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A DUALITY THEOREM FOR AN ARBITRARY OPERATOR

ERRETT BISHOP

1* Introduction, This paper studies the spectral theory of an
operator (or bounded linear transformation) on a Banach space B. Al-
though it would be possible to modify the results to apply to operators
on non-reflexive spaces, for simplicity only reflexive spaces are considered.
The distinctive feature of the treatment is that we are primarily inter-
ested in the spectral properties of a completely arbitrary operator. That
is, we seek a spectral theory which will be valid independently of any
of the usual restrictions (such as normality or complete continuity). It
is, of course, not to be expected, in view of many known counter ex-
amples, that such a theory will even approach in power the spectral
theory of a Hermitian or normal operator on a Hubert space. In fact,
it is surprising that a spectral theory for an arbitrary operator exists at
all. The results obtained here are incomplete, but it seems likely that
any spectral theory which is valid for an arbitrary operator will be
closely related to the theory developed here. It is interesting that certain
known results in spectral theory, which imply the spectral theorem for
a Hermitian or a unitary operator, can be obtained from the theory
which we develop for an arbitrary operator. The principal ideas of this
paper are developments of ideas which appeared in rudimentary form in
unpublished portions of the author's University of Chicago doctoral
dissertation.

The program of the paper is as follows. Instead of considering one
type of spectral theory, we consider four. Since the content of these
theories is that a certain duality exists between an operator and its
adjoint, and since the term "spectral theory" is somewhat deceptive,
we shall employ the term "duality theory" in its stead. The duality
theories are not all of comparable strength. The weakest, type 4,
will be shown to be valid for an arbitrary operator. This will be the
principal result. This having been shown, it will then be possible to
show that certain of the stronger and more conventional duality theories
are satisfied provided that the operator is subject to appropriate restric-
tions. The duality theories will concern the existence and properties of
spectral manifolds. Two types of spectral manifold are needed. The
first type of spectral manifold, the strong type, is defined as one might
expect, but it is the introduction of the second or weak type of spectral
manifold that permits the construction of a theory which will apply to
an arbitrary operator.

The two types of spectral manifold and the four types of duality
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theory will be defined in § 2, and certain elementary consequences of
the definitions will be obtained. In § 3 the principal result, that an
arbitrary operator admits a duality theory of type 4, will be derived.
The proof will entail a preliminary investigation of certain Banach
spaces of analytic functions. In § 4, the concluding section, conditions
will be given under which the stronger duality theories obtain. In
particular, conditions on the rate of growth of the norm \\(T — ziγτ\\
of the resolvent will be given which imply the existence of a strong
type of spectral theory. Such rate of growth conditions have been
studied by Lorch [4] and Wolf [7], but the treatment given here is much
more general and the methods are distinct.

2 Definitions and preliminaries* It can be seen that the definition
given below of a strong spectral manifold coincides with the usual de-
finition if the operator is Hermitian or if, more generally, the operator

can be written in the form \\dE{X), in the sense of Lorch [4] or

Dunford [2].

DEFINITION 1. Let T be an operator on a reflexive Banach space
B. Let F be a closed subset of the complex plane. We define the
strong spectral manifold M(F, T) to be the closure of the set of all
vectors x in B which have the property that there exists an analytic
function / on the complement —FoΐF with values in B such that
(T - zl)f{z) = x for all z in -F.

It will be seen that the strong spectral manifolds are not sufficient
to give an adequate duality theory for an arbitrary operator. (What is
meant by an adequate duality theory will become clear later.) We
therefore define the second type of spectral manifold.

DEFINITION 2. Let T be an operator on a reflexive Banach space
B. Let F be a closed subset of the complex plane. We define the weak
spectral manifold N(F, T) to be the set of all vectors x in B which
have the property that for each ε > 0 there exists an analytic function
/ on the complement —FoΐF with values in B such that

| |(T - zl)f(z) - x\\ < ε for all z in -F.
It is clear from the definition that N(F, T) is closed and that

M(F, T) is a subspace of N(F, T). Examples can be given to show
that M(F, T) can actually be a proper subspace of N(F, T); however,
it can be show that M(F, T) = N(F, T) if T is a normal operator on a
Hubert space. It is also clear that M(Flf T)aM(F2, T) and N(Flf T)
cN(F2, T) if F.aF,. Also, M(σ(T), T) = N(σ(T), T) = B, where σ(T)
denotes the spectrum of T.

The task of investigating the spectral manifolds M(F, T) and N(F, T)
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now presents itself. An obvious possibility is to attempt to prove, for
instance, that M(F19 T) and M(F29 T) span M(FX\}F29 T). Although this
is the case if T acts on a finite-dimensional space or if T is a normal
operator on a Hubert space, it is not true in general. A much more
promising possibility for investigation is suggested by the fact that if
B is finite-dimensional and if Fx and F2 are disjoint closed sets with
F1\jF2z>σ(T) then the subspace M(F29 T*) of 2?* is the annihilator
M(F19 T) 1 of the subspace M(F19 T) of B. This is easily seen from the
theory of operators on finite-dimensional spaces. By means of the theory
of integration around subsets of σ(T) which are both open and closed,
which has been developed by Lorch and is given in Hille [3], it is not
difficult to show that this statement remains valid without the restric-
tion that B be finite-dimensional. In case it is not possible to decom-
pose σ(T) into disjoint closed sets, the essence of the statement can
nevertheless be recaptured. This is done by means of the following
definition.

