my(pz) S v if 02k <,
(6.3) M Pyp1) =0 + L if1=2k+1<,

where the term -+¢ in (6.3) is the amount A4, shall have when the game
is stopped after an odd number of moves as a compensation for the fact
that he has made one more move than A4;_;, each player paying ¢ when
moving in G,. Since o(p,) < ¢, an optimal play at p, in G, is to stop
the game. Hence

(6.4) my(p) = v if [ is even ,
(6.5) myp) = v+t if 7 is odd.

Formulas (6.2)—(6.5) could also have been deduced from (6.1). Since
all moves are t-optimal we get v(py;t) = —v;4(p;t) —t = v(ps; t) =
~ V-5 ;) — t = -+- and (6.2)—(6.5) follow if we apply (5.9) and (5.10)
and the fact that since o(p) = ¢, we have by (5.7), m,(p,) = vyp,; t) for
j=1,2.

ExampLE 4. The game in Figure 5 shows that strong inequality may

hold in (6.2) and (6.3). All the moves

poll,1) which lead from p, to p; are 1-optimal and
v=1v(p ;1) = 1.

Let now only one player make t-
optimal moves when playing G,. He will
get at least as much as when also the
other player makes t-optimal moves. Thus
we can get some formulas corresponding
to (6.2)-—(6.5). We put them together
into two lemmas,

LEMMA 1. Let py, 0y, ---, D, be a se-
quence of positions in G such that Dy, €
M(p.), where Dy, is a t-optimal move at
Do, AN such that Dy, € My (Dyr1). Then
if v(py; t) = v, we have

(66) mi(p2k+1) Zv+t,

s "2 (6.) mypy) = v
1 r
g if o(p) =t and [ is even.
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LEMMA 2. Let p,, 0y, -+, D; be a sequence of positions in G such that
Dops1 € My(Dy) and Dygsy € Mz y( Do), Where Dye, s @ t-optimal move at
Vyerr Then if vi(p,;t) = v we have

(6.8) my(Pu) SV,

(6.9) mp) v+t i olp) =t and I is odd.

7. 'The mean strategies for sum games. We now go to our main
subject, sums of games.

THEOREM 1. Let us start the games G, «-+, G, in positions g, -+, Qa.
Put

my; = my(q,) + + oo+ mlq,) ,

¢ = max {o(g) |1 = r < n} .

Then the value vi(q, + +++ + q,) for A; when he startsat q, + +++ + q, n
G, + -+ + G, satisfies

my S (gt e ) S my+ o

Proof. We proceed by induction on g, + --- +q,). When
Hg; 4+ +++ +g,) =0, all ¢, are end positions and our theorem follows
directly from my(q,) = ky(q,) and o(¢q,) = 0. By (2.1) we know that if one
or several moves are made from ¢, + --- + ¢, we come to a position, say
DL+ + e+ Dy, With

l(p1+ cre +pn)<l(Q1+ e +Qn)‘

Hence when proving our theorem we may assume that it is true for all
positions obtainable from ¢, + --- 4+ ¢, by one or several moves.

By symmetry we may specialize in the proof so that ¢ =1, ie. A4,
makes the first move. We then want a strategy for him that secures
the amount m, and a strategy for A, such that A4, cannot get more than
m, + o. These strategies can be formulated together.

(@) Always make a o-optimal move in one of the games G,,---, G,.

(8) Except for the first move, play in the game, in which the other
player has just played.

In general it will not be possible to follow this strategy through the
whole play of the game, since there are not o-optimal moves in all
positions. The strategy shall therefore be used during a period in the
beginning of the play. In the position at the end of this period the
induetion hypothesis will be used. The length of the period depends upon
the moves made. We give two possibilities to end the period.
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(r) The other player plays in a game G, and there leaves a position
p, with o(p,) < o.

(r,) Positions p,, 1 £ r < n, are reached for which «(p,) < o.

We have to show that a player can follow («) and (5) until (,) or
(7.) occurs. We first see that A, always can make his first move. In
fact, by the definition of o there is a ¢, with o(¢,) = ¢. Thus there is
a o-optimal move in G,. For all later moves the player following the
strategy shall play in the position o, which the other player has just
left. Then if (r,) does not occur, o(p,) > o and there is a os-optimal
move at p,. Hence the game can be continued until (7,) occurs or until
the player following the strategy ends the whole sum game by playing
into an end position. Then o(p,) = 0 for all games G, and (7,) is satisfied.
Hence it is possible to follow («) and (#) until (r,) or (v.) occurs.

In order to be able to use the induction hypothesis we have to
compare m, with

my(p) + <+ + m(p,) ,

where p, is the position in G, at the end of the period. Therefore we
first ecompare m,(q,) with m,(p,) for each . Hence we are interested in
those moves in the period that are made in G,. Note that when at least
one player follows the strategy, () implies that these moves are played
alternatively by the players. Thus for each G, we are able to apply
Lemmas 1 and 2 of the preceding section with £ = +. Since o = o(g,),
the number v = v,(q, ; o) in these lemmas is =m,(q,).

Let first A, follow the strategy. Denote by p, the position in G, at
the end of the period. Then if the move into p, is made by A, we
know, since A, follows (3), that this move is the last move in the period,
and whether the period ends with (y,) or (y.) we get o(p,) < o in this
game G,. Using the fact (5.10) for ¢, and 2, 1 = 7r < n, we apply
Lemma 1 with ¢ = 1 and Lemma 2 with ¢ = 2. Then (6.6), (6.7), (6.8),
and (6.9) imply respectively the following four formulas, depending upon
who makes the first move and the last move in G,.

(7.1) mp,) = m(q,) + o A4, first and last move,
(7.2) my(p,) = my(q,) A4, first move, A4, last move,
(7.8) my(p,) = my(q,) A, first move, A, last move,
(7.4) my(p,) = m(q,) — o A, first and last move.

We add the trivial fact
(7.5) my(p,) = mlq,) if no move is made in G,.

Formulas (7.1)—(7.5) can be taken together in one formula
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(7.6) mp,) = mq,) + b0 — byo ,

where [;, is the number of moves made by A, in G, during the period.
Let us take the sum of the inequalities (7.6) for all ». Then

(7'7) ml(pl) +oeee ml(pn) 2 my + ZIO‘ - l20' ’

where [, is the number of moves made by A, during the period.

If the number of moves in the period is even we have I, = 1. A,
who makes the first move in the period shall also make the first move
after the period (if there is any move to be made). A, can play so after
the period that he secures v(p, + --+ + p,). By the induction hypothesis
this is = my(p) + -+ + m(p,) which by (7.7) is = m,. Hence we have
shown that A, has been able to play from ¢, + .-- 4 ¢, so as to secure
m,, and the left-hand inequality of our theorem is proved in this case.

We also have to consider the case that the period contains an odd
number of moves. Then since A, makes the first move he also makes
the last move and the period is not ended by (7,), hence by (7,). Thus
o(p,) < o for each G,. We have now [, =10,+ 1. A, can play so after
the period that he secures —w,(p, + --- + Byp,). the induction hypo-
thesis, by o(p,) = o, and by (7.7) we get

=Py e D) = (D) — -+ — my(p,) — max {o(p,)}
= —myp) — o — M(py) — o
= mp) + -+ + myp,) — o
=

m; .

Hence the left-hand inequality of the theorem is proved even in this case.

In order to prove the right-hand inequality of the theorem we let
A, follow the strategy. Then by (f) A, makes the first move in each
G, (if there is any move in G, during the period). Lemma 2 with ¢ = 1
gives now depending upon who makes the last move in G,

(7.8) my(p,) < myq,) A, last move,

(7.9) mi(p,) = m(q,) + o A, last move,
Proceeding as above we get a formula like (7.7), namely

(7.10) m(py) + -0+ (D) < My A Lo — bo .

If the period containg an odd number of moves, {, =, + 1. A, makes
then the first move after the period (if there is any move to be made).
He can therefore play so that A, gets at most —ovy(p, + -+ + p,). By
the induction hypothesis and by (7.10)
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—0 0y e D) = —m(p) — - — my(Dy)
= mp) + -+ + m(p,)
=m +o,

so that the right-hand inequality is proved in this case.

Finally if the period contains an even number of moves, [, = I,, and
the period ends by (r,), so that o(p,) <o. Then A, gets at most
v(p, + +++ + p,) and by the induction hypothesis and by (7.10)

(o, + -0+ p) = my(p) + - 4 my(p,) + max {o(p,)}
= my(p) + -0 A+ mu(pa) + o
=m+ o,

and the right-hand inequality is proved even in this case.

This completes the proof of Theorem 1.

In the proof just completed the strategy given by («) and () is used
only in a period in the beginning of the play. When this period is ended
we have used the induction hypothesis in the proof of the theorem.
This means, however, that we shall start counting a new period and then
again apply (a) and (B). Continuing in this way we get the following
consequence of the proof of Theorem 1.

THEOREM 2. Make the same assumptions as in Theorem 1. Suppose
one player, A, follows o strategy satisfying (a)—(d) below. Then A,, the
player making the first move., will get at least m; when k = ¢ and at most
m; + o when k= 3—1.

(a) Divide the moves made by the two players into periods.

(b) For each period let t be the maximum of o(p,) for the positions
v, ot the beginning of the period. With this © defined for a period, always
make t-optimal moves in the period.

(¢) Except for the first move in a period play in the game in which
the other player has just played.

(d) Start counting a new period when one of the following two situa-
tions occurs, \

(d,) the other player plays in G, into a position p, with «(p,) =<,

(d,) positions p, with o(p,) <t are reached in all G,, 1 < r < n.

We call the strategies that satisfies (a)—(d) of this theorem mean
strategies.

8. Properties of m;(p) and o(p). By Theorem 1 we easily prove the
fact that the sum of games satisfying (2.3) also satisfies (2.3) (proved by
Milnor [1, p. 294]). In fact by Theorem 1

v, + co0 + qu) = my .
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Since m,(g,) + myq,) = 0 for each », we have m, + m, = 0. Hence

v+ o+ @) F o+ s+ 0) =0,

which is (2.3) for G, + +-- + G,.

Thus G, + -+ + G, is a game of the kind described in §2. We can
therefore apply §5 and define e.g. uy(q;+---+ayn;t), mq+---+a,),
and o(q; + -+ + ¢a).

THEOREM 3. Let us start the games Gy, .-+, G, tn Dositions q,- -+, qy-
Then
(8.1) mi(qy + -+ + @) = mil@) + -0+ miaa)
(3.2) g+ - +q)) Emax {o(g,) |1 = r = n}.

The right-hand side of these formulas is just m,; and o respectively
defined in Theorem 1.

Proof. We need the following lemma.

LEMMA 3.
wiq 4 <+ + qu;0) =m;  when (g + - + g,) > 0.

Before proving the lemma let us see that Theorem 3 follows from it.
If l(g,+---4+4q,) =0, (8.1) and (8.2) are certainly true. If I(¢;+---+¢q,)>0
we get from Lemma 3, since m, + m, = 0,

W@+ o 4+ Gus o) F Ul + o0 FGuyo)=0.

Then (8.2) follows from (5.5). We also see from (5.5) and the fact that
u(g, + «-+ +q,;t), 1 =1,2, are decreasing functions in ¢, that they are
constant in the interval (o(q; + -+ + ¢.), @). Then (8.1) follows from
(5.6) and Lemma 3.

Proof of Lemma 3. The proof will be somewhat similar to that of
Theorem 1. Without losing generality we put ¢ = 1. We make the in-
duction hypothesis that Theorem 3 is true for all p, + --- + p, obtainable

from ¢, + -+ + ¢, by one or several moves. We will prove
(8.3) ulq,+ <+ + Qo) =my,
(8.4) U+ - +qu;o) < m, .

Of course they together will give Lemma 3. The number u,(¢;+«+-+¢,;0)
is the value for A, in the game (G, + --- + G,):. To prove (8.3) and
(8.4) we define strategies for A, and A, in this game: Follow («) and (8)
of the proof of Theorem 1. TUnless the other player stops the game in
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some position, continue until (y,) oceurs and then stop the game. When
the game is stopped at p, -+ +-- -+ »,, A, collects m,(p, + -+ + p,). If
then A, has made [, and A, [, moves (l, =1, or I, =, + 1), A; has paid
{0 to A, and got l,c from him. Hence the result will be that A, gets

ml(pl +oeee pn) - llo— -+ lzo- .
Since by the induction we may apply Theorem 3, this is equal to
ml(pl) SRR mn(pn) — ZI(T + Zz’r .

Thus in order to prove (8.3) and (8.4) we only need to verify that (7.7)
and (7.10) are true when A4, and A, respectively use the strategy de-
scribed above.

Let A, follow the strategy, and let p, be the position in G, when
the game is stopped. Then if the move into p, is made by A., we know
since A, follows (), that this is the last move made before the game is
stopped by A,. Hence (r,) is true, and we have o(p,) =< o for this game
G,. The proof of the formulas (7.1)—(7.4) now follows as in the proof
of Theorem 1, and (7.7) will again be a consequence of these formulas.
Hence we have given a strategy for 4, in (G, -+ --- 4+ G,)¥ which secures
m,. Thus (8.3) is proved.

Similarly if A, follows the strategy, we verify (7.8) and (7.9) thereby
proving (7.10). Thus we have given a strategy for 4, in (G,+---+G,)%
such that 4, gets < m,. This proves (8.4). Thus Lemma 38 is proved
and also Theorem 3.

Theorem 3 can be looked upon as a sharper form of Theorem 1. In
fact we get Theorem 1 from Theorem 8 simply by applying (5.12) and
(5.13) for p =g, + +++ + G

Let now the games G, ---,G, be n copies of one and the same
game G and let p, ---, p, correspond to p in G. We write np for
p, + +++ + p,. By Theorem 1

nmy(p) = v(np) = nmlp) + o(v) .
Divide by » and let n - . Then, because of (5.10), we get the follow-
ing result.
THEOREM 4. The two expressions

1 q;i(np) and -'1"(*7)3%(774)))
” - on

whach represent the mean value for A, in the sum of n equal games when
he or the other player has the first move, both tend to the same limit

myp) when n— .
This theorem justifies the name mean value for the number m,(p).
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The name mean strategies for the strategies described in Theorem 2 is
chosen, since it secures the mean value for the player who makes the
first move,

We know by Theorem 3 that

(8.5) mp + c o0+ p) = mp) + o0 4 my(p,)
and get from (5.10) and (5.12)
(8.6) —V;-4(p) = mi(p) = vi(p) .

Let us show that the two properties (8.5) and (8.6) determine m,(p)
uniquely. Let m(p) be given for all p satisfying (8.5) and (8.6). We get

—;-(np) = nm(p) = vy(np) .