DEFINITION 3. An operator T on a reflexive Banach space B will
be said to admit a duality theory of type 1 if M(F19 T)L-)M{F21 T*)
whenever Fx and F2 are compact and disjoint and if M(G19 T)1cikί(G2, ϊ

7*)
whenever G1 and G2 are the closures of open sets Gx and G2 which
together cover the complex plane.

It is clear that T and T* play symmetric roles in this definition
because B is reflexive and because the inclusions M(F19 T)A-i)M{F2, T*)
and M(Glf T)-LaM(G2, T*) are equivalent respectively to the inclusions

M(Fi9 T*)Lz>M(Fu T) and M(G29 Γ*)1cM(G1, T) .

Later we shall see that not every operator admits a duality theory
of type 1. More precisely, there exist an operator T and open sets Gx

and G2 which cover the complex plane such that M(G19 T)L is not a
subset of M(G29 T*). Since it will be seen that the inclusion M(F19 T)L

i)M{F21 Γ*) is always valid, it is a case of the strong spectral mani-
folds being too small. This is what was meant above when it was
asserted that the strong spectral manifolds are not sufficient to give an
adequate duality theory for an arbitrary operator, and this is the reason
for consideration of the weak spectral manifolds. Conditions on an
operator which imply that it admits a duality theory of type 1 will be
obtained in §4. Since the duality theory of type 1 does not have much
surface resemblance to the usual spectral theories, we now define duality
theories of types 2 and 3 which bear a closer surface resemblance to
the usual spectral theories, but which will be seen to be intimately re-
lated to the duality theory of type 1. Some of the ideas occurring in
the development of these duality theories are closely related to ideas
which occur in [1].
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DEFINITION 4. The operator T on the reflexive Banach space B will
b e s a i d t o admit a duality theory of type 2 if M(G1? T), • ••, M(Gni T)
span B whenever G19 ---,Gn are open sets which cover the complex
plane.

If T is an operator and M is a subspace of B which is invariant
under T, the restriction of T to M will be denoted by TjM.

DEFINITION 5. Let T be an operator on a reflexive Banach space B
such that for arbitrary open sets GL, —>,Gn which cover the complex
plane there exist subspaces Mlt >• , Mn which span B and are invariant
under T and have the property that aiT/M^czG^ Then T is said to
admit a duality theory of type 3.

It was shown by Lorch [4] that T admits a duality theory of type
3, in our terminology, if (1) σ(T)a{z: \z\ = 1} and (2) there exists a
constant K such that \\Tn\\^ K for all positive and negative integers
n. This work has been generalized by various authors. In §4 general
conditions will be obtained which imply that T admits a duality theory
of type 3. We now define the fourth type of duality theory.

DEFINITION 6. Let T be an operator on a reflexive Banach space
such that the inclusions M{Fx,T)LziN(F2,T*), N(Flf T)Lz^M(F21 T*),
M(G19 Γ)J-ciV(G2, T*), and N(G19 T) 1 cM(G 2 , Γ*) are valid for arbitrary
disjoint compact sets Fλ and F2 and arbitrary open sets Gλ and G2 which
cover the complex plane. Then T is said to admit a duality theory of
type 4.

It is clear that T and Γ* play symmetric roles in this definition.
Although this definition seems awkeward, it is justified by the non-
trivial theorem, to be proved below, that every operator on a reflexive
Banach space admits a duality theory of type 4. This fact makes it
plausible that there exists a third type of spectral manifold L{F, T)9

intermediate between M(F9 T) and N(F9 T), which is self-dual in the
sense that L(F19 T)L^L{F2, Γ*) and L(GU T)LcL(β%9 T) whenever Fx

and F2 are disjoint and compact and Gλ and G2 are open and cover the
complex plane. The author has not succeeded in formulating a conjecture
as to how such intermediate spectral manifolds might be obtained.

3. Duality theory of type 4* Since the definitions of the spectral
manifold involve vector-valued analytic functions, it will be necessary
to make a preliminary study of spaces composed of such functions.
Let B be a Banach space with dual 5*. Let U1 be an unbounded
open subset of the complex plane whose boundary C consists of a
finite number of disjoint closed rectifiable Jordan curves. The set U1

will be called an unbounded simple open set. Let U2 be the complement
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of U1U C, so that U2 is a bounded open set whose boundary is C.
The set U2 will be called a bounded simple open set, and U1 and U2 will
be called complementary simple open sets. Let Wx be the set of all
analytic functions from U1 to B which vanish at infinity, and let W2

consist of all analytic functions from U2 to I?*. We topologize Wx and
W2 by the topology of uniform convergence on compact subsets of U1

and U2 respectively. It is clear that W1 and W2 are locally convex linear
topological spaces. Let Vx consist of those functions in Wx which can
be extended to be continuous on U1U C, and let V2 consist of those
functions in W2 which can be extended to be continuous on U2 U C. If
fe Vλ we define ||/[[ = sup {\\f{z)\\\ ze J7J, and if ge V2 we define
\\g\\ = sup {||0(2)||: ze U2}. The Banach space Vτ is called the Banach
space of analytic functions from U1 to B which have continuous boun-
dary values, and V2 is called the Banach space of analytic functions
from U2 to B* which have continuous boundary values.

Before proceeding, we state the Cauchy integral formula in a form
suitable to our purposes: there exists a unique orientation on C, called
the canonical orientation, such that

2π% Jc

whenever z0 e U2 and g is an analytic function on some neighborhood of

U2 U C, and such that

1 Γ
+• i /y i I -P ί /y\(/y /y \ I/V /*/

J\zo) — ~~—r\ J\Z)\Z — zo) a z

whenever z0 e U1 and / is an analytic function on some neighborhood of
E/illC which vanishes at infinity.