Divide by = and let # — . Then, by Theorem 4 we get m(p) = m,(p),
showing the uniqueness of m,(p).

9. Both players use mean strategies.

THEOREM 5. Let in a sum G, + --- + G, both players follow o mean
strategy, such as described by (a)—(d) in Theorem 2. Then

(1) the players will count the same periods,

(2) 9 each period both players will make all their moves in only one
of the games G,,

(3) the number t defined by (b) of Theorem 2 is a decreasing function
of the veriod,

@) 4f to mdq) + +++ + myq,), where q, is the starting position of
the game G,, 1 < r < n, we add t for each move A, makes and —t for
each move A,; makes, where v is defined by (b) for the period containing
the move, then the result will be A,’s payoff.

Proof. Here (1) will follow by induction if we show that the first
period ends at the same moment for both players. When both players
play in their first periods (c) implies that they both move in the same
game, say in G,. Then for r # s, p, = ¢, for ail positions p, + -+ + p,
that are reached in the period and therefore since o(g,) < o by the de-
finition of & (see Theorem 1), we get o(p,) =< o,  #s. Thus when (d,)
occurs for one player (d,) also occurs and since (d,) is symmetric with
respect to the two players the first period will be the same for both
players. This proves (1).

When we know that the players count the same periods, (2) is a
simple consequence of (¢). (3) follows from the fact that each period
ends with (d,).

To prove (4) it will be sufficient to show that if in G,, ¢, is the
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position at the beginning of a period and p, is the position at the end of
the same period then whether A4, or A;_; starts the period,

9.1) my(p:) + + o0+ m(p,) = milq) + e e+ my(ga) + it — LT,

where [; is the number of moves by A4, in the period. Since p, = g, for
r + 8, where G, is the game in which all moves are made during the
period, (9.1) reduces to

(9.2) my(ps) = my(qs) + L — b7 .

If A; makes the first move in the period, (9.2) follows from (6.4) and
(6.5). In fact these two formulas are proved for the case when both
players make t-optimal moves until a position p, is reached with o(p,) < t.
But putting ¢ =« we get in our case by (d,) that for the final position
p, of the period, o(p,) = =.

If A, ; makes the first move in the period, (9.2) is just proved with
3 — ¢ substituted for 2. However, the formula thus obtained reduces to
(9.2) by the use of my(p) + m;-(p) = 0.

Thus Theorem 5 is proved.

Since 7 is decreasing we see by (4) of Theorem 5 that A,’s payoff
is the sum of m; = my(q) + --- + my(q,) and a sequence of terms with
alternating signs and decreasing modules. If A, starts playing, the first
term is positive and equal to ¢ = max {o(¢,)} and the sum of the terms
in the sequence is therefore = 0 and = o, and A4, will get at least m,
and at most m,; - o. This last result is of course contained in Theorem
2. Theorem 2 says even more, since it says that a mean strategy always
guarantees a certain amount even if used against a player which plays
any strategy, e.g. an optimal strategy.

10. Some examples. Conditions (a)—(d) of Theorem 2 do not in
general determine a unique strategy. There are still some choices which
the player may use to get as good result as possible. Thus there may
be different r-optimal moves in the same game and, when the first move
of a period shall be made, there may be several games in which there
are r-optimal moves. In this connection it may be worth while to notice
that there may be a r-optimal move even in a position p with «(p) < =.
The number r is determined as the maximum of o(p,), 1 < < n when
the period starts, but it is not necessary to start the period in one of
the games for which o(p,) reaches this maximum. There may be r-optimal
moves even in other games.

ExaMPLE 5. Let us study the game given in Figure 3. The move
P, € M(p) is t-optimal for A, even when 4 < ¢ <5. In fact for these
t-values uy(p;t) = vyp;t) = myp) so that there must be a t-optimal
move for A,.



MEAN PLAY OF SUMS OF POSITIONAL GAMES 97

If a position has to be played in optimal way it is unimportant if
this position is the starting position of the game or if it is a position
which has developed during the play. This is not the case when mean
strategies are used.

ExaAMPLE 6. Compare the game in Figure 6 started by A, and the
game in Figure 7 started by A4,. When A, has moved into p, in Figure

6 the situation for 4, will be the same as when he starts in p, in Figure

pl4,1)

\
3

£,10,6)

1l / 7
Figure 6

Il / 7 k)

Figure 7

7. However, playing a mean strategy he will handle the two cases in
different way. In Figure 6 A, plays in a period with r=1. He will
therefore make a l-optimal move, the one into p,.. In Figure 7 he just
starts a period with r = 6 and moves into p,.

This difference may be explained thus. The move recommended by
a mean strategy shall be a good move when played in the sum of =
coples of the game. We see readily that in n copies of the game in
Figure 6 the move into p; is the correct answer to 4,’s move into p,.

If A, always moves into p, he gets only about 5% + 13;1 = 3n though

my(p) = 4. In n copies of the game in Figure 7 the move into p, is
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correct. If A, always moves into p, he gets about (—6);5 -+ 7—% + 32’ =
— Z though m(p,) = 0.

In a sense (4) of Theorem 5 means that the value of making a move
is equal to the number = for the period containing the move, where =
is max {o(p,)} at the beginning of the period. One may try to change
the rules for a mean strategy by requiring each move to be played at
the position p where o(p) is highest. The following example shows,
however, that such a play does not guarantee the mean value.

ExAMPLE 7. Consider the sum game given in Figure 8. Suppose
that A, starts and plays in the left game and that 4, answers in the
right game. Then o(p) = 7 in the left game and o(p) = 6 in the right

(4,2) (5.1)

(7,7) > +

(0.6)
4

Figure 8

game. But if A, plays in the left game, where o(p) is highest he will
get only 14 + (—6) = 8 which is less than the mean value 4 +5=9. In
fact A;’s second move is made in a period with r=2. Hence if he
follows (a)—(d) he shall play a 2-optimal move in the game where the
other player has just played, i.e. he shall play in the right game.
Then he will get at least 6 + 4 = 10 which is more than the mean
value 9.

Let us in a final example show that an optimal move in a sum game
need not be f-optimal for any ¢ in the summand G in which it is made.
Hence this move can never be recommended by a mean strategy.

ExampLE 8. The optimal move for A, in the sum game in Figure 9
is the move into p, in the left game, the mean strategy move is the
move in the right game. The move into p, is never ¢-optimal in the
left game for any ¢.
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(0,6) 0.7)

¢+

Figure 9
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ON ONE-TO-ONE HARMONIC MAPPINGS

ErRHARD HEINZ
In this paper we shall prove the following :

THEOREM. Let 2 =z2(w) (z=2x+ iy, w=1u -+ w) be a oneto-one
harmonic mapping of the disc |w| <1 onto the disc |z| <1 such that
2(0) = 0. Then we have for \w| < 1 the estimate

(1) 2+ |2l = 2

7_[2
As an improvement of an earlier result established in [1] J. C. C.
Nitsche [4] showed that under the above conditions the inequality

(2) ﬂav+wmn%z§-

is satisfied'. In contrast to (2) the estimate (1) holds throughout the
unit dise |w| < 1, but the constant involved is smaller than that of
Nitsche.

In order to establish (1) we shall make use of a known result on
harmonic functions (the analogue of the Schwarz Lemma)’. For the
sake of completeness the proof of it will be given here.

LEMMA. Let z = 2(w) = x(w) + y(w) be a complex-valued harmonic
Sunction in the disc |w| < 1. Furthermore, let 2(0) =0 and |2(w)| <1
Jor lwl < 1. Then we have the inequality

(3) |z(w)l§—4—arctanlw| lw| < 1.

Proof. Let 6 be an arbitrary real number, and f(w) be the func-
tion, which is regular-analytic in the disc |w] < 1 and satisfies the rela-
tions f(0) = 0 and

(4) RN fw) = x(w)cos § + y(w)sin § .

On account of our hypotheses we have

(5) IR fw)| <1 lw| <1,
hence,

T For further references see [2].
2 See Polya-Szego [5], p. 140.

" Received October 13, 1958.
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(6) R (eXp [ Zif(w)}) >0 lw| < 1.

Consequently the function

(7) gw) = SR SR

satisfies the inequality

(8) lg(w)| <1 lw] <1,

and we have ¢(0) =0. Applying now the Schwarz Lemma and the
elementary inequality

4 —1

(9) el§+i-‘>tan—tma Rel <2
we obtain the estimate

(10) tan%lmf(w)l = lg(w)| = |w],

hence, by (4)

(11) |#(w) cos 0 + y(w) sin 0] = % arc tan |w|

for |w| < 1.
Since this holds for every real value of 0 the inequality (3) follows,
which proves the lemma.

Proof of the theorem. (I) We first prove (1) under the additional
hypothesis that the function z(w) and its first derivatives are continuous
in the closed disc jw| < 1. Since the mapping w — z(w) is one-to-one
and harmonice, its Jacobian |z, [|* — Izwlz cannot vanish, in virtue of a
theorem of H. Lewy [3]. Furthermore, since hypothesis and conclusion
of our theorem remain unchanged, if z(w) is replaced by z(w), we may
assume without loss of generality that

(12) |2,* — 2512 > 0 |lw| < 1.

Consequently, the function z, does not vanish in the dise |w] < 1.
Furthermore, because of z,- = 0, it is regular-analytic. From these
facts it follows that for |w| < 1 the inequality

3 Here and in the following considerations *—%:—; (—a —¢L> and

0 1/ @ 0
— i derivatives.
o 2( ou +1- o ) are the complex derivatives
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(13) |20 | = Imiig 12, |

holds.

We shall now estimate the right-hand side of (13) from below by
using our lemma. Let ¢ and » be two real numbers and 0 < » < 1.
Since by hypothesis the equation |z(w)| = 1 holds for |w| =1 we have

(14) #e'") — 2(re'?) > 1 — [z(re') > 1 — 4/rarctanr
1—7r 1—7 1—7r
If we let » tend to 1, we obtain
(15) (!M) >2 0<¢ < 2n.
or r=1 T

Furthermore, on account of (12) we have
A
16) | U=z e + aalreentt] < L2l + L2l < 21zl
r

for 0 < r £ 1. Combining this with (15) we infer that for |w| =1 the
estimate

17 2, = L
w
holds.
Hence, by (13) we obtain for |w| < 1 the inequality
(18) Lzl = L la—inl S 27l + la,
e

which yields (1).

(II) Now let the mapping z = z(w) merely satisfy the hypotheses of
our theorem. Obviously there exists a sequence of numbers {R,} (n=2)
such that the following conditions are satisfied :

(i) We have 0 < R, <1 for all » = 2, and
19) limR,=1.

n—oo

(ii) The disc |z| < R, is mapped by the inverse transformation
z — w onto a simply-connected domain D, such that

(20) {lwl=1-Llcp,c (uwi<1y.

Since the mapping z — w is analytic in z and v, it follows that D,
is bounded by an analytic Jordan curve. By the Riemann mapping
theorem there exists a uniquely determined function w = @,(¢), which
maps the dise {¢| <1 ({=&+14n) conformally onto D, such that @,(0)=0
and @,(0) > 0. Furthermore, @,(¢) is analytic for |¢| < 1. Consequently,

the function
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21 ey = A2(8)
(21) (©) 2

is harmonie for |£]| < 1 4+ 6, where ¢ is a positive number, and satisfies
all the hypotheses of the above theorem. From the facts established
in (I) we conclude

(22) L (ot + 1) = 14E + 12,0 2 2

Hence we have for w = @,(&) (|¢]| < 1) the inequality

; ) R 2
23 Jrlalz B2
=) SR ST

Furthermore, on account of (20) the estimates
(24 (1-DHici =il
n

hold for » = 2 and |¢| < 1. Applying the Schwarz Lemma it follows
from (24) that there exists a sequence of integers {n,} such that the
relations

(25) 2, () —~1 (k — <o)

hold uniformly in every closed disc |£]| =< p < 1.
Now let w* be a fixed complex number with |w*| <1 and let us
determine two positive numbers %, and p such that the inequalities

) 0l e

1— 1

Ny
are satisfied for k£ = k,. On account of (20) the point w* belongs to D,,
for k = k,. Hence there exists a sequence of complex numbers {.}
with |¢,] < 1 such that the equations

@7) w* = 0, (&)
hold for k£ = k,. By (24) we have

(28) el = <<
11
My

for k = k,. Applying now (23) and (25) we conclude

2%

(29) (ol + |z e 22

RO

for ¥ — . Since w* is an arbitrary point in the disc |w| < 1, our
theorem is established.
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ON FINITE-DIMENSIONAL UNIFORM SPACES

J. R. ISBELL

Introduction. This paper has two nearly independent parts, con-
cerned respectively with extension of mappings and with dimension in
uniform spaces. It is already known that the basic extension theorems
of point set topology are valid in part, and only in part, for uniformly
continuous functions. The principal contribution added here is an
affirmative result to the effect that every finite-dimensional simplicial
complex is a uniform ANR, or ANRU. The complex is supposed to carry
the uniformity in which a mapping into it is uniformly econtinuous if
and only if its barycentric coordinates are equiuniformly continuous.
(This is a metric uniformity.) The conclusion (ANRU) means that when-
ever this space ¢4 is embedded in another uniform space ¢X there exist
a uniform neighborhood U of A (an é-neighborhood with respect to some
uniformly continuous pseudometric) and a uniformly continuous retrac-
tion 7 : pU — pA.

It is known that the real line is not an ARU. (Definition obvious.)
Our principal negative contribution here is the proof that no uniform
space homeomorphic with the line is an ARU. This is also an indication
of the power of the methods, another indication being provided by the
failure to settle the corresponding question for the plane. An ARU has
to be uniformly contractible, but it does not have to be uniformly locally
an ANRU. (The counter-example is compact metric and is due to Borsuk
[2]). It does have to be uniformly locally connected, which is enough to
give us a grip on the real line.

Smirnov has defined the J-dimension dd of a uniform space as the
least dimension of a cofinal family of finite uniform coverings and has
shown that dd has many of the properties of topological dimension
functions and some novel ones [9, 10]. The large dimension Ad is defined
in the same manner, using arbitrary uniform coverings, in [6], where it
is shown that 4d is = éd and is (like dd) invariant under completion.
The central result of the second part of this paper is that when éd(uX)=n
there are precisely two possible values for 4d(#X), namely n and oo,

Two applications are made, the principal one being a considerable
simplification of the proof of the main theorem of [10] (characterization
of the n-dimensional uniform subspaces of E"). Also there are two side
conditions either of which implies 4d(#X) = dd(#X): every uniform
covering has a finite-dimensional uniform refinement (#X) is, so to speak,
weakly finite-dimensional), or X is locally fine in the sense of [5]. The

Received May 26, 1958.
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first of these includes the case of a weak uniformity induced by a family
of real-valued functions, and the second includes the case of the finest
uniformity compatible with the topology.