For z in U19 z0 in U2, and x in B we define a(x, zOf z) = (z — z^x.
For each x in B and each z0 in U2, the element a(x, z0, •) will be called
an elementary element of Vx. The Banach space V, called the restricted
Banach space of analytic functions from U1 to B which have continuous
boundary values, is defined to be that subspace of Vx which is spanned
by the elementary elements of Vλ.

If / e Vj. and g e V2, we define

), g{zjydz ,

where C is given the canonical orientation and where we have extended
/ and g to be continuous on C. It is clear that this defines a jointly
continuous bilinear functional between Vx and V2.
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LEMMA 1. Let V be the restricted Banach space of analytic func-
tions from an unbounded simple open set U1 to a Banach space B which
have continuous boundary values. Let V2 and W2 be defined as above.
Then there exists a linear subset Y of W2 and a norm on Y such that

(1) Y is a Banach space.
(2) V2dY.
(3) The inclusion mappings V2-> Y and Y-+ W2 are continuous.
(4) The inner product between V and V2 can be extended to an

inner product between V and Y in such a way that Y becomes isomet-
rically isomorphic to F*.

Proof. Let φ be an arbitrary element of F*. For each x in B
and zQ in U2 define Γ(x, zQ) = Γφ(x, zQ) = φ(a(x, zQ, •)). For zQ fixed, it

follows that Γ( , zQ) is a continuous linear functional on B, because con-
vergence of {xn} to x in B implies convergence of {a(xn, z0, •)} to
a(x,z0, •) in V19 which in turn implies convergence of {φ(a(xn, z0, •))} =
{Γ(xn, z0)} to φ(a(x, z0, •)) = Γ(x,z0). Thus Γ( ,^ 0 )eE* for each z0 in
U2. We now prove that Γ e W2. By this we mean that the mapping
z0 -> Γ{ , zQ) is an analytic function from U2 to J5*. It is sufficient to
show that this mapping is weakly analytic, i.e., to show that z0 -> Γ(x, z0)
is an analytic function on U2 for each x in B (see Hille [3], page 53).
To this end we consider the difference quotient

[ / > , zλ) - Γ(x, z,)\zx - z,)-1

= φ{[a(x, z19 •) - <x{x, z0, -)](«i - ^o)"1} .

As zλ -> z0, the element [a(x, zlf •) — a(x, z0, )](z1 — z^)'1 converges in V

to β(x, z0, •), where β(x, z0, z) is defined by β(x, zQ, z) — (z — zQ)~2x for x

in B, z0 in U2, and z in Ul9 The difference quotient in question there-
fore converges to φ(β(x,z0, •)) as z1->z0. It follows that Γe W2. We
have thus defined a linear mapping φ->Γφ of V* into W2. Let F be
the range of this mapping, so that 7 c W2. If Γφ=0, then φ(a(x, z0, •)) = 0
for all a; in β and all 20 in 1̂ 2, which implies that φ vanishes on all
elementary elements of Vx. Since the elementary elements span V, it
follows that φ — 0. Thus the mapping φ —> Γψ is a one-to-one mapping
of V* onto Y". Hence 7 is a Banach space under the norm ||/'^|| =
H l̂l Consider a net {Γφ } of elements of Y which converges to Γφ in
Y, so that {φn} converges to φ in F*. We wish to show that {Γφ }
converges to Γφ in W2, or that {Γφ } converges uniformly to Γφ on each
compact subset F of U2. This is equivalent to the convergence of the
net {<Pn(oc(x,z0, •))} to <p(a(x,z0, •)) uniformly for ||αs|| ^ 1 and 2;0 in F.
This in turn follows from the fact that {a(x,z0, •): \\x\\ ^ 1, zQeF} is
a bounded subset of V and that {<pn} converges to φ. Thus convergence
of a net {/̂  } in 7 implies convergence of the net in W2 to the same
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limit, so that the inclusion map Y -+ W2 is continuous.
To prove V2a Y, consider g in F2 and define the continuous linear

functional φ on V by φ(f) = </, #>, where the inner product between
V1 and F 2 was defined above. Thus φe F * , so that Γφe Y. Also,

^(α, z0) =

= -—- <μ(x, z0, z), g(z)}dz
ΊLπ% )G

2TΠ J(7
--= <xy g(zQ)y .

Thus Γφ = g. It follows that F 2 c Γ.
We define the inner product between V and Y by </, /^> = <p(f)9

so that y becomes isometrically isomorphic to Vλ\ Since we have seen
in the preceding paragraph that φ(f) = </, #> for each g ~ Γφ in F2,
it follows that this inner product extends the inner product between V
and V2.

It remains to show that the inclusion map V2 -> Y is continuous.
Let {gn} converge to g in V2. Define ^ in F * by φn(f) = </, ^w> for
all / in V, so that gn = Γ^w by the above. To show that {gn\ converges
to g in Y we must show that {φn} converges to ψ in F * . This follows
from the joint continuity of the inner product between F and F 2. This
completes the proof of the lemma.

We shall identify the space Y of Lemma 1 with F * , so that F *
will be thought of as a subset of W2. Define the bounded linear mapp-
ing τ of F into B by τf = lim^^zfiz). Then the adjoint mapping τ*
of B* into F * is defined by taking τ*u to be that function of F2 whose
value at each point of U2 is u, i.e., by setting {τ*u)(z) = ^ for all 2 in
C72. This is seen by the following computation:

<τf, 6̂> - lim «</(«), ^> = Mm d — ^ - [ (ί - ^)"1</(ί), u>dt]
2— L 2τrt Jσ J

The mapping τ is onto, because τa{x, z0, •) = a; for all cc in 5 and all
zQ in C/2, as a simple computation shows.

In addition to the above objects, we now consider an operator T on
B. We define the operator H on F by (Hf)(z) = (Γ - «/)/(2;)+ τ/ for
all £ in ί7lβ In order to obtain a formula for the adjoint operator H*
on F * , consider an elementary element / = a(x,z0, •) of F and an ele-
ment 0 of F * . We consider g as an element of W2, and let φ be the
element of F * which corresponds to g. Then (x, g(zo)y — φ(a(x, z0, •)) =
φ(f), by the definition of g. Also, </, ^> = <p(/) when g is interpreted
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as the element ψ of F * . Thus </, (/> — <χ, g(zo)y.
Simi lar ly , <f, H*g> = <x,(H*g)(zQ)> a n d <a(Tx,z0, •), g> = <Tx, g(zo)>.
Thus

(Hf)(z) = (T - zl)(z - Zo^x + x

Therefore Hf = a(Tx, z0, •) - zoa(x, z0, -). Thus

O , (H*gχzQy> - </, ff*flf> = < # / , <?>

- <Tα, g(zo)y - z«<x, g(zQ)y = <a, ( Γ * -

Since this is true for all x in B, it follows that the adjoint operator is
given by the formula (H*g)(z0) = (T* — zol)g(zo) for all £0 in J72.

Of the many possible norms for F x F, we consider only those
norms obtained by defining

\uf fΛ\\ — IKΛ,/2)H = 0?il/ill2 + H/2ll2)1^2

where Ύ] is an arbitrary positive constant. Then the norm on F * x F *
will be given by \\(glf g2)\\ — (^"Ml^ill2 + ll^il2)1^. We define an operator
K on V x V by K(f19f2) = CΛ, -ff/i — / 2 ) . A simple computation shows
that K2 — I and that if* is the operator on F * x F * defined by
K*{gu #2) = (J?*02 + 0i> —^2). Since K2 — I it has an inverse and there-
fore the norm [ ] on V x V defined by [/] = | |UL/ | | is equivalent to the
norm || | |. Similarly, the norm [ ] on V*xV* defined by [g] — \\K'lίg\\
is equivalent to the norm || ||. Also, for each g in F * x F * we have

[g] - HK*gll - sup {(</, K*g>|: 1|/H - 1}

= sup {|<(iΓ/, ^>1: 11/11 = 1}

= sup {\ζKf, g>\: \\K(Kf)\\ = 1} = sup [\<h, g>\: \K\ = 1} .

Thus the norm [ ] on F * x F * corresponds to the norm [ ] on V x V.
In the proof of Theorem 1 we shall need the following simple

lemmas. They correspond to well-known results, but we sketch their
proofs for the sake of completeness and in order to have them in ex-
actly the form they are needed.

LEMMA 2. Let A be a bounded linear transformation which maps
a Banach space Bλ homeomorphically into a Banach space B2. Then
the norm [ ] on Bf defined by [u\ = inf {|M|: veBf, A*v = u} corre-
sponds to the norm [ ] on B± defined by [cc] = ||ilcc||.

Proof. Consider w in B*. By the Hahn-Banach theorem, there
exists v in Bf such that <cc, uy — (Ax, vy for all x in Bx and such that

^>|: xeBlf \\Ax\\ ^ 1}. Thua A*v = u. If also A+v^u,
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then (Ax, v^) = (Ax, v) for all x in B19 so that

\\vΛ\^mp{\<Axfv^\\ xeBlf | | A x | | ^ l } = \\v\\ .

Thus

[u] = IMi = sup {\(Ax,vy\: xeBlf \\Ax\\ ̂  1}

= sup {\ζx, u)\\ x 6 Blf [x] <S 1},

as was to be proved.

LEMMA 3. Let A be a bounded linear transformation of a Banach
space B2 onto a Banach space Bx. Then the norm on Bΐ defined by
[u] = | |A*u| | corresponds to the norm on B± defined by [x] = inf {\\y\\:
Ay = x], and the norms [ ] and \\ \\ on Bx are equivalent.

Proof. It is easily seen that [ ] is a norm on Bλ and that 11 cell ^
||A||[ίc] for all x in 2?1# Let {xn} be a Cauchy sequence of elements in
Bx relative to the norm [ ]. We may assume, by passing to a subse-
quence if necessary, that [xn — xn+1] < 2~n. Thus we can inductively find
yn in B2 with Ayn = xn and \\yn - yn+1\\ < 2~n. Thus {yn} converges to
a vector y in B2. Thus {xn} converges to x = Ay relative to the norm
[ ] on Bλ. Thus Bλ is complete under the norm [ ]. By the closed graph
theorem, it follows that the norms || || and [ ] on Bx are equivalent.
Also, if ueBf then [u] = \\A*u\\ - sup {\ζy, A*u>\: y e B2, \\y\\^l] =

sup {\ζAy,u>\: y e B2, \\y\\ ̂  1} = sup {Kx,u>\: xeBlf [x] ^ 1}, as was

to be proved.
The following theorem is the guiding result of this paper. The

other theorems wτill be derived as consequences.

THEOREM 1. Let T be an operator on a Banach space B. Let Ut

be an unbounded simple open set, and let V be the restricted Banach
space of analytic functions from U1 to B. Let Ϊ] be positive. For x
in B define

{x} = {χ}n = in f ί ^ H / l l ' + \\HfWr*: feV,τf = x) .