1. Extension. Most of the simplicial complexes considered in this
paper will be finite-dimensional, largely because we do not have a con-
venient uniform structure for infinite-dimensional complexes. In any
simplicial complex X, the points 2 are determined by their barycentric
coordinates (x,). The function d(x, y) = max |z, — y.| is a distance func-
tion inducing a uniformity and topology on X ; with this uniformity, X
is called a wuniform complex. We recall from [7] that a finite-dimensional
uniform complex is a complete space, the stars of vertices from a unifom
covering {St¢,}, a mapping into X is uniformly continuous if and only if
its coordinate projections are equiuniformly continuous; and every finite-
dimensional uniform covering of a uniform space has an equiuniformly
continuous partition of unity subordinated to it, which then induces a
canonical mapping into the nerve.

In fact, we can show the following.

1.1. Ewery uniform covering has an equiuniformly continuous parti-
tion of unity subordinated to it.

Because of the difficulty with infinite-dimensional complexes, we
shall not get any use out of 1.1 excepting a very special application in
the second section of the paper.

Proof of 1.1. Let {U,} be a uniform covering of a uniform space
prX. Let d be a uniformly continuous pseudometric on X such that
every set of d-diameter 2 or less is contained in some U, [7]. Well order
the indices «. For each «, we define a real-valued function g, : g.(z) is
the smaller of the numbers 1 and sup[d(z, X — Up)|f# < a]. The func-
tions ¢, increase monotonically to the pointwise limit 1 (continuously at
limit ordinals), and each of them is uniformly continuous with respect
to d, with modulus of continuity d(¢) = ¢; that is, d(z, y) < ¢ implies
lg2) — 9.(¥)] < e. Therefore the functions f» = gur;1 — 9. form an
equiuniformly continuous partition of unity; and if 2z e X — U,, then
gw+1(x) = gw(w) and fa(x) =0.

A vpartition of unity {f,} will not yield a function with values in
the nerve unless at each point all but finitely many f, vanish. An obvious
sufficient condition for this is that {U,} is point-finite. We can rearrange
the statement of this condition by using the following (essentially known)
construction. A covering {V,} with the same indexing set as {U,} is
called a shrinking of {U,} if V,c U, for all «a; let us call {V,} a
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strict shrinking if there exists a uniform covering w such that
St(Ve, w) < U, for all a.

1.2. Ewvery uniform covering has a strict shrinking which is uniform.
If a uniform covering w s @ star-refinement (or merely a refinement) of u,
then u can be strictly shrunk (or merely shrunk) to a uniform covering
v whose elements are unions of disjoint families of elements of w.

Proof. Well order the elements U, of u and define V, as the union
of all elements of w whose stars (or merely whose selves) are contained
in U, but not contained in any preceding Usg.

At the moment, we want the following applications of 1.2. Every
point-finite uniform ecovering has a uniformly locally finite uniform
refinement (any strict shrinking); and if a covering has a uniformly
locally finite refinement then it has a uniformly locally finite shrinking.

Note specifically that the nerve of the covering v constructed in 1.2
is a subcomplex of the nerve of w and is the image of the nerve of w
under a simplicial mapping. The dimension of v is no greater than the
dimension of w.

In normal topological spaces 1.2 is valid for coverings having locally
finite refinements, and leads to the conclusion that such a covering
admits a canonical mapping into the nerve for any reasonable topology
on the nerve [3]; for continuity is easily deduced from the fact that a
neighborhood of each point is mapped into a finite complex. A uniform
space is called locally fine if every uniformly locally uniform covering
is uniform [5]; it follows that every uniformly locally uniformly con-
tinuous function is uniformly continuous, and also that every uniform
covering has a uniformly locally finite uniform refinement. Accordingly
we have

1.8. Relative to any uniformaty for simplicial complewes which makes
every finite subcomplex @ uniform complex, the following s true: Corre-
sponding to every uniform covering of a« locally fine uniform space there
is o canonical mapping into the merve.

We shall want to apply this with some structure on the nerve of
{U,} making {St.} a uniform covering. It will suffice to use uniform
Whitehead complexes (UW-complexes) defined as CW-complexes bearing
the finest uniformity compatible with the topology.

We obtain also, from 1.1 and 1.2, certain mappings of any uniform
space into the nerve (regarded as a uniform complex) of any covering
having a point-finite uniform refinement. The mappings take U, into
St., but when {St,} is not uniform, this is of little value.
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1.4. LEMMA. Ewvery bounded uniformly continuous pseudometric on a
subspace of a uniform space many be extended to a bounded uniformly
continuous pseudometric on the whole space.

Proof. Suppose ¢ is a bounded pseudometric on 24 < #X. We show
first that there is a pseudometric d on #X satisfying d(z, y) > e(x, y) for
all # and v in A. For each integer n (positive or negative) there is a
uniform covering " of pX such that if 2 and y are in A and in a common
element of u” then e(wx, y) < 2°; and there is a pseudometric d, on X
such that d,(z, y) < 2"+ implies x and y are in a common element of u”,
but d.(z,y) < 2"+ for all # and y. If 2% is a bound for values of e,
then S(d,|k > n > — o] is a pseudometric d uniformly continuous on
¢X, and d(z, y) < 2"*' implies e(x, y) < 2%, so that d > ¢ in A. Finally
define m on X by m(z, ¥) = min (d(w, y), inf[d(z, a) + e(a, b) 4 d(b, y)|a
and b in A]). Examination of cases shows that m is a pseudometric.
Since m < d, m is uniformly continuous. Then m is the required extension
of e.

1.5. COROLLARY. For every uniformly continuous mapping f of &
subspace pA of a uniform space pX into a metric space vB, there exist
a metric space vY contaiming vB and a mapping 9. pX - vY extending f.

For every metric is equivalent to a bounded one.

1.6. COROLLARY. For every uniformly continuous mapping f of a
subspace pA of a uniform space pX into a uniform space vB, there exist
a uniform space vY containing vB and a mapping g: X —vY extending f.

For every uniform space is a subspace of a product of metric spaces.

The definitions of absolute retract and absolute neighborhood retract
write themselves, except that one must notice that uniform neighborhoods
should be specified. If A C U c pX, U is a uniform neighborhood of A
provided U contains the star of A with respect to some uniform covering.
72X is an ARU provided ¢#X < ¢Y implies the existence of a uniformly
continuous retraction #Y — pX; pX is an ANRU provided p¢X c pY
implies the existence of a uniformly continuous retraction onto pxX of
some uniform neighborhood of X in #Y. One point to be noticed is

1.7. Every ANRU s complete; moreover, an incomplete space coan
be embedded as a closed subspace of a space in which there is no retrac-

tion of a uniform neighborhood.

Proof. Given any incomplete space pA4, let 7¢A be its completion
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and I a well-ordered space, in the order topology, having a last element
o such that every sequence converging to « has a greater cardinal
number than that of 4. Embed #A in npA x I, a € A going to («, w),
and remove from the product the points (x, ), « not in A; evidently
¢A becomes a closed subspace on which there is no continuous retrac-
tion of a neighborhood.

Among topological spaces one distinguishes between the property
of being an absolute retract (or an ANR) and the stronger property of
being an absolute (neighborhood) extensor: Y is an absolute extensor
for a class of spaces if when A is a closed subspace of a space X in
this class, every continuous mapping of A into Y can be extended over
X. From 1.4 and its corollaries we have the following: Among uniform
spaces, every absolute retract s an absolute extensor, i.e. every uniformly
continuous mapping of a subspace of any space pX into an ARU may be
extended. Similarly for ANRU’s. Further, for a metric space to be an
ARU or ANRU, <t suffices that it is a retract or meighborhood retract
whenever it is embedded in a metric space. Moreover, if we choose any
convenient bounded distance function, we may assume the embedding
is an isometry.

The reduction to the isometric case simplifies matters considerably,
but there still remains some computation. We shall have to consider
moduli of continuity explicitly. Recall that a modulus, in this context,
is any function on the positive reals to the positive reals.

1.8. LEMMA. For every modulus of continuity 6 and every natural
number n, there ewists a modulus A such that every mapping of o sub-
space of a metric space into a uniform n-simplex, having the modulus 9,
can be extended to a mapping of the whole space into the simplex having
modulus 2.

Proof. The n-simplex T is an ARU because it is uniformly equivalent
to a product of intervals, each of which is an ARU by Katetov’s ex-
tension theorem [8]. Now suppose the lemma is false, i.e. there exist
0 and n such that for each modulus 2 there exist metric spaces 4, C X,
(with distance d,) and mappings f,: A4, — T, each having modulus of
continuity ¢ but having no extension over X, with modulus 2. Let X
be the union of disjoint copies of all X,, with the following distance
function d: d(x, y) = 1 unless « and y are in the same X, and d,(x, y)<1,
in which case d(z, y) = d\(x,y). Then with A = U A,, f: A— T defined
by the values of the f,, f is uniformly continuous with modulus of con-
tinuity min (6, 1). Therefore f has an extension over X which has a
modulus of continuity i. But min(4,1) is a modulus of continuity g,
and the restriction of f to X, has modulus ¢, a contradiction.
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1.9. THEOREM. FEvery finite-dimensional uwiform complex is an
ANRU.

Proof. Suppose the n-dimensional complex N is isometrically
embedded in X with distance d; on N, d(z,y) = max |z, — ¥.|. We
shall need the product of all the odd numbers up to 2»n + 1; for typo-
graphical convenience we take (2n + 1)! Then let N, denote the
k-skeleton of N, and C, the set of all x in X which satisfy

2n 4+ 1)! 1
d(x, N,) g%zf];f 1gi—d(x, N) and de NS gt
Any « in C, is within distance 1/6 of a unique vertex, which we define
to be fy(x); thus f,: C,— N, is a retraction with modulus of continuity
0 = 2/3. Suppose the retraction f,: C, — N, has been defined and has
a definite modulus of continuity o,. Now if = is within distance 6 of
points p, ¢, in different (¥ + 1)-simplexes, o, 7, of N, then p and ¢ are
within 260 of each other. If (2k 4+ 4)0 < 1, define barycentric coordinates
of a point by deleting those non-zero coordinates p, of p for which
Qo = 0 (whose sum is at most (k¥ + 1)20) and increasing accordingly one
of the non-zero coordinates of p» which must be left. Then 7 is common
to o and r and hence is in N,; also, d(x, ) < (2k + 3)0. Thus if z is
in Ci.; and not in C, then there is a unique (k + 1)-simplex o such that

2n 4+ 1! 1
d(z, o) < ¥(§k7—|~”3)*! d(z, N) and d(z, o)< k4B
Let C(s) denote the union of the set of all such = and f;'(c); let A(s)
denote (C, N C(s)) U o; and define a retraction ¢: A(c)— o to agree
with f, on C, N C(s). For pairs of points in C,, ¢ has modulus of con-
tinuity ¢,; for pairs in o, the identity function d(¢) = ¢; and for p in
C,, ¢ in ¢ — C, = ¢° we have

(2n + 1)!
d(p, Nk) < (2]{:-{— 1)' d(p: q) ,

which yields a point of N, near both p and ¢ and establishes a modulus
of continuity here also. By 1.8, f. can be extended over each C(o)
separately, as a retraction with a definite modulus of continuity 2. Then
Ops1 = A/(6k + 12) is a modulus of continuity for the whole mapping
fr+1, since two points at distance 6 from each other in different C(s),
C(z), are within (3% + 6)0 of a point » of o Nz, as above. Therefore
the induction runs, and f, becomes defined on the entire 1/(2n + 3)!
neighborhood of N.

It should be noted that the theorem as stated is trivially false for
arbitrary uniform complexes, since some of them are incomplete. It is
false for many complete ones also. It seems likely that strong results



ON FINITE-DIMENSIONAL UNIFORM SPACES 113

might be gotten by using some suitable uniformity for a complex, dif-
ferent from the one defined by max|x, — ¥.|, though not necessarily
different for finite-dimensional complexes. UW-complexes are different
in the finite-dimensional case, and I do not know whether they satisfy
1.9.

One gets the homotopy extension lemma and the theorem ARU =
uniformly contractible ANRU just as in the topological case. Precisely,
if I is the interval [0, 1}, the cylinder over pX is the product pX x I,
and the cone over p#X is the quotient space of the cylinder obtained by
collapsing {(¢, 1)} to a point. Homotopy and related concepts being
defined as usual, we have

1.10. If pA c pX, vY 4s an ANRU, h: pA x I - Y 4s a homotopy
between h, and h,, and g, is an extension of h, over pX, then h can be
extended to a homotopy of g,.

Proof. Define f on (24 x I)U {(z, 0)} by fla,t) = h(a,t), f(x,0) =
94x). Let f’ be an extension of f over a uniform neighborhood U, and
let p be a uniformly continuous real-valued function on p#X x I vanish-
ing outside U and equal to 1 on the domain of f. Then g(x,t) =
S'(z, to(zx, t)) defines the required extension.

1.11. A umniform spaces is an ARU if and only if it is a uniformly
contractible ANRU.

Proof. An ARU is an ANRU by definition, and retraction of the
cone over it defines a uniform contraction. Conversely, every mapping
into a uniformly contractible ANRU is homotopic to a constant and
therefore extensible.

1.12. The cone over an ANRU s an ARU.

Proof. Let vY be an ANRU, C the cone over vY, #A a subspace
of ¢X, and f: pA— C a uniformly continuous function. The construc-
tion of C as a quotient space of vY x I gives each point of C a second
coordinate in I, and each point except the vertex v has a first coordinate
inY. Let f;: #A— I be the second coordinate of f, which is uniformly
continuous. Let fi: A — f;'(1)—> Y be the first coordinate of f, and note
that f; is uniformly continuous on each of the sets A, =/70,1 — 2-"].
Let g,; pX— I be a uniformly continuous extension of f,. Let g; be a
function with values in Y, defined on a subset U of X, such that for
each n, U contains a uniform neighborhood of A4, on which ¢, is a
uniformly continuous extension of f;. (The construction of g, requires a
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little care. Define B, = A,, j, = ¢,|B,. Inductively let A, be an exten-
sion of j, over a uniform neighborhood of B,, and 4, the restriction of
h, to a wuniform neighborhood U, of B, which is contained in
90,1 — 2-""']; let B,., = A,., U U, define j,.: B,,;, > Y by the values
of 4, and g,, and continue.) If U, is such a neighborhood of A4,, there
exist uniformly continuous pseudometrics d, on #X relative to which
U, is an ¢,-neighborhood of A,; we may assume d, is bounded by 1 and
form d = 3, 2-"d,, so that relative to d, U, is a d,-neighborhood of A4,,
for a sequence of positive numbers 6,. Let g, be a monotone decreasing
continuous function on I to I, vanishing only at 1, but satisfying
91 — 27") < 0,41. Now define g on X to I as follows. For p in A,
we have gi(p) = fu(p). If d(p, A) > g(9.(p)) then gi(p) = 1. For all other
p we have

9:(p) = g94(p) + Ao, A)f(l — (D)) -
9(9AD))
One readily verifies that g; is uniformly continuous. Since g¢; takes the
constant value 1 on the complement of U, we may define g: pX— C by
9(x) = (9«), g%(x)) where gi(x) # 1, g(x) = v where gy(x) = 1. Then g is
a uniformly continuous extension of f.

1.12 shows that many ARU’s exist. Also, a product of arbitrarily
many ARU’s is clearly an ARU. On the other hand, the product of a
sequence of copies of the real line is not an ANRU; it is not a retract
of any uniform neighborhood in the product of cones over the lines.

In the other direction, we have the following.

1.13. There is no ARU homeomorphic with the real line.

Proof. An ARU, and even an ANRU, must be uniformly locally
connected; for it can be embedded in a product of metric spaces, and
thus in a product of Banach spaces, where retraction of a uniform
neighborhood establishes the assertion. Now since the only connected
subsets of the line are intervals, a uniformly locally connected structure
on the line is either incomplete or uniformly locally compact. In view
of 1.7 and 1.11, the proof will be completed when we establish

1.14. Every uniformly locally compact uniformly contractible space
8 compact.

In turn 1.14 will be deduced from

1.15. Ewvery uniformly locally compact space has a basis of star-finite
uniform coverings.
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Proof of 1.15. Observe that a uniformly locally compact space has
a uniform covering u such that the closures of the stars of elements of
u are compact; and the same is true for any refinement of u. There
is a uniform refinement v which has the property that no proper sub-
family of v is a covering of the space. To see this, take a pseudometric
d so that every set of d-diameter 2 or less is a subset of an element
of u; choose a maximal family of points p, with mutual distances = 1/2;
and define V, as the set of all points within distance 1 of p, except the
other p;. Now each spherical neighborhood of radius 1/4 is contained
in one of the V,. If x is a point within distance 1/4 of some p,, V,
contains the 1/4- neighborhood of x. For any other x, there is some
p, within distance 1/2 of z, and since the 1/4- sphere about z contains
no other p, by hopothesis, it is a subset of V,. Finally, the covering
{V.} must be star-finite since the closures of the stars are compact.

Proof of 1.14. Every uniformly contractible space is finitely chain-
able in the sense of [1]; that is, for any uniform covering {U,} there
exist finitely many indices «,, ---, «, and a natural number m such that
every U, can be joined to one of the U% by a chain of m or fewer
intersecting sets Us. (In fact, we may take » = 1.) If the covering is
also star-finite, it is finite. Since a uniformly locally compact space is
always complete, we have 1.14, and with it, 1.13.

It is not true that every ANRU is uniformly locally an ARU ; at
least, not in the sense that there are arbitrarily fine uniform coverings
consisting of ARU’s. The trouble is that a subspace which is an ARU
must be closed, by 1.7. But Borsuk has exhibited [2] a compact 2-
dimensional AR in E* in which no closed 2-dimensional proper subset is an
ANR. (For compact spaces, AR = ARU and ANR = ANRU, since these
spaces can be embedded in cubes.)

The converse is not true either. If S™ denotes the finite complex
which is the boundary of an nm-simplex, then the uniform complex which
is the separated sum of all S* is uniformly locally an ANRU but not
itself an ANRU. With a little more care the same effect can be de-
monstrated with a metric space which is a discrete sum of ARU’s (e.g.
arcs I, in S™ coming within distance 1/n of every point of the sphere).

An ARU considered as a topological space is an absolute extensor
for paracompact spaces; and similarly for ANRU’s. 1.13 seems to rule
out any reasonable converse to the first part of this remark.

2. Dimension. The d-dimension or uniform dimension dd(¢X) of a
uniform space pX is defined as the least n such that every finite uniform
covering has a (finite) uniform refinement whose nerve is n-dimensional ;
if there is no such », we write dd(#X) = . (In view of 1.2, it does
not matter whether the parenthesis ‘‘ (finite) '’ is included or not. If it
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is included, we have the original definition of Smirnov except for irrele-
vant changes in the concept of equivalence of two spaces—Smirnov speaks
of proximity spaces—and we may quote his results [9, 10] freely.) Simi-
larly the large dimension Ad(pX) is the least n such that every uniform
covering has an n-dimensional uniform refinement [6]. The inequality
od(pX) < Ad(pX) is a trivial consequence of 1.2.

2.1. A finite-dimensional uniform complex is uniformly equivalent to
its first barycentric subdivision, by the identity mapping. The stars of ver-
tices in successive barycentric subdivisions form a basis of uniform coverings.

Proof. The first statement is a consequence of the second. For that,
it is well known that the meshes of these coverings approach zero, and
it remains to show that each is uniform. It is certainly uniform on a
uniform neighborhood of the O-skeleton ; and the proof may be finished
by an induction using the fact that the (k — 1)-skeleton separates all
the k-simplexes from each other.

2.2 LEMMA. A uniform covering has o finite-dimensional uniform re-
Sinement of and only if it has a uniform refinement which is a union of
Jinitely many uniformly discrete subcollections.

Proof. Evidently if a covering u is a union of n subcollections
which are uniformly discrete (or even merely collections of disjoint sets)
then # has dimension at most # — 1. For the converse, consider the
nerve N(u) as a uniform complex, and let f be a canonical mapping of
the space pX into N(u). The stars of vertices in the first barycentric
subdivision of N(u) form a uniform covering w which is a union of n+1
collections of disjoint sets, namely the collections of stars of vertices
which are centroids of i-dimensional simplexes of N(u), for¢ =0, «-+, n.
If w' is a uniform strict shrinking of w, then w' is a union of n 41
uniformly discrete subcollections, and the same is true of f~*(w'), which
is a uniform refinement of .

2.3. THEOREM. If 0d(pX) = n then either Ad(pX) =mn or pX has &
uniform covering which has no finite-dimensional uniform refinement.

Proof. We have observed already that Ad(zX) = n. It remains to
show that every finite-dimensional uniform covering » has an n-dimen-
sional uniform refinement. By 2.2 we may suppose # is the union of
uniformly discrete collections #°, - - -, u?”.

Let U, be the union of %'. Then % is a refinement of }U;}, which
is thus a finite uniform covering. By hypothesis {U,} has an n-dimen-
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sional uniform refinement, and therefore (by 1.2) it has an n-dimensional
uniform shrinking {V,;}. Let »* be the restriction of %' to the subspace
V.. Each ¢! is a disjoint collection covering V,; hence their union v is
an n-dimensional covering of the space which is finer than #. To show
that » is uniform it suffices to show that each »' is uniform on V; (since
{V,} is uniform and finite). But with respect to some uniformly con-
tinuous pseudometric, the different elements of %' are at mutual distances
> ¢, and then in the subspace V, each element of v* is an ¢-neigborhood
of itself.

2.4. EXAMPLE. There are uniform spaces #X for which Ad(zX)=o
and dd(xX) has any desired value. Here is an example homeomorphic
with a countable discrete space, and having a basis of star-finite uniform
coverings. For the description of the structure of X, consider the metric
space K which is a union of cells I”, each isometric to the unit ball in
E”, with the distance between two points is different cells defined to be
1. Identify the countable set X with a countable dense subset of K,
for the purpose of stating: a covering of X is to be uniform on #zX
provided it has a refinement of the form {U,,}, where the sets X, =U,U,,
are finite in number, and on each X;, considered as a subspace of K,
{U,} is a uniform covering. One easily sees that this family of cover-
ings satisfies Tukey’s axioms and thus defines a uniformity ; the associ-
ated topology is discrete, since some of the sets X; may be single points
(lying in no other X)).

Every finite covering of X is uniform and may be refined by a finite
partition, so that dd(#X) = 0. On the other hand, if {V,} is a uniform
covering of K which has no finite-dimensional uniform refinement (e. g.
the covering consisting of all sets of diameter < 1), then {V, N X} isa
uniform covering of pxX. If it had a finite-dimensional uniform refine-
ment, we should have X partitioned into sets X, ---, X, each X, covered
by a finite-dimensional covering {U,;} which is uniform on X, considered
as a subspace of K. Using 2.2, we may as well assume each {U,} is
uniformly discrete. Moreover, we may assume {U,} is a strict shrinking
of {V, N X}, so that for some ¢ > 0 the ¢-neighborhood of each U, is
contained in some V,. If ¢ is small enough, any two sets U, U,,, are
3c apart. Then the e-neighborhoods of the sets U,; form a finite-dimen-
sional refinement of {V,} and a uniform covering of the ¢/2-neighborhood
of a dense subset of K, that is, a uniform covering of K: a contradic-
tion.

Let us record the last construction for later use.

2.5. If u is a uniform covering of pX and {Vis} a uniform covering of
PA < pX which is a union of n uniformly discrete families, and a strict
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shrinking of u, then there is & uniform covering { Wy, of @ uniform neighbor-
hood of A having these two properties and satisfying Wi, NA = V.

The proof is just as above except that one must introduce a suitable
pseudometric.

Dowker’s proof [3] that the same covering dimension is obtained for
a normal topological space from its finite, star-finite, or locally finite open
coverings goes by way of mappings into spheres and depends on (a)
constructing canonical mappings and (b) modifying them to be essential
onto each simplex. In uniform spaces, of course, the construction is im-
possible, since the conclusion is false. This need not mean that useful
canonical mappings cannot be constructed. The other part of the con-
struction, the removal of inessentiality, is definitely impossible, even in
finite-dimensional spaces. This is easily verified for the subspace of the
plane consisting of the vertical line segments # =n, —1 <y <0, and
z=n,1l/n<y<1. In a sense, the construction of 1.15 yielding arbitrarily
fine uniform coverings which have no proper subcoverings, is the best
one can do in general.

In the case of locally fine uniform spaces, Dowker’s argument goes
through step by step. One has canonical mappings by 1.3 ; every uni-
form covering has a uniformly locally finite uniform shrinking: and
modifications preserving uniform continuity uniformly locally preserve it
in the large. Thus we have

2.6. For locally fine uniform spaces, é-dimension coincides with large
dimension.

Note that the result applies to the topological dimension of non-normal
completely regular spaces, provided the definitions are framed in terms
of normal coverings ; these are the uniform coverings in the finest uni-
formity compatible with the topology, which is always a locally fine
uniformity. [5] Smirnov has established some of the properties of the
dimension defined in this way by finite normal coverings ; and also, for
general uniform spaces, the dimension defined by extension of mappings
into spheres is od [9].

2.7. A umiform space which is ¢ finite union of subspaces of large
dimension < n has large dimension < n.

Proof. The é-dimensions of the subspaces coincide with the large
dimensions ; then from the sum theorem for J-dimension [9] we know
od(#X) =n. From 2.3, Ad(#X) is n or . However, every uniform
covering of #X may be refined by a union of finitely many finite-
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dimensional uniform coverings of the given subspaces, and hence, as in
2.5, by a finite-dimensional uniform covering of pX.

In this manner one can choose finite or infinite coverings according
to convenience whenever the large dimension is known to be finite. This
occeurs for example in questions concerning subspaces of finite-dimensional
spaces, such as

2.8. (Smirnov) A subset S of Euclidean space E™ has d-dimension n of
and only if there exists >0 such that for every ¢ > 0 there is a solid sphere
of radius r in which S forms an e-net.

Proof. The conditions are sufficient, in view of 2.5, for they imply
that any uniform neighborhood of S contains a sphere of radius ». On
the other hand, suppose the conditions not satisfied ; thus for each >0
there is ¢ > 0 such that every r-sphere contains a point distant by ¢ from
S. Consider the cell complex K the walls of which are formed by the
lattice hyperplanes x, = p, p integral. The first barycentric subdivision
K' of K, and all successive barycentric subdivisions K™, are simplicial
complexes, with meshes approaching 0. Moreover, each is a uniform
complex. In particular, on the (# — 1) skeleton of K™, the stars of ver-
tices form a uniform covering u. To see this, observe that » is an open
covering on any compact portion of space (say, all |z, | < 2), hence has
a Lebesgue number there, and every point has a spherical neighborhood
of radius 1 on which the restriction of » is congruent to a part of =
contained in the specified portion.

To construet a uniform (n» — 1)-dimensional covering of S of arbitra-
rily small mesh 2«, choose m so that the mesh of K™ is « or less. Let
{St;} be the covering of the (r» — 1)-skeleton of K™ by stars of vertices,
and 6 a Lebesgue number for this covering (relative to the (n — 1)-skele-
ton). Now there exist, first, » > 0 such that every n-simplex o of K™
contains a sphere of radius »; therefore, by hypothesis, ¢ > 0 such that
each o contains a point distant by ¢; finally, if 20 = min(r, ¢), each o
contains a point P, distant by ¢ from both S and the frontier of o. For
each vertex ¢ of K™, let U, consist of St, together with all open line
segments (p, v,) such that p is a point of S, and a boundary point of
o (thus ¢ is a vertex of &). Relatively on the complement of the union
of the spheres of radius ¢ about all p, (a set which contain S), {U,} has
a Lebesgue number, specifically 06*/a*. To see this, observe that if « is
in the frontier of &, and y is an interior point of & within 66/a of «, we
may construct two similar right triangles in the plane determined by z, v,
and p,, as follows. Drop a perpendicular from p, to the hyperplane of
a face of o containing «, extend the ray from p., to y until it meets some
face of o in a point ¢, and drop a perpendicular from x to the line gy.
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A sketch shows that ¢ must be within ¢ of  and thus in this case some
U, contains both = and y. In the case of two interior points v, 2, of one
n-simplex «, with d(y, z) < 00*/a® and both y and z distant by 6 from p,,
draw lines from p, through y and z until they meet faces of «, and
observe that the distance between these lines measured parallel to yz
cannot increase beyond 60/«a before one of the lines hits a face. The
remaining case, that y and z are in different n-simplexes, o, r, is similar ;
use the facts that y and z are nearer to the (n — 1)-skeleton than to each
other and that § < «/2 (since r < «). Finally a point common to n+1
or more sets U, would have to be interior to some n-simplex o ; but pro-
jection from p, would give a point common to the corresponding sets St;,
which is absurd.