For u in B* define

{yi = {U]η = inf {(II^H2 + ψ*\\H*g - τ%|i2) 1 / 2: ge V*} .

Then the function { } on B is a norm which is equivalent to the norm
|| | | and the function { } on B* is the norm on β* which corresponds
to the norm { } on B.

Proof. The map (u, g) -> (τ*u, g) of B" x F ; K into F * x V* is the
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adjoint of the map (flf f2) -> (τf19 f2) of 7 x 7 onto B x V. It follows
from Lemma 3 that the norm on δ * x 7* defined by [(u, g)] — [(τ*u, g)]
corresponds to the norm on B x V defined by [(as,/)] = inf {[(/0,/)]:
τf0 = x], and that the norms [ ] and || || on B x V are equivalent.
Now the map (u, g) —> u of B* x V* onto B* is the adjoint of the map
x -> (x, 0) of B into B x V. It follows from Lemma 2 that the norm
defined on 5* by \u\ = inf {[(u, g)]: g e V*} corresponds to the norm
defined on B by [#] = [(x, 0)], and that the norms [ ] and || || on B
are equivalent. But

[x] = inf {[(/, 0)]: τf=x}= inf {\\K(f, 0)||: τf = tf}

= inf {||(/,H/)[|: r / = x }

= inf {Oyll/lp + | |ίί/| |2) 1 / 2: τf = x} = {x} .

Also,

M - inf {[(r%, flr)]: ^ e 7 * } - inf {\\K*(τ*u, g)\\: ge V*}

= inf {\\(H*g + τ*u, -g)\\: ge 7*}

= inf {IK^Γ f̂lr — r*^, flr)||: geV*}

= inf {(ψ*\\H*g - τ%H2 + \\g\\ψ\ ge V*} = {u} .

This proves Theorem 1.
Of the two constituents, >71/2||/|| and | | i ί/ | | , which enter into the

norm {x} = inf {(^||/||2 + | |iϊ/| |2)1 / 2: τf = ίc} on B, imprecisely speaking
the second constituent

\\Hf\\ = sup {||(Γ - «/)/(«) + x\\: ze Ux}

measures the degree of approximation to which one can solve the re-
solvent equation (T — zl)f(z) = x on Ê , and the first ^i| |/H measures
the size of the approximate solution. A similar comment can be made
for the norm { } on 5*. Thus Theorem 1, which states that the norms
correspond, establishes a relationship between approximate solutions to
the resolvent equation for T on the set U1 and approximate solutions to
the resolvent equation for Γ* on the set U2. In view of the fact that
the spectral manifolds were defined in terms of approximate solutions to
the resolvent equation, it is not surprising that Theorem 1 should con-
tain information pertinent to the duality theories defined above. Actual-
ly, the duality theory which we obtain as a consequence of Theorem 1
will be less precise than Theorem 1 itself. It therefore seems likely that
a complete duality theory for an arbitrary operator will be based upon
some version of Theorem 1 itself rather than upon the duality theory
which we now proceed to derive from Theorem 1. It would have been
possible to derive Theorem 1 in more generality by considering possibili-
ties other than V for the Banach space of analytic functions from Ux to
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B, but this was not necessary for the applications to be made.

COROLLARY. Let the subset N of B consist of all x such that for
each ε > 0 there exists f in V with \\Hf\\ < ε and τf=x. Let the
subspace M of 5* be the closure of the set Mo of all u in B* such that
there exists g in F* with H*g = τ*u. Then N is a subspace and
ML = N.

Proof. We first show that N = {x: {x}v-+0 as ^->0} . If xeN
for each ε > 0 there exists / in V with τf = x and \\Hf\\ < ε. Thus
{x}v ^ (v\\f\\2 + ε2)1/2-»ε as η -> 0. Since ε is arbitrary it follows that
{x}η -* 0 as η -> 0. Conversely if {x}η -> 0 as η -> 0 then for each ε > 0
there exists η > 0 such that {x}η < ε, which implies that there exists /
in V with τf = x and (>?||/H2 + | |if/| |2)1 / 2 < ε. Thus \\Hf\\ < ε, so that
xeN.

We next show that Mo = {u: {u}v is bounded for η > 0}. If we MOf

then there exists g in V* with H*g = τ*u. Therefore

is bounded for η > 0. Conversely, assume now that {π}7? < c for all
positive η. Then for each positive integer n there exists #w in V* with
(n||fΓ*flfn - τ^H 2 + | |^ | | 2 ) < c\ Thus | | ^ | | < c. Since the unit sphere
of F* is compact in the weak star topology, there exists a cluster point
g of {gn} in the weak star topology. Therefore H*g is a cluster point
of {H*gn} in the weak star topology. Since \\H*gn — τ*u\\2 <g c2π-1, it
follows that H*g = τ*tt. Therefore ^ e Mo.

If ^eiVand ueM0, then |<x, %>| g {x}v{y>}v-*0 as )y->0. There-
fore N and Mo are orthogonal. If x is not in N, then {̂ ĵ  does not
converge to 0 as η -> 0, so that there exists a sequence {%} of positive
constants converging to 0 and a constant c > 0 such that {^j^ > c for
all w. It follows that there exists a sequence {un} of elements in B*
with {tt,,}^ < 1 and ζx, uny > c. We can thus find a sequence {gn} of
elements in F* with

As before, there exists a cluster point (g, u) of the sequence {(gn, un))
in the weak star topology of F* x B*. It follows, as before, that
H*g = τ*u. Thus ue Mo. Since also <x, u) ^ c, the vector x is not in
Mΐ. Thus Mi = ΛΓ. It follows that ΛΓ is a subspace and that M1 = ΛΓ,
as was to be proved.