Let us conclude with a few further remarks. As the statement of
2.3 exhibits, we do not need to know that the A-dimension is actually
finite to know that Ad and dd are the same. In particular, they are the
same in any space whose uniformity is the weak uniformity induced by
a family of real-valued functions. I do not know whether Ad and od
coincide for all metric uniform spaces.

Dowker and Hurewicz have shown [4] that the covering dimension
dim for a metrizable space coincides with the sequential dimension ds
defined as the least » such that there exists a sequence of locally finite
open coverings, each of dimension < n, of mesh converging to 0, each
a closure-refinement of the preceding one. (In particular, the theorem
shows that ds is a topological invariant, though the concept of mesh con-
verging to 0 is not invariant.) Examination of their proof shows that
one can replace the closure-refinements by star-refinements, and conclude:
For metrizable spaces, the covering dimension is the same as the least
uniform dimension in any metric uniformity compatible with the topology.
I do not know whether the word ‘‘ metric’’ can be omitted.
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ON THE RADIUS OF UNIVALENCE OF THE FUNCTION

exp z‘lg exp(—t3)dt
0
ERWIN KREYSZIG AND JOHN ToDD

1. Introduction. We shall determine the radius of univalence p, of
the funection

(1.1) E(z) = ezzve-ﬂdt .

W0
We shall write E(z) = w = u(x, y) + (z, ¥). On the imaginary axis we
have # = 0 and v, regarded as a function of y, has a single maximum
at the solution y = p of

29v(0, ) =1.

The value of p to eight decimal places has been determined by Lash
Miller and Gordon [1] and is

(1.2) p = 0.92413887 .

It is evident that p, < p. We shall prove the following theorem.

THEOREM. The number p is the radius of univalence of E(z).
Recently, the radius of univalence of the error function

erf(z) = Sze—ﬂdt

was determined [2]. It is interesting to note that when proceeding from
erf(z) to E(2) we meet an entirely different situation. In the case of
erf(z), points z, 2z, closest to the origin and such that erf(z)=erf(z,) are
conjugate complex and lie far apart from each other. In the case of
E(z) points of that nature can be found in an arbitrarily small neigbor-
hood of the point z = Jp.

The actual situation is made clear by the diagram and tables given
below. In Fig. 1 we show the curves R =|FE| = constant and y =
arg E = constant in the square 0 <2 <1.5,0 <y < 1.5 of the z-plane. The
table shows the values of E for z on the curve C (defined below). The
values given were obtained by summing an adequate number of terms
of the power series on the Datatron 205 at the California Institute of
Technology ; some were checked by comparison with the tables of Karpov
{4, 5] from which values of E(z) can be obtained.

Received September 3, 1958.
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2. Idea of proof. Since

o 2n .
2.1 E(z) = : . gml
(2.1) @ =2 a5 @t n? [zl < e

05

0
15

—_—
X

Fig. 1. Curves R = | E | = const. and y = arg E = const. in the z-plane.

I E() b E(peib) ‘ ‘ vy | Ey)
oo , 0° | 1.6837 o0 o

0.1 0007 | 10° | 1.4957+.0.6121i \ 0.1 | 0.0993i
0.2 02054 | | 20° | 1.0573+0.9759i L 0.2 | 0.1948i
0.3 0.3187 | | 30° | 0.6079+1.0473i 0.3 } 0.2826i
0.4 0.4455 | | 40° | 0.2919-+0.9463i 0.4 | 0.359i
0.5 | 0.5923 | 50° | 0.1189+0.8024i | | 0.5 I 0.4244i
0.6 | 0.7671 | | 60° | 0.0401+0.6817i | 0.6 0.4748i
0.7 | 0.9805 | 700 | 0.0099+0.6003i 0.7 | 0.5105i
0.8 1.2473 | 80° | 0.001140.5553i | 0.8 | 0.532l
0.9 | 15876 | 90° | 0.5410i | 0.9 | 0.5407i

we have E(Z) = E(z) and E(—z) = — E(z) and may restrict our considera-

tion to the first quadrant « = 0,y = 0 in the z-plane.
In the subsequent section we shall prove the following lemma.

LEMMA.
(2.2) E(2) + E(z)

for any two points on the boundary C of the open sector S of the circular disk
(2| < o0 in the first quadrant.



ON THE RADIUS OF UNIVALENCE OF THE FUNCTION 125

From this it follows, since E(z) is entire and thus regular in SuC
that E(z) maps S conformally and one-to-one onto the interior of the
simple closed curve C* corresponding to C in the w-plane [3, p.121].
This establishes our theorem.

3. Proof of the lemma. Let z = r¢*. The curve C consists of

the segment S, : y=0, 0<zx<p,
the circular arc K: |z]=p, 0< ¢ <n/2,
the segment S, : x=0, 0<y<p.

and the three common end points of these three ares.

(A) On S, E(2) is real and increases steadily with «.
(B) On S,, E(2) is imaginary, and v increases steadily with .
(C) v+0 on K.
(D) On K, |E(z)| decreases steadily with increasing ¢.
(A) is obvious from (2.1), and (B) follows from the definition of p.
Proof of (C). Integrating along segments parallel to the coordinate
axes we have

w(x, y) = e~"*[cos 2xygy672 cos 2xrdr
0
+ sin ny{e’”zgxe“zdt + Syefzsin 2xrdr” .
0 0
In {# >0,y >0}n{lz] <p} we have cos2xy > 0, sin2zy > 0. There-
fore v > 0 on K.

Proof of (D). Integrating along a radius ¢ = constant from 0 to p
we have

E(z) = @i"’gpe"(”“’)dr
where
I(r, ) = a(r, ¢p) + b(r, ),
a(r, d) = (p* — r*) cos 2¢, b(r, p) = (p* — r*) sin 2¢ .
Therefore

|E|* = SD e"dr SP edr .
0 0
Differentiating with respect to ¢ and setting

B* = a* 4 ib*, a* = a(r¥, $), b* = b(r*, ¢),
f = cos (b* — b) — 4 sin(b* — b)

we obtain
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P P P . LA (P —=
([ E ll)d) — S ehhd,d/r S eh d/r—F ___I__ S elb dr*S @hhd)d/r
0 0 .0 0

- SP SP @u,+a* {fhd, + f_h(,,}drdr* .
0,0

Now
g = —2(0* — r?)sin 2¢, by = 2(0* — 1’) cos 2¢
and therefore

Fhy + Fhy = 2Rfhy = 2[cos(b* — bla, + sin(v* — b)b,]
= —4(p* — *) sin(a($))

where
ap) =2+ b —b* = (" — r’)sin2¢ + 2¢ .
This yields

(3.1) (E|?), = —4S:SSQ“+“*(p2 — %) sin (alp))drdr* .

Since from (1.2) we have |r* — r*| < 1, we obtain
a(p) =2+ 2(r** — r*)cos2p > 0.

Hence «(¢),0 < ¢ < x/2, has its maximum at ¢ = z/2. Therefore
0 =< a(¢p) < = when 0 < ¢ < 7/2 and sin{a(¢)) > 0 when 0 < ¢ < #/2. This
means that the integrand in (3.1) is positive in the region 0 < r = p,
0 < r* < p for all ¢ in the interval 0 < ¢ < z/2. Thus (| E|*);, < 0 when
0 < ¢ < =/2. This proves (D).

We note that (D) remains true if K is replaced by quadrants of circles
of radii somewhat larger than p; this, however, is of no interest here.

For 2, € K, %, € S, or 2, € K,2, € K, equation (2.2) holds, as follows
from (D). For 2z, e K,z, € S, the same is true because of (C). In the
other cases, z, € S, 2, € S,, ete., the validity of (2.2) is obvious. This
proves the lemma.
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AN INTERPOLATION THEOREM IN THE
PREDICATE CALCULUS

RoGER C. LYNDON

1. Introduction. In studying the formal structure of sentences
whoge validity is preserved under passage from an algebraic system to
a homomorphic image of the system, we have had occasion to use a
lemma from formal logic. A proof of this lemma, our Interpolation Theo-
rem, can be given within the theory of deductive inference, as formalized
by Gentzen. Gentzen’s theory is rather complicated and perhaps not
generally well known. Moreover, the use of any formalized system of
deductive logic seems to an extent alien to the primarily algebraic nature
of our intended application. Therefore we give here a proof of the Inter-
polation Theorem that lies entirely within the theory of models: our
arguments are as far as possible in the spirit of abstract algebra, and,
in particular, borrow nothing from formal logic beyond an understanding
of the intended meaning, herein precisely defined, of the conventional
symbolism.

The Interpolation Theorem deals with sentences of the Predicate
Calculus. Roughly, these are sentences that can be build up using the
usual logical connectives, symbols denoting operations (or functions),
symbols denoting relations (or predicates), and variables whose range is
individual elements of the systems under consideration, but no variables
ranging over operations, relations, or sets. The theorem takes the same
form whether or not we admit a predicate denoting identity, with suita-
ble axioms, to the predicate calculus. For technical reasons we admit
as sentential connectives only the signs for negation, conjunction and
disjunction (regarding ‘‘if ... then’’ as a defined concept), together with
signs 0 and 1 for truth and falsehood. For each occurrence of a relation
symbol in a sentence S, there is a unique maximal chain of well formed
formulas, all containing the given occurrence and each occurring as a
proper part of the next. The given occurrence of the relation symbol
will be called positive if the number of formulas in this chain that begin
with the negation sign is even, and negative if this number is odd. If
S is in prenex disjunctive form, this eriterion takes the simpler form
that an occurrence is negative if and only if it is preceded by the nega-
tion sign.

INTERPOLATION THEOREM, Let S and T be sentences such that S im-
plies T. Then there cxists a sentence M such that S implies M and M

o Ré;i;eci October 22, 1958. Work supported in part under grants from the National

Science Foundation,
1. See [5] and [9], Chapter XV.
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smplies T, and that o relation symbol has positive occurrences in M only if
it has positive occurrences in both S and T, and has negative occurrences
n M only if it has negative occurrences in both S and T.

This theorem is a generalization of a result of W. Craig [3, 4];
Craig’s lemma is obtained from it by suppressing the distinction between
positive and negative sentences. As indicated, our first proof of the
Interpolation Theorem used the Gentzen calculus; it did not differ es-
sentially from Craig’s proof, at that time unpublished, of his lemma.

The leading idea of the present proof is to interpret S implies T to
mean that 7' holds in every model for which S holds; we express this
relation by writing S= 7. By Godel’s Completeness Theorem [6], this
semantic interpretation is equivalent to the interpretation S T, that T
is a formal consequence of S in a deductive axiomatization of the pre-
dicate calculus. The cruecial point in our argument is the Main Theorem,
which serves as a substitute, under this interpretation, for results in
the theory of proof due to Herbrand [8] and to Gentzen [5].

A theorem of the theory of proof may be taken, in general, as
saying that if there exists any derivation of one set 4 of formulas from
a set /7, then there exists a derivation with certain special. properties.
A semantic counterpart of such a theorem will take the form of an
‘interpolation theorem ’: if /' => 4, then there exists a chain " =TI,
I?, -+« I’ = 4 of sets of formulas, with certain special properties, such
that /"= 17" ..., "= [I'", Theorems of this sort will ordinarily require
the occurrence in the 7'* of additional symbols (for the ‘ Skolem func-
tions’) that do not appear in /" or 4, although this is not true of the
Interpolation Theorem. Our arguments abjure any formal use of the
concept of deductive derivablilty, hence of the Completeness Theorem.
In various special cases, where /" -4 would be immediate, that I' = 4
follows directly from our definitions. The more difficult half of the Com-
pleteness Theorem, that if /"=> 4 then I" +- 4, is implicit in the Main
Theorem, which guarantees the existence of achain 1" =1, ««., [™ = 4
such that at each step the relation 7' | '**! is immediately evident.

I have profited much from discussions related to the present topic
with A. Tarski and L. Henkin®; in particular, Tarski has emphasized the
desirability of establishing the Interpolation Theorem by methods in-
dependent of the theory of proof. The idea of providing semantic proofs
of results from the theory of proof is not new : a proof by E. Beth [1,
2], in a quite different formalism, of Craig’s Lemma would certainly
serve as well to prove the Interpolation Theorem ; and A. Robinson has
likewise provided semantic proofs of closely related results [10]. Un-
published results similar to those presented here have recently been

2 In particular, while the author was visiting at the University of California, Berkeley.
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obtained by A. Grzegorezyk, A. Mostowski and C. Ryll-Nardzewski, and
by R. Vaught.

2. Basic concepts.’ A language L is determined by an ordered
quadruple, V, W, R, p, where V, W, R are disjoint sets, V infinite, and
p is a function from W U R to the natural numbers. The elements of
V will be called variables, those of W operation symbels, and those of R
relation symbols ; for w in W, » in R, p(w) is the rank of w and p(r) the
rank of r. The logical symbols are 0,1, ~, A V,V¥,3. The expressions
of L will be made up of these symbols together with parentheses and
commas. A term 1is, recursively, any variable, and any expression
w(t,, +++, t,») Where w is an operation symbol and ¢,, - - -, t,,) are terms.
An atomic formula is any expression »(t, - .-, t,,)) Where r is a relation
symbol and ¢, ---, t,,, are terms. A formula is, recursively, any atomic
formula, and any expression 0,1, ~ F, (F' A G), (F \V/ G), yaF, 32F where
I" and G are formulas and « is a variable. Formally, we define L to
be the set of its symbols, terms and formulas.

We introduce the abbreviations F 5 G for (~ F\V G), AtF, for
Fy AN -+« A F, with the convention A {F,=1, and VY I'F}, for F|, VV -+ \V I,
with V{F; = 0, and write ya, --- @, for yz, -+ yv&,. A matric is a for-
mula that does not contain y or 3. A normal matriz is a matrix of the
form Vi, A " F,, where each I, is either 4;; or ~A4,,, for 4, an
atomic formula. A oprenex formula is one of the form Qu, --- QM
where each @, is v or 3, each w, is a variable, and M is a matrix; the
formula is mormal if the matrix M is normal. An occurrence of a varia-
ble & in a formula F is free in the formula F' if it is not part of a
subformula of the forms yzG or 3aG. A sentence is a formula without
free occurrences of variables.

It is easily shown by induction that if G is any part of a formula
F, then there is a smallest part of F' that is a formula and contains G.
It follows that there is a unique maximal chains of formulas H,, ---, H,=F,
each a proper part of the next, and all containing G. The part G is
positive in I if the number of H,,, = ~ H, is even, and negative if it is
odd. In what follows, G will always be an occurrence of a relation
symbol in F.

An interpretation of a language L is determined by a set 4 and a
function s, defined on VU WUR, such that zwe A for we V, pwe A4
for w e W, and pr e 2" for »r ¢ R. We regard 2 as the two element
Boolean algebra with elements 0, 1 and operations ~, A, \/, so that
is a function with values (¢1) (@, -+ +, @,») equal to 0 or 1; but in practice
we indulge in the harmless ambiguity of treating s as a subset of 4°+!
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and pr of 4°®, and accordingly using such notation as pw = pw’, pr< mr'.
Putting aside the trivial case that L contains no relation symbols of
positive rank, ¢ unambiguously determines its domain A.

The function p determines a unique extension mapping all terms of
L into A, by the recursive definition

#[@U(t, tty tp(w))] = (/l'LU) (:ut’ c ey #tp(w)) .

A further extension mapping all formulas of L into 2 is determined by
the conditions.

P00 =0, =1, p(~F)=n~pF, p(FANG)=pFNG,

(1)
N G) = pF N pG
and

p(axF) =1 if and only if 2F =1 for some 4
=yp forallzin VU WU R — {«}. Formally, we define an inter-
pretation to be a function ¢ thus extended ; in practice we shall say that
¢ and 2 agree except on x when we mean that p and 1 agree for all
zin VU WUR— {x}.

A model of L is the restriction U of an interpretation g to the
operation and relation symbols of L. The model ¥ may be regarded as
a ‘relational system ’* consisting of a set A4, its domain, together with
a set of operations Aw indexed by the operation symbols w of L, and a
set of relations Ur indexed by the relation symbols » of L. If U is the
restriction of z, we call # an interpretation in the model 2A. If pF=1,
we say that F holds for the interpretation z. Evidently #F' depends only
on the domain A of p, the values of # on the operation and relation
symbols that occur in F, and the values of z on the variables that occur
free in F. In particular, if S is a sentence, #S depends only on the
model 2 to which ¢ belongs, and if #S =1 we say that S holds in the
model 2.

If I and 4 are sets of formulas of L, we say that [’ implies 4 in
L if p4 = {1} for all interpretations of L such that pl’ = {1}. This
interpretation is evidently independent of L, provided only that 7" and
4 belong to L; we say simply that [ implies 4, and write I' = 4. We
write p#/" =1 for pl' = {1}, and employ such notation as I', I',=F
with the obvious meaning. If /"= 4 and 4=>1", then " and 4 are equi-
valent and we write I' &= 4. That 1=>F expresses that F' is a theo-
rem. A set I' is called consistent if there exists an interpretation ¢ such
that #I” = 1; thus 7' =>0 expresses that the set I" is tnconsistent.

4 See [11], [12].
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3. Preliminary propositions. The set @ = @(L) of all formulas of
L constitutes, in an obvious sense, an algebraic system with operations
0,1, ~, A,V in fact it is a ‘ word algebra’, a free algebra without
axioms. The relation F ¢ G is a congruence on @, and the quotient
system @ is a Boolean algebra, the Lindenbaum algebra of L. If & is
the canonical map of @ onto @, then every interpretation z of L, when
restricted to @, can be factored uniquely in the form # = fix where # is
a homomorphism of @ onto 2.

The set @, of all matrices of L constitutes a subalgebra of @, and
its image @, = k@, is a subalgebra of @. Every homomorphism 6 of @,
onto 2 can be extended to a homomorphism ¢’ of @ onto 2 such that 6'¢
is an interpretation. To prove this we construct the special interpreta-
tion g 4nduced by 6. For the domain A of ¢ we take the set of all
terms of L. For a variable z, define px = 2. For an operation symbol
w and terms ¢, -, t,», we define pw by assigning to (pw)(ty, « -+, tow))
as value the term w(t, -+, t,cw»). For a relation symbol » and terms
ty, -+, tyn we define g by assigning to (gr)(t, -+, t,») the value
Orr(ty, -+, tun)] In 2. By virtue of the last definition, pF' = 0xF for all
atomic formulas F. Since the images «F' of the atomic formulas #
generate @,, and 7kF = OcF for atomic F, it follows that z = 6 on @,
and 7 is an extension of 6.

ProroOSITION 1. If [ is a set of matrices, and J the dual ideal in the
Boolean algebra @, generated by £1°, then I' = 0 if and only if 0 € J.

Proof. Assume 0 € J. Then O0=kF,A--- A&F, for some F,,.-., F,
in I If g is an interpretation such that x#/'=1, then each fixF, =uF, =1,
whence 1 =7k A F, =1 A £F; = 0 = 0, a contradiction. Assume 0 ¢ J.
Then J # @, and J & K for some maximal dual ideal K in @, If 6 is
the canonical map of @, onto 2 with kernel the maximal ideal @, — K
complementary to the dual ideal K, then s/ S 6J S 0r =1. If p is
the special interpretation of L induced by the homomorphism 6, then
pl" = pkl’ = 0kl” = 1, whence /7 is consistent.

COROLLARY 1.1. If I is a set of matrices, then I' = 0 if and only if
I'y = 0 for some finite subset I'y of 1.

Every map o of the atomic formulas of L, as free generators of @,,
into @,, extends to an endomorphism of @, which in turn induces an
endomorphism 7 of @, It follows that if 7"=0 then o/"=0. Every
map o of the variables of L into terms of L extends in an obvious way
to a map of the terms of L into terms of L, hence of formulas of L
into formulas of L; a transformation induced in this fashion will be
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called a substitution.

PROPOSITION 2. Let I' be sot of sentences S of the form wyx, -+ x,M
where the M are matrices, and I ths sat of all formulas o M where o is g
substitution and M is the matrixz of some sentence S in . Then I' =0 if
and only if 1" = 0.

Proof. Suppose that I is consistent. Then A/ = ixI” = 1 for some
interpretation 1. Let g be the special interpretation induced by the
homomorphism 1 of @, onto 2. Let F =wyx, ---2,M be in I', and v be
an interpretation that agrees with o except on z, -+, z,. Since the
values vx for variables x are terms, we may define a substitution by
setting oo = 2. Since sz = x for all variables @, vM = poM=2cM=1.
This establishes that #F = 1. Suppose I’ is inconsistent. Then for all
interpretations g there is some F' = ya, --- 2,M in I" and some substitu-
tion & such that pgoM = 0. Then setting iz, = pox;, ¢ = 1, + -+, n defines
an interpretation A that agrees with z except on 2, ---, 2,, and such that
AM = 0. 1t follows that uF = 0.

COROLLARY 2.1. If I' is a szt of universal sentences, of the form
F = vz, -++ @,M, where M is a matrix, then I' =0 of and only if I'y=>0
for some finite subset I’y of 1.

A prenex sentence S of the language L may be written in the form

S = v, - Ly JY1 *** V& xnmn.:.lynM

where n, m,, ---, m, are natural numbers, the z,, and y, are variables,
and M is a matrix. The Skolem matriz of S is the result ¢M of sub-
stituting oy, = s(y, *++, T,m,) and oz =z for all other variables z; here
the s, ---, s, are new and distinct operation symbols which we may sup-
pose uniquely associated with the pair consisting of S and L. The Skolem
Sform of S is the sentence vz, --- xnmner. The Skolem form belongs to
the language [/ obtained by adjoining the symbols s, ---, s, to L.

LEMMA 3. Let S be a sentence of the form

S=wya, - -- i QY1 s Ty Yoo 0 Ou‘nmnElyF ’

where the x,, and y, are distinet variables and F is a formula in which
all occurrences of these variables are fres. Let F' result from I by sub-
stituting for each Yy, a term oy, that contains no variables othzsr than
Bigy vy Do Let S’ be the sentence

Jr — o - - !
S’ = VL o= :lelmzl ct a/nm,LF .
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Then S' = S.

Progf®. We proceed by induction. For n = 0 the assertion is trivial.
For n = 1 it suffices to observe that if ¢ is an interpretation such that
s =1, then defining an interpretation i to agree with ¢ except on ¥,
and setting Ay, = poy, gives 1F = pF', hence AF = 1. For n > 1, form
F'" from F' by substituting oy, for y,, all y, except y,, and let S” =
Vi * e T FYF Then the case n =1 applies to give S’=>8", and
the case » — 1 to give S” = S.

PROPOSITION 4. Let T be a set of prenex sentences of o language L,
and I, in an extended language L', the set of all Skolem forms of the
sentences wn I'. Then I' holds in a model N of L if and only ¢f I holds
wn some extension A of A to a model of L'.

Proof. By an induction it evidently suffices to establish the con-
clusion under the assumption that 7’ results from I by replacing a
single sentence S by its Skolem form S’. If 7" holds in an extension
A of A to L/, it follows by Lemma 3 that I" holds in ', and, since I”
belongs to L, that /" holds in 9. TFor the rest, by a second induection it
suffices to establish the conclusion for S=vyau,, - -, 2,3yF, S’ =vyx,- - -, F,
F a formula, ox;, = 2,2 =1, ---,m, and oy = s(x,, -+-, Z,), Where s does
not belong to L and L’ is obtained by adjoining s to L.

Assume now that /' holds in %A. For any a,, ---, @, in the domain
A of U, there exists an interpretation g in 9 such that pz, = a,, 1=1,---, m.
Since xS =1, it follows that p(3yF) =1, and there exists an interpre-
tation 2 that agrees with # except on y such that AF' = 1. By the axiom
of choice we may define a function f from A™ into A by choosing for
alla, ---, a, interpretations # and 1 as above and setting f(ay, «- -, a,) =1y.
Extend A to A by defining A's = f. If ¢ is an interpretation in 2,
then ¢ agrees with some g, 1 as above on the variables z, ---, @,.
Moreover, poy = f(px,, -+, '@, = fla, -+, d,) = Y, Whence poF =
A =1, It follows that #'S" 1 for all interpretations ¢ in ', whence
I holds in .

COROLLARY 4.1. If I' is any set of prenex sentences, then I' = 0 if
and only if I'y=>0 for some finite subset I'y of I.

Every sentence is equivalent to a prenex sentence, and, indeed, a
normal sentence. This follows by induection from various immediate con-
sequences of the definitions, of which ~(F A G) & (~F Vv ~G) and
ve(F' N\ G) & (yeF' A\ v« G) are typical. In fact, it is easily seen that

5 C. C. Chang pointed out to me a gap in an earlier version of this proof.
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every sentence S is equivalent to a normal sentence S’ such that a re-
lation symbol occurs positively (negatively) in S’ only if it occurs posi-
tively (negatively) in S.

In view of this, Corollary 4.1 yields the Compactness Theorem.

ProproSITION 5. If I' s any set of sentences, then I" = 0 if and only
of I'y= 0 for some finite subset I'y of I'.

4. The main theorem. Let S be a prenex sentence, of the form

S = V&u..Vim Y1 *** V1. o, AYaM .

A second sentence S, will be said to arise from S by duplication if
(i) my,---,7 are substitutions such that all =, = o, =y, = ¥,
where the &, and y: are distinct variables; and
(ii) S, results from =M A --- Ax,M by prefixing quantifiers yai,
and 3y} in some order such that, for p < r, yai, precedes 3yi.

PROPOSITION 6. If S, arises from S by duplication, then S = S,.

Proof. Let S have Skolem matrix M, in the language L', where
Ty = Tpg ANA oY, = 8, (T, *+* Ty ). BY Proposition 4, if S holds in any
model 9A, then its Skolem form S’ holds in some extension 2’ of 2 to
L. If p is an interpretation of L’ in U, then every substitution in-
stance of oM holds in g ; in particular, all z,oM hold in g, whence
A moM holds in p. But A moM results from A n,M by substituting
sl oo, ximr) for each yi, whence, by Lemma 3, S, holds in 2, and
therefore in 9.

For S as before, a second sentence S, will be said to arise from S
by specialization if

(ifi) @ is a substitution such that 0y, = y,, while each 6z,, is a term
in certain new variables u, ---, u, together with the y, for » < p; and

(iv) S, results from OM by prefixing quantifiers yu, and 3y, in
some order such that wyu, precedes 3y, if u, occurs in any 60wz, for
p < r, and 3Jy, precedes 3y, if y, occurs in any Ox,, for p < r.

ProrosiTION 7. If S, arises from S by specialization, then S = S,.

Proof. Let S have Skolem matrix ¢M in L' as before. Define a
substitution p by setting pz = z for all variables z other than the y,, and,
by recursion on the order of quantification of the y, in S,, defining
oy, = ploy, = s,(p0xy, - -+, p02,, ). Since all y, that ocecur in oy, occur
in some fx,, for p < r, all such y, precede y, in S;,, and the recursion
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if legitimate. Since 0y, = y,, pOy, = py, = ploy, by the above definition,
while for all other variables z, oz = z and again pfz = ploz. Suppose
now that S holds in a model % of L, and hence, by Proposition 4, that
the Skolem form S’ of S holds in an extension ' of A to L'. Then, for
every interpretation g in 9, all instances of oM hold, and, in particular,
pO0cM holds. Since plo = pb, poeM = p0M. Now plM results from M
by the substitution p, and pu, = u,, while py, contains only those u,
that oeccur in the pfx,, for p < ; by induction, using (iii), these are
among the u, that occur in fx,, for » < s, and hence among the u,
that precede y, in S,. Therefore Lemma 3 applies to establish that S
holds in ' and thus in 2.
Let S', S* be prenex sentences of the form, for 6 =1, 2,

s S D 5 5 5 ) 8
S = VY& v Q'Imlayl e V{Em b xnmnaynM

with Skolem matrices ¢M?® in a language L/, where oad, = &), oyl =
si@h, + -+ @ ). Then S* and S* will be called propositionally inconsistent
if there exists a substitution 7 in L’ that is one-to-one on all atomie for-
mulas of each «M® such that yeM*, naeM? = 0.

ProOPOSITION 8. If S', S? are propositionally inconsistent, then S* S*=>0.

Proof. Suppose S!, S* were consistent, hence both held in some
model % of L. Using Proposition 4, all instances of ¢ M* and «M? would
hold for all interpretations in a certain extension 2’ of U to a model of
I/. Then yoM"' and 7sM* would hold for all such ., and £0 =1, a con-
tradiction.

In propositions 6,7 and 8 we have attempted to isolate the chief
ideas that underly the Main theorem ; the proof of this theorem can
now be accomplished by easier and more natural stages, although at
the cost of a small amount of repetition.

MaAIN THEOREM. Let S'and S?be prenex sentences such that S*, S*=0.
Then there exist prensx sentences 1", T? U* and U” such that (1) T" arises
Srom S, and T" from S?, by duplication ; (2) U* arises from T, and U*
Srom T?, by specialization ; and (3) U' and U? are propositionally incon-
sistent.