As an easy consequence of this corollary, we obtain the following
fundamental theorem.
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THEOREM 2. Every operator T on a reflexive Banach space B
admits a duality theory of type 4.

Proof. Let Fx and F2 be disjoint compact sets. Then there exists
an unbounded simple open set U19 whose complementary simple open set
will be called U2, such that F2a.U1 and FxciU2. Define N as in the
above corollary. To see that N(F19 T)aN, take x in N(F19 T) and take
ε > 0. Let z0 be any point in U2 and let inf {\z — zQ\: ze C/J = c > 0.
By the definition of N(Flf T), there exists an analytic function / from
-Fλ to B such t h a t \\{T - zl)f(z) - x\\ < ε for all z in -F1. Since /
is analytic on the neighborhood — Fx of ΪΛuC, Runge's theorem for
vector-valued analytic functions (whose proof is exactly the same as the
proof of Runge's theorem in the scalar case) implies that / can be uni-
formly approximated on U^C by linear combinations of elementary
elements of VΊ. Therefore f e V. Define fx in V by

/i= -f+a(x + τf,z0, •) .

Then

τfλ = -τf + lim z(z - Zo)-1^ + τf) = x .
2—>oo

Also,

\\HfA\ = sup {||(Γ - 2/)/^) + τ/,11: ze UJ
= sup ill -(T - zl)f(z) + (z- zoy\T - zl)(x + τf) + τfAV. ze UJ

^ snv {\\(T - zl)f(z) - x\[: zeU,}

+ sup {\\(z - zo)-\T - zl)(x + r / ) | | : ze £/,}

^ ε + sup {||(2 - zo)-\T - zl)(x + r / ) | | : 0 6 t/J .

Now

\\x + τ / | | = lim || - [ (Γ - z/)/(2) - x]| | ̂  ε .

Thus

||(2 - zo)-\T - zl){x +

C + c-Mzol +

Thus

Since ε is arbitrary, xeN. Thus N(FU T)aN.
We next show that M(F2, T*)aM, where M is denned in the above

corollary. It is sufficient to consider u in M(F2, T*) such that there
exists an analytic function g from —F2 to B* with (T* — zl)g(z) = u
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for all z in — F2, since the set of such u is dense in M(F2, T*). Since
g is analytic on the neighborhood — F2 of U2\jC, ge 7 , c 7 * . By the
definition of £Γ* it follows that H*g = τ*u. Thus ueM, so that

M(F29 Γ * ) c l .
Since ML = N by the above corollary, it follows that

N(F19Tyz>M(F29T*).

Since this holds for all operators Γ, we may replace Γ by Γ* and in-
terchange F1 with F 2 to obtain

N(F2, T*ynM(Flf T), or M(F19 Tyz)N(F2, Γ*) .

It remains to consider open sets Gλ and G2 which cover the complex
plane. There exists an unbounded simple open set U1 such that
U1czG2[j — o{T) and U2aG19 where Z72 is the bounded simple open set
which is complementary to U1. Define V, M, and N as in the above
corollary. We first show NcN(G19 T). Consider x in N, so that for
each ε > 0 there exists / in V with τf = x and | | f l/ | | < ε. This implies
that

- zl)f(z) + x\\ = | | (Γ - «/)(-/(«)) - x\\ < ε

for all z in C/1# Since -G^U^ it follows that xeN(Gly T). We next

show McM(G2, T). Consider u in Λf0, so that there exists g in V*

with i ϊ*0 = τ*u. Thus (T* - ^ 1 ) ^ ) = u for all « in U2. lί ze ~σ{T)

let g(z) — (Γ* — ziyλu. We thus obtain an analytic extension of 0 to

^aU —σ(T) which has the property that (T* — zl)g(z) = u for all « in

C/ 2U-^(Γ). Since - G 2 c ϋ72U -<τ(Γ), it follows that ue M(G29 T*).

Thus Λf0cM(G2, 27*), and therefore MaM{G2, Γ*). Since M2- = N and

is reflexive, JV-1 = M. Hence ^(G,, Γ)±cΛί(G 2, T*). In this inclusion

we may replace T by T* and interchange Ga and G2 to obtain

N(G29 T*yaM(G19 T) or M(G19 T)±cΛΓ(G2, Γ*) .

This completes the proof of Theorem 2.
We close this section by considering an example, which will show

that M(F9 T) Φ N(F, T) in general and that not every operator admits
a duality theory of type 1. Let {xw}Γ=-oo be a complete orthonormal
basis for a Hubert space B, and let {an}n=-oo be a sequence of real num-
bers with 2"1 < an < 2 and

lim sup (α1α2...αw)1/w = lim sup (α_1α_2...α_w)1/w = 2

and

lim inf (α1α2...αn)
1/w = lim inf (α-iα-a. .α-n)1'" — 2"1 .
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Define the operator T on B by Γ ( 2 ^ ) = E « « + i T h e n τ*> τ~ι>
and (Γ")"1 are operators of the same type as T. For each r with
2"1 < r < 2 let Kr = [2: [z| ̂  r} and L, = {z: \z\ ̂  r}. We shall show
that M(Kr, T) = M(Ln T) = {0}, that N(Kr, T) = N(Lr, T) = B, and
that corresponding equalities hold for Tλ\

To show M(Kr1 T) = {0}, let x be any vector in B such that there
exists an analytic function / from —Kr to B with (T — zl)f(z) = x for
all £ in —Kr. The Laurent expansion for / is therefore

f(z) = - Y^z-^T'x .

Since this series converges for [ z \ > r we have

lim sup^coll Tnx\\ιln g r < 2 .

By the formula for Γ, this implies that x = 0. Thus Λf(iί,, Γ) - [0}.
Since T~λ and T* are operators of the same type as T, we also have
M(Kr, T-1) = M(Kr, Γ*) - [0].

Now consider x e ! ( L , , Γ). Thus there exists / analytic for \z\<r
with values in B such that (T — zl)f(z) = x. Therefore

for |z | < r. Thus — 2/(«) = g(z~ι) is an analytic function of z~v for
μ-1! > r ' 1 and (T"1 - ^- 1 I)^- 1 ) = T~ιx. Therefore T-λxeM{Kr^, T~L).
By the above, this implies that T"ιx — 0. Therefore x = 0. Therefore
Λf(Lr, T) = {0}. Similarly, Λf(Lr, T*) = {0}. This already shows that
Γ does not admit a duality theory of type 1, since by the above it is
not true that

M(Kr, Ty<zM(Ls, Γ*) if 2-1 < s < r < 2 .

To show that ΛΓ(iΓr, T) = β, choose s with 2"1 < s < r < 2. Then
N{Kr, TycM{Ls, ϊ7*) = {0} since Γ admits a duality theory of type 4.
It follows that ^(ίζ., Γ) = B. The equality JV(Lr, T) ̂  B is proved
similarly.

4* The other duality theories.

DEFINITION 7. The operator T on the reflexive Banach space B is
said to satisfy condition a if N(F19 T)dM(F2, T) whenever Fλ and F2

are closed and FLa interior F2.

THEOREM 3. An operator T ivhich satisfies condition a admits a
duality theory of type 1.

Proof. Assume that T satisfies condition a. Let Fx and F2 be dis-
joint compact sets. Then
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M(Fl9 T)czN(Fly T), so that M(Flf TyiDN(Fly T)LZ)M{F2f Γ*)

by Theorem 2.

Consider now open sets G± and G2 which cover the complex plane.

Choose an open set G3 such that G 3cGj and such that G2 and G3 cover

the complex plane. Then N(G3, Γ ) c I ( G υ T) by condition a. Thus

M(Glf T)-LciV(G3, T)-LcM(G2, Γ*) by Theorem 2. This completes the

proof of Theorem 3.
We now investigate conditions which are sufficient for T to admit

duality theories of types 2 and 3.

DEFINITION 8. The operator T on the reflexive Banach space B
satisfies condition β if for every open set U and every sequence {fn} of
analytic functions from U to B such that (T — zl)fn(z) -> 0 uniformly
on U as n -> co it follows that the sequence {/„} is uniformly bounded
on compact subsets of U.

There are various reformulations of Definition 8. We shall need the
following: T satisfies condition β if and only if for every open set U
and every sequence {/„} of analytic functions from U to B and every
x in B such that (T — zl)fn(z)~> x uniformly on compact subsets of U
as n -» co it follows that {fn} is uniformly bounded on compact subsets
of U. That this reformulation implies condition β is clear. To see that
β implies this reformulation, let {/„} be a sequence of analytic functions
from U to B such that (T — zl)fn{z) -> x uniformly on compact subsets
of U, and let if be a compact subset of U. Then there exists a neigh-
borhood U1 of K such that (T — zl)fn(z) -> x uniformly on Ulm If {fn}
is not uniformly bounded on K, by passing to a subsequence if necessary
we may assume that dn+1 > n + dn for each n, where

dn = sup {||/w(z)||: zeK} .

Thus the sequence {gn} defined by gn = fnΛ λ — fn is not uniformly bounded
on K. On the other hand,

(T - zl)gn(z) = (T- zl)fn+1(z) - (T - zl)fn(z)

converges uniformly to x — x = 0 on Ulm This contradicts condition β.
Therefore {/„} is uniformly bounded on K, as was to be proved.

DEFINITION 9. The operator T on the reflexive Banach space B will
be said to satisfy condition 7 if for every open set U and every non-zero
analytic / from U to B there exists z in U with (T — zl)f(z) Φ 0.

THEOREM 4. If T satisfies condition β and if F is an arbitrary
closed subset of the complex plane, then (1) M(F, T) — N{F, Γ), (2) for
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each x in M(F, T) there exists an analytic function f from — F to B
with (T — zl)f(z) — x for all z in —F, and (3) T satisfies conditions
a and 7.

Proof. For each x in N(F, T) there exists a sequence {/„} of ana-
lytic functions from —F to B such that | | (T — zl)fn(z) — x\\ < n~λ for
all z in — F. By condition β, {fn} is uniformly bounded on compact
subsets of — F, so that there exists a subset, which we continue to call

{fn}> converging pointwise in the weak topology of B to an analytic
function / from -F to B. Clearly (T - zl)f(z) = x for all z in -F.
This proves assertions (1) and (2).

If Fλ and F2 are closed and F±d interior F2, then N(Flf T) =
M(F19 T)aM(F2, T) by (1), so that T satisfies condition a.

If T does not satisfy condition 7, there exists an open set U and a
non-zero analytic function / from U to B with (T — zl)f{z) — 0 for all
z in U. Let fn = nf, so that (T — zl)fn(z) ->0 a s ^ - > ω uniformly on
U. Since T satisfies condition β, it follows that the sequence {nf} is
pointwise bounded. This contradiction proves that T satisfies condition 7.