Proof. Let S', S* M', M? o and L, I/ be as above. (There is clearly
no loss of generality in taking common values of » and the m,, and a
common substitution o, for S* and S*.) By Proposition 4, S?, S? = 0 im-
plies that their Skolem forms are inconsistent. By Proposition 2, the
set of all instances of +M"' and «M?* is consistent. By Corollary 1.1
some finite set of these instances is inconsistent. Therefore there exist
substitutions », ---, 7, in the language I’ such that
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oMy -oo po MY, poM?, oo o, p,0M* =0 .

Define substitutions =, -+, 7, such that all =2}, = &)} and ==y,
where the &%, and y' are new and distinct variables. Define ¢’ such that
o2l =l and oYY = 5(zr“, cee, 2, ) thus o'mM? = roM? for all =,

Define 7 such that 720, = 72, ; then 7o'z, M® = ym,oM® = 7,0M°. Define
M5 = A =M ; then 70'MS = A m.oM? and 7o' M, mr’Mﬁ%O.

Let S¢ be the sentence obtained from M3 by prefixing quantifiers
vaii and 3y in an order such that, if z and 2’ are two of these varia-
bles and the term 7o'z is shorter than the term 7s'z’, then the quanti—
fication of z precedes that of z'. If p < r, the term 70’2}, = 7adl is a
proper part of the term 70'y% = &i(yadt, « .-, 7;9;?3,17), whence yal, precedes

3¢ in S). Thus S} arises from S® by duplication.

Let S} have Skolem matrix oM, where o¢@¥ =) and oy, =
§¥i(e--, 2%, --+), the arguments ranging, in order of occurrence in S3,
over all &) that precede y, in S}. One has 7o'l = 7023, but
7o'y, = si(gad, -+, 727, ) while the term 7oy = 8)(- -, gali, -+ +) begins
with a different operation symbol and contains additional arguments.
To bring these into agreement, define a transformation y on terms as
follows :

(1) yz =2 for a variable z;

(2) apo'y = yno ;

(8) for any term ¢t = w(t,, -+, tow) not of the form 7o'y,
1t = w(xtu ) ti(w)) .

The clause (2) if legitimate, by an induction on length of %s'y,. For
ot = 8 (- --, ypal, --+) contains y7o'yd" only for those yzo'yl* that
occur in some yzya), for p < r, and it follows by an induction that for
all of these s < ». Let L, be the language obtained from L by adjoin-
ing the symbols s¥. Although neither y nor yz is in general a substi-
tution, when applied to terms of L,, which do not contain symbols s?,
the clause (2) is never invoked ; consequently the restriction 7, of y7 to
L, is a substitution.

Since 7o' M;, 76’ M3 => 0, and y induces a transformation on terms, it
follows that ym’ 3 Xm'Mé@O. Now ype'ydt = ypodt by definition,
while o'@! = off = ol implies that yre'ali = yroasi; it follows that
¥y’ MY = ypo s = 70M35, the last since oM} belongs to L, Hence,
700" M 4, 90005 = 0-

Dropping the subscripts on S§, we now have the situation at the
beginning of the proof, but with @ = 1, that is with a single substitu-
tion 7 such that 7eM’, 7o M*= 0. From the set of all terms that occur
in 70M?® obtain a set B® by deleting successively any term that is ex-
pressible, by means of the operation symbols of L, in terms of the rest.
Since each 7oy} = 8} (g, «+ -, 72}, ) Where s} does not belong to L, we



AN INTERPOLATION THEOREM IN THE PREDICATE CALCULUS 139

can suppose that all the 7sy? belong to B®. Let b}, -+, b5 be the re-
maining elements of B°. Then for each ¥, (that occurs in M?) 7a}, is
expressible in terms of the 7oy} and b}. More precisely, if i, ---, u} are
new and distinet variables, and r a substitution such that 32 = 7oy},
i, = b). then there exists in L a term a8, in the variables y; and b}
such that 0z}, = 7x),. We extend 6 to a substitution by setting 6z ==z
for all z other than the x},, x2,.

Let S% be the sentence obtained from 0M° by prefixing the quanti-
fiers wu) and 3y} in an order such that if z and 2’ are two of these
variables, and 7z is shorter than rz’, then z precedes 2’ in Sj. To verify
that S arises from S°® by specialization, we observe that, for (iii), if 22
occurs in Ox,, then ry} = 7oyl is a proper part of 0z}, = 75, whence
r < p; and, for (iv), if z is any % or u} and z oceurs in 0z, for p=r,
then rz is a part of zz’, which is in turn a proper part of 7oyl = 792,
whenece z precedes ¥’ in S3.

Let S§ have Skolem matrix «,0M®, where o2,, = #z for all variables
z other than the ¢} and oy’ = s§,(-+-, u}, --+), the arguments ranging
in order over all «} that precede 4’ in S3. From noM!, o M*=>0 it re-
mains to construet 7, one-to-one on the atomic formulas of «,0M*, o,0M?,
such that ne0M*, 70,0 M?= 0. TFor this define a transformation y on
terms as follows :

(1) yxz ==z for a variable z;

(2) ybroy) = yroys;

(3) for any term ¢t = w(t, -+, t,,, not of the form rfoy’,
¥t =w(rt, <+, L) -

Ag in an earlier situation, this definition is legitimate, and the restriction
7y of yr to the language L, obtained from L by adjoining the symbols
s). is a substitution. As before we conclude from 7oM?, 70 M* =0 that

yeba M, yeloeM? = 0,
Now
1r00y) = yroy, = yroby; = 900y,
and
xrlod, = x5, = yelow), = yro 25, = 7,0,025, .
It follows that yc0oM?® = 76,0 M?°, whence
70,0 M, o0 M* =0 .

It remains to show that 50, = yro, is one-to-one on the terms of
each 0M°. We show first that r0c is one-to-one on such terms. These
terms are terms in the variables u} and ¥}, containing only the operation
symbols of L. Note that cfoul = c0u} = wu}, = by and <oyl = yoys.
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From the construction of B, it follows that, for two such terms t and
', w0ot = zlot’ cannot hold for one of ¢, t’ a variable unless ¢t = #'. Sup-
pose now that ¢ = w(t, ---, t,,») and ¢’ = w'(¢], -+, thon). Comparing
the first symbols we conclude from rlot = rfct’ that w = w’, and the
arguments agree :

t0st, = zlot; i=1, -+, pw)y=p') .

By induction on the length of the shorter of ¢, ¢’ we conclude that each
t, = t,, whence t = t'.

Finally, yrow) = yc0oy? by definition, and yroul = yrul = yrloul.
Hence yro, = yz0s on terms of ¢M?. But y is evidently one-to-one on
terms that do not contain the symbols s},. Hence, for terms ¢ and ¢ of
OM?, oroit = yrot’ implies yrlot = yzlat’, hence rlst = z0st', and, by the
property of 0o established above, ¢ = ¢’. This completes the proof of
the Main Theorem.

5. The Interpolation theorem. Let S and T be sentences of o lan-
guage L such that S=T. Then there exists a sentence S° of the language
L such that S=8° S°= T, and that a relation symbol occurs positively
in S° only if it occurs positively in both S and T, and occurs negatively
an S° only of it occurs negatively in both S and T.

Proof. S is equivalent to a prenex sentence S* such that a relation
symbol occurs positively (negatively) in S* only if it occurs positively
(negatively) in S. And ~T is equivalent to a prenex sentence S* such
that a relation symbol occurs positively (negatively) in S? only if it oc-
curs negatively (positively) in 7. Since S*, S*= 0, by the Main Theorem
there exist prenex sentencs U! and U? such that S'= U?, S*= U?, that
U contains the same kinds of occurrences of relation symbols as S! and
U* as S?, and that neM?*, 70 M*=>0 where ¢ M*, s M* are the Skolem matri-
ces of U', U? and 7 is a substitution that is one-to-one on the atomic
formulas of each of oM, +M? All this is not altered if we modify U*,
U? by reducing M*, M* to normal form.

It will suffice to find S° such that U'= 8°, and S° U?*=>0, and a
relation symbol occurs positively (negatively) in S° only if it occurs posi-
tively (negatively) in U' and negatively (positively) in U?. Write M=
V M3, each M§= AM:,, and each M3, either 4%, or ~A$, where 43, is
an atomic formula. Define M°= VY M{ where M} =0 if M;=0, and
otherwise MY results from M} by deleting all M}, such that ~7sM}; is not
equivalent to some neM3,. Let S° be the sentence obtained from U* by
replacing its matrix M' by the matrix M°. It is immediate that the oc-
curences of relation symbols in S° are related to those in U! and U? in
the required manner. Moreover. since M*—= M" is immediate, it follows
eagily that U'= S
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It remains to show that S° U?=>0, and for this it will suffice to
to show that »oM°, 7o M?* = 0. Since 7eM*' N noM?*=>0, then for all ¢, &,
yeM; N\ yeM? = 0. We want to conclude that for all 4, 2, 70 M A7aM ;=0.
Since o is clearly one-to-one on the terms of M, so is 7o, and 70 M ;=0
implies M!=>0, whence by definition M} = 0, hence 7cM: = 0 and the
conclusion follows. If 7oM? = 0 the conclusion is immediate. In the re-
maining case there exist j and k such that ~yoM!;& 7o M3,. But then,
by definition, M? still contains the conjunct M},, and again 7o M A\ 7eM =0.
Since 7oM} A poM: =0 for all 4,4, it follows that 7oM°A7sM*=0,
completing the proof.

It was stated in the introduction that the Interpolation Theorem
remains true for the predicate calculus with identity. Precisely, we
restrict the definition of a language to apply only to those that contain
a fixed relation symbol ¢ of rank two, and the definition of interpreta-
tion to admit only those g for which pe is the identity relation on the
domain of g. The relation S=T then acquires a stronger meaning.
Nonetheless, the Interpolation Theorem as stated remains true in this
new sense. (It may be well to note that ¢ is included among the re-
lation symbols mentioned in the conclusion of the theorem.) In fact, all
statements in this paper remain true in the new sense, apart from two
modifications. First, Proposition 1 must be modified by enlarging J to
contain (the coset of) each formula e(t, t), ¢ a term, and to contain any
formula F"’ obtainable from a formula F'in J by replacing an occurrence
of a term ¢ by a new term ¢, provided that e(¢,t’) is in J. Second, in
the proof of the Interpolation Theorem, the M} as deseribed above must
be similarly enlarged by adjoining to each the finite set of all M2, of
the form A or ~A, A atomie, such that M3 = M, in the present sense.

The Interpolation Theorem can be refined in other ways. Condi-
tions can be imposed on the internal structure of the atomic formulas
r(t,, -+, t,n) containing the relation symbol . For example, define
an I-occurrence of 7 in S to be one in which each ¢;, forte I< {1,-- o)}
is a variable universally quantified in S. Then it can be required that
1 have I-occurrences is S° only if it has I’-occurrences in S and I”-oc-
currences in 7T, where [ < ] < I'. Alternatively, stronger conditions
can be imposed on the external context in which a relation symbol occurs.
For example, suppose all positive occurrences in S of a relation symbol
1 are in formulas 4’ D A where A and A’ are atomic formulas, and that
none of the relation symbols appearing in the parts A’ of these formulas
have positive occurrences in S, except possibly in parts A; then S° can
be required to contain no positive occurrences of . Such refinements of
the Interpolation Theorem have proved useful in the study of homomor-
phisms and subdirect products of models, but because of their special
nature it does not seem worthwhile to give separately formal statements
and proofs of these results.
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PROPERTIES PRESERVED UNDER HOMOMORPHISM

ROGER C. LYNDON

1. Introduction. The main result of this paper is a characteriza-
tion of those sentences of the predicate calculus whose validity is pre-
served under passage from an abstract algebraic system to any homo-
morphic image of the system. An algebraic system is here construed
to be a set together with certain operations and relations, including
identity, defined for elements of the set. The sentences under con-
sideration will contain symbols for these operations and relations, and
variables whose range is the set of elements of the system, together
with the usual logical symbols, but will contain no variables whose range
consists of sets, relations, or functions. Such a sentence will be called
positive if it contains the logical symbols for conjunction, disjunction
and quantification only, but not the symbol for negation. It will be
shown that:

(*) A sentence of the predicate calculus is preserved under homo-
morphism of and only if 4t s equivalent 1o a positive sentence.

An example is provided by the usual statement of the commutative
law for multiplicative systems:

vy - Yy = Y .

This is a positive sentence, and indeed every homomorphic image of a
commutative system in commutative. As a second example, upon

eliminating the symbol for ¢ if ... then’’, the left cancellation law takes
the form

Veyz - ~(xy =)V Yy =2 .

This sentence is not positive, and, indeed, from the fact that the left
cancellation property is not preserved under homomorphism we conclude
that it is not expressible by any positive sentence.

It is not difficult to show that every sentence equivalent to a positive
sentence is preserved under homomorphism; although the converse seems
nearly as obvious intuitively, to prove the converse appears to be a
matter of considerable difficulty. That positive sentences are preserved
was noted by the author [6], and also by E. Marczewski [9], who raised
the question of the converse. A proof, by methods quite different from
those used here, was announced by J. Lo$ [5], but such a proof has
not been published. The result has also been stated by A. I. Malcev
[8], who appears to indicate a method of proof.

Received October 22, 1958. Work supported in part under grants from the National
Science Foundation.
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The central result of this paper, Theorem 5, is in fact a stronger
form of the assertion (*) above. Some consequences and variants of
this theorem are given, and examples to show that it ean not be
strengthened further in certain obvious ways.

The content of this paper lies within the theory of elementary
classes as formulated by A. Tarski [12, 13]. We define and use here
numerous concepts due to him, and, in particular, that of elementary
extension, due to Tarski and R. Vaught [15]. We have tried to make
this paper self contained to the extent that the main line of reasoning
should be intelligible and convincing under any reasonable interpretation
of the concepts employed; for the technical definitions necessary for
rigor in the details of the proofs, we refer to an earlier paper [7].
Further, we borrow from that paper the relevant definitions and a proof
for the following theorem, which is the cornerstone of the present paper:

INTERPOLATION THEOREM. If S and T are sentences of the predicate
calculus, and S implies T, then there exists a sentence M such that S
implies M and M implies T, and that a relation symbol occurs positively
(negatively) in M only if it occurs positively (negatively) in both S and
T.

The author has profited from many discussions with L. Henkin and
A. Tarski.? The relativization embodied in Theorem 5 was suggested
by A. Robinson.?

2. Sentences increasing in a relation symbol. Roughly, a property
of a relation may be called increasing if, whenever it holds for a given
relation it holds for any larger relation. Passing from properties to the
sentences that express them, we make a precise definition. Let Q be
a subset of the set R of all relation symbols in a language L, and let
Q" be a set of new and distinct relations symbols ¢ in one-to-one
correspondence with the symbols ¢ of @ in such a way that ¢’ has the
same rank as ¢q. Let I be the set of all sentences

](qy q') =YL o Ty * Q(xly M} xp(q)) - q’(xl’ ct Y {Up(q}) )

for all ¢ in Q. Let /" be a set of formulas of L, and I the result of
replacing the symbols ¢ in /' by the corresponding ¢. We call "
ncreasing in Q if I', I=1".

1 We use the word ‘elementary ’ in preference to ‘arithmetical’, and, by an ‘elementary
class’, mean always what is commonly called an ‘arithmetical class in the wider sense
(ACA).

2 In particular, while the author was visiting at the University of California, Berkeley.

3 At the American Mathematical Society Summer Institute, Ithaca, 1957.
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ProrosITION 1. If a set I' of formulas is positive in all the relation
symbols in a set Q, then I' is increasing in Q.

Proof. It suffices to treat the case that I consists of a single
formula F. If F' is an atomic formula or, vacuously, the negation of
an atomic formula, the conclusion is immediate. The general case
follows by an obvious induction.

The converse is contained in the following.

ProprosiTION 2. Let L, Q, @ and I be as before. Let X, I', 4 be
sets of sentences L, and let X' result from 3, and 4' from 4, by replacing
each q by the corresponding ¢'. If %Y, X', I', I= 4, then there exists a
set Il of sentences P, positive in all the symbols of Q and not containing
the symbols of Q, such that 2, I'= Il and ¥, Il = 4.

Proof. It suffices to treat the case that 4 consists of a single
sentence D, By the Compactness Theorem (Corollary 4.1 of [1]), the
hypothesis will hold with X, I", I replaced by finite subsets, and hence,
taking conjunctions, by single sentences: 8,5, C,J =D, where C is
positive in all the ¢ in @, and J is a conjunction of sentences I(q, ¢').
It follows directly that S, C=J A S" D D'. The symbols ¢’ do not occur
at all in S or C. The symbols ¢ occur only in the part J of J A S DD,
and since each occurrence of a symbol ¢ is negative in J, it is positive
in J AS o D'. By the Interpolation Theorem there exists a sentence
P, not containing the ¢’ and positive in the ¢, such that S, C= P and
P=>JASDD'. From S, C= P we have X, "= P. From P=JAS DD,
replacing each ¢’ by ¢, it follows that P=J* A S D D where J* is the
result of replacing each ¢’ by ¢ in J. In fact, J* is a theorem, whence
P=S>5D, hence P,S=D, and 2, P=D.

COROLLARY 2.1. A set I’ of sentences is increasing tn the symbols
of Q of and only if it is equivalent to a set Il of sentences positive in the
symbols of Q.

3. Q-maps. If I is a set of sentences of the language L, let I'* be
the set of all models of L in which all sentences of /7 hold. If Kisa
set of models of L, let K* be the set of all sentences of L that hold
in all models in K. It follows that /"** is the ‘logical closure’ of I,
the set of all sentences S such that /"= S. The elementary closure of
K is K**, and K is an elementary class if K = K**, thatis, if K=1I*
for any I". Two models A and B are elementarily equivalent if A*=B*,
that is, if exactly the same sentences hold in 2 as in B.

A model A is submodel of a model B if the domain 4 of A is a
subset of the domain B of B and if each Aw, Ur is the restriction of
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the corresponding Bw, Br to the subset 4 of B. If pis any interpreta-
tion in A, there is a unique interpretation 1 in B such that ¢ and 2
agree on all variables of L. B is an elementary extension of A if for
all z, 2 as above, and F' a formula of L, if F holds in ¢ then F holds
in 2. In particular, 9 and B are elementarily equivalent.

If A and B are models with domains 4 and B, a map§ of A onto
B will be called a @Q-map, for Q@ & R a set of relation symbols, if, first
of all, ¢ ‘preserves’ all operations and relations:

0[(;‘)1?'0) (a’ly cty a/p(w))] = (%W) (ﬂa’ly cty oap(w)) ’ all w in W ’
@Ar)(ay, « -+, aym) = (Bry(Oay, ---, a,.) , all » in R,

and, moreover, the implication in the last line is an equivalence for all
r not in Q. More concisely, 6(Uw) = Bw, 0RAr) < Br, with 6(Ar) =
for » not in Q. If ¢ is one-to-one, we speak of a Q-isomorphism. An
O-isomorphism, for O the empty set, is an 4somorphism in the usual
sense.*

If 6 is any map of A onto B, its kernel k, defined by k(a, a’) if
and only if fa = 0a’, is an equivalence relation on 4. If ¢ is a O-map
of 2 onto B, then k is a congruence relation on A, that is, it is sub-
stitutive with respect to all the Yw and Ar. For any congruence k on
a model A, the operations 2w and relations 2Ar of Y induce operations
Aw/k and relations WAr/k on the set A/k of equivalence classes in A
under k; the quotient model A/k is defined to have domain A/k, opera-
tions (A/k)yw = Aw/k, and relations (A/k)r = Ar/k. It is immediate that
the natural projection of A onto A/k is a O-map, and that if ¢ is any
O-map of A onto B, with kernel &, then 0 induces a naturally an iso-
morphism of A/k onto B.

We proceed to the statement of a proposition that contains all that
we require about elementary extensions. For 9 a model of the language
L, with domain A, define a language L, by adjoining to L new and
distinct constants (operations of rank 0) w, for all @ in 4, and a new
relation e, of rank two. Extend 2 to a model U, of L, by defining
A w, = a, that is, A,w, is the constant operation with value a, and
A,e, to be the identity relation on A. Then U* is the set of all sentences
of L, that hold in ,.

ProrosITION 8. If U and B are models of L, and B has an ex-
tension B to L, in which all sentences of W% hold, them B has an
O-image that is an elementary extension of U.

¢ The concept of @-map and that of elementary extension, as well as various results
mentioned here, are special cases of more far-reaching ideas developed recently by H. J.
Keisler [4]. The use of constants w,, in the paragraph after next, derives from the
‘diagrams’ of A. Robinson [11]. Proposition 3 in contained in Th. 1.11 of [15].
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Proof. Let k = B'e,. Since the sentences expressing that 2 e,, the
identity on A4, is a congruence on U, are in A%, they hold in B, whence
k is a congruence on B'. The quotient system €' = ¥'/k then also
satisfles 2%, and €'e¢, is the identity on the domain C of €'. The
restriction € of € to L is B/k, an O-image of B.

Define a map@ from A into C by setting fa = €'w,  Now,
W@y, +«+, Gouy) = @ if and only if e (w(w,, «--, w%(w)), Wy) 18 in Wy,
hence if and only if this sentence holds in @', that is, if

@,w(ﬁal’ ) 0ap(W)) =fa’ .

The same reasoning shows that 2, »(a,, «--, @,,) holds in A if and only
if €'r0a,, ---, ba,,,) in €. This establishes that is an O-map of 2, onto
a subsystem 09(, of €', and, in fact, taking » above to be e¢,, a = a if
and only if fa = 6a’, whence ¢ is an isomorphism.

Since 09, is a submodel of €', taking restrictions to L, 0% is a
submodel of €. Let ¢ be an interpretation in 62, and A the interpreta-
tion in € that agrees with ¢ on all variables. Let F' be a formula of
L with free variables x,, ---, z,, and D the sentence that results from
F' by replacing each x,; by w,, Where px, = 2z, = fa,. If p and 1 are
extended to L' in such a way that each PWo, = AW, = 0a,, then pF = pD
and AF = AD. Now, if pF'=1, 2D =1, and, since D is a sentence, D
holds in #%A,, hence in A,. Then D is in U, and hence holds in @,
whence 1D =1 and AF = 1. This establishes that € is an elementary
extension of 4,. ‘

It is now a trivial matter to construect ® from € by replacing each
element fa in € by a. Then D is an elementary extension of 2 itself,
and the O-map of € onto B induces an O-map of D onto B.

We come now to the main result concerning Q-maps.

THEOREM 4. Let U be a model of the language L, and K an ele-
mentary class of models of L. Then the following are equivalent:
1) all Q-positive sentences of L that hold in K also hold wn ;
(2) some elementary extension of 2 is a Q-image of a model in K.

Proof. Assume (1). Let /"= K* and 4 =A% Let @, @, and I
be as before. Let 4 result from 4 by replacing each relation symbol
g in @ by the corresponding ¢’ in Q'. Suppose I', I, 4’ inconsistent.
By the Compactness Theorem, I', I, D' =0 where D is a finite con-
junction of sentences from 4, hence itself belongs to 4. Then I, I=>
~D’, and, by Proposition 2, and Compactness, there exists a Q-positive
sentence P, not containing the symbols ¢', w,, e,, that is, in L, such
that L= P and P=~D. But I"= P implies that P holds in K, and,
since P is a @-positive sentence of L, that P holds in 2. Therefore P
holds in 2, and P=>~D gives a contradiction.
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It has been shown that 7", I, 4’ is consistent, hence holds for some
model € of the language I’ obtained from L by adjoining the symbols
q, w, e,. Let D be the restriction of € to the language L', excluding
the symbols q; since € satisfies 4’, so does ©. Define a model B’ of
L, to agree with ® except that B'qg = D¢’; then B’ satisfies 4. By
Proposition 8, some O-image B* of the restriction B of B’ to L is an
elementary extension of 2.

Let & be the restriction of € to L; since € satisfies I, so does &,
and € is in K. Now Gw = Cw = Bw for all w in W, and Cr = Cr =
Br for all » not in @, while, for ¢ in @, &g = €q while Bq = D¢ = €¢’,
and, since € satisfies the seetences I, Gq = Bq. It follows that the
identity map 6 on the common domain C of & and B is a Q-map of €
onto B. It follows that the O-image B* of the Q-image B of € is a
@-image of ©: the elementary extension B* of 2 is the @Q-image of &
in K.

To show that (2) implies (1), it suffices to show that if 2 is a Q-
image of some B in K, and P in I" is @-positive, then P holds in .
Define a model € of the language I/, obtained from L by adjoining the
symbols ¢', by taking as domain the common domain A of U and B;
setting €w equal to the common value Aw = Bw; for » not in Q, setting
€r = Ar = Br; and defining Cq¢ = Bq, €¢' = Wq. Since B is in K, B
satisfies P and so does €. Since U is a Q-image of B, each Bq = g,
that is, each €q & €¢', whence € satisfies the sentences I. Since P is
Q-positive, it follows by Proposition 1 that P, I=>P', whence P’ holds
in €, and, since €P' = 9P, P holds in 2.

COROLLARY 4.1. An elementary class K is closed under Q-maps if
and only if it s the set of all models for some set of Q-positive sentences.

Proof. Assume K closed under Q-maps. Let K = I'*, and let /I be
the set of all @-positive consequences of I'. If ¥ is in IT*, some ele-
mentary extension B of U is a Q-image of a model € in K. But then
B and therefore A are in K. Thus [I* < ['*; since /I & I" implies
r*c n*, K=1I*=II*. The converse is immediate.

COROLLARY 4.2. A set of sentences is preserved under Q-maps if
and only if it is equivalent to a set of Q-positive sentences.

4., The Main Theorem. We now choose once and for all a relation
symbol e of rank two, and consider henceforth only languages L that
contain this symbol. A model 2 of L will be called a relational system
provided e is the identity relation on the domain A of 2. We shall
speak of the set of all relational systems in an elementary class as an
elementary class of relational systems.
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The term homomorphism will be taken in the broad sense, for a
map that preserves all functions and relations, that is, an R-map. The
term projection will be used for the narrower concept of O-map: B is
(the image under) a projection of 2 if and only if B is isomorphic to a
quotient system of %A. The other component of the concept of homo-
morphism in contained in that of enlargement, or R-isomophism: B is
(the image under) an enlargement of ¥ if and only if B is isomorphic
to a system obtained from 2 by replacing its relations by more ex-
tensive relations. It is easily seen that if # is any homomorphism of
A onto B, then 2 has an enlargement ', defined by taking W'r = 0-'Br
for all » except, e, such that ¢ induces a projection of ' outo B.

THEOREM 5. Let U be a relational system of the language L, and
K an elementary class of systems of L. Then the following are
equivalent:
1) A satisfies all sentences of L that hold in K and are
posttive tn all relation symbols }
{positive wn the symbol e [ ;
positive in all relation symbols except e
(2) A has an elementary extension that is
a homomorphic image
{a projection & of a system in K.
an enlargement

Proof. Let Q, =R, Q,= {e}, @ = R — {e}.

If A satisfies (2) it is a @,-image of a system in K = K**, and hence,
by Theorem 4, 9 satisfies all @,-positive sentences in K*** = K*,

For the converse, suppose that 2 is a relational system that satisfies
all the @,-positive sentences in K*. By Theorem 4, there exists a model
€ (not necessarily a relational system) in K** and a Q;-map 6 of € onto
a model B that is an elementary extension of 2. Since K is a class of
relational systems, K* contains sentences requiring that ¢ be interpreted
as a congruence, whence Ge¢ is a congruence on €. Since U is a rela-
tional system, e is a congruence, and, indeed, the identity on the
domain A of 9. Since B is an elementary extension of A, hence
elementarily equivalent to 2, Be is a congruence on B, and its restric-
tion to A is the identity on A. It follows that B/Be is an elementary
extension of %A.

The map @ induces a Q,;-isomorphism 6 of €/Ce onto B/Ce. Since
@e < Be, there is a canonical projection & of B/Ce onto B/Be. Hence
£0 is a @Q,-map of the relational system €/Ce onto the relational system
B/Be. This completes the case of @, =R, For Q,= {e}, € and B
differ only in their values €e and Pe, whence €/Ce = B/Ce, and « is a
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projection of €/Ce onto B/Be. For Q; = R — {e}, €e = Be, whence
BjCe = B[Be and 0 is a Qqisomorphism, that is, an enlargement, from
€/Ce onto B/Be.

It would be possible, by the same arguments, to generalize Theorem
5 to @Q-maps, where Q S R may contain e¢ or not, and indeed to maps
increasing in one set @ of relation symbols and decreasing in a second
set @'. But, for simplicity, we shall rather restrict our attention to the
entirely typical case of homomorphisms.

COROLLARY 5.1. Let K be an elementary class of relational systems.
A sentence S is true for all homomorphic itmages of systems in K if
and only if S is a consequence of some positive sentence that holds for
all systems in K.

Proof. If S is a consequence of a positive sentence P that holds
for all systems in K, it follows by the theorem that P, and therefore
also S, hold for all homomorphic images of systems in K. Conversely,
if S holds for all homomorphic images of systems in K, and hence for
all systems having such images as elementary extension, it follows by
the theorem that S holds for all systems that satisfy the set I7 of all
po