The theorem just proved is related in part to results of Wermer
[5]. As a corollary of this theorem, T admits a duality theory of type
1 if T satisfies condition β.

THEOREM 5. // T* satisfies condition β, then T admits a duality
theory of type 2. If T and ϊ7* satisfy condition β, then T admits a
duality theory of type 3.

Proof. Assume that T* satisfies condition β. Then T*, and there-
fore T, admits a duality theory of type 1. Also, T* satisfies condition
γ. Let Gly"-tGn be open sets covering the complex plane. If
M(Glf T), , M{Gn, T) do not span B, there exists u Φ 0 in 5 * orthogo-
nal to these subspaces. Since Gl9 -- ,Gn cover the complex plane,
Π?-i — Gi is void. There therefore exist open sets Ulf •••, Un such that
—GiCzUi and f|?=i Uι is void. Since U-, and Gt cover the complex plane
and since T admits a duality theory of type 1, we see that

Thus ueM(UL, Tγ) for each i. Since T* satisfies condition β it follows

from Theorem 4 that there exist an analytic function gh from — Z74 to

B* with (Γ* - sJ)04(s) = % for all z in -Ϊ7, . If ze-U^-Uj, we

have (T* — zl^g^—g^z)) — 0. Since gi — Qj is analytic on — ΰtf] — ΰ5

and since Γ* satisfies condition γ, it follows that 0t(z) = g5(z) for 2; in

— C/ίΠ —Uj. Thus if we define the function g by (/(z) = g^z) for z in

— Ui9 then flr is uniquely defined and is analytic on [J?=1—Ui. Also
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(T* — zl)g(z) = u whenever g is defined. But the sets — t/j cover the
plane because ΠΓ=i U.h is void. Also g(z) --= (T* — ziγιu -> 0 as \z\ -> oo.
Thus g is everywhere analytic and vanishes at infinity, so that g = 0.
Thus u = (Γ* - 2 i > 0 ) = 0. This contradiction implies that Λf^, T),
•••, M(Gn, T) span S. Therefore T admits a duality theory of type 2.

Assume now that T also satisfies condition /3. We must show that
T admits a duality theory of type 3. First consider a bounded open set
H such that — H is connected. By Theorem 4 for each x in M=M(H, T)
there exists an analytic function f(x, •) from U — —H to 5 such that
(Γ — zl)f(x, z) — x for all z in U. Since Γ satisfies condition β, and
therefore condition γ, the function /(cc, •) is unique. For each z0 in U
define the linear transformation TZQ from M to B by T̂ cc = f(x,z0). It
follows that (Γ — zJ)TZQ is the identity operator on M. Assume that
there exists z0 in U such that TZQ is an unbounded transformation.
There therefore exists a sequence {xn} from M such that xn -> 0 and
l l ^ o ^ l l - ^ 0 0 as w->oo. Since Γ satisfies condition β, it follows that
{f(%n> zo)} — {TZQ%n} is bounded. This contradiction implies that TZQ is
a bounded transformation for each z0 in Z7. If z in Ϊ7 is sufficiently
large and if xeM, Tzx = (T — ziy^e M. Since Tzx is an analytic
function on U and since U is connected, it follows that TzxeM for all
x in M and all z in Z7. Thus for each z in U the operator T^ on M is
a right inverse of (T — zI)jM. To show that Tz is the inverse of
(T — zI)/M it is sufficient to establish that cc = 0 whenever xe M and
(T-zI)x = 0. To this end, consider a? in M with (T-zI)x = 0. Define
the analytic function ft from ?7 to ΰ by ft(λ) = cc + (λ — z)Tλx. Then

(T - λl)ft(λ) = (Γ - zl)x + (z - λ)a + (λ - s

= 0 + (z - λ)x + (λ - z)x = 0 .

Since Γ satisfies condition β, and therefore condition γ, this implies

ft = 0. Thus x = ft(s) = 0. Therefore (T - ^/)/M has an inverse for all

z in U, so that σ{TIM{H, T))<zH.

Now let a covering G l f , Gn of the complex plane by open sets be

given. There exists a family {HiJe}, 1 <Zi <Z,n, 1 <^ k <^ mi9 of open sets

which cover the complex plane such that H^dGi and either Hik is

bounded and — Hilc is connected or HiJcc:—σ(T). From the preceding

paragraphs we see that the M{Hilc, T) span B and that

σ(TIM(ϊϊik, T))czHu

if Hik is bounded and — Hik is connected. Also σ(TIM(H1k, T))aHilc if

Hik(Z—σ(T) because M(ίϊίk, T) consists only of the zero vector in this

case. If this were not true, there would exist x Φ 0 in M(Hίlc, T) and
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an analytic function / from —Hlk to B such that (T — zl)f(z) = x. If
we extended the definition of / to —σ{T) by defining f(z) = (T — zl)~ιx
for z in — σ(T), then / becomes an analytic function defined everywhere
and vanishing at infinity. Thus / = 0. Therefore x = (T - zl)f = 0.
Hence σ(TjM{Hi1c, T))dHik for all i and k. Define Mh to be the sub-
space spanned by the sets M(Hn, Γ), •••, M(Himι, T). Since

M(ίϊtk, T)<zM(Gl9 T)

for each fc, we have MLc:M(Giy T). Also M19 •••, Mn span B. To com-

plete the proof of the theorem we must show that σ(TIMι)c:Gim As

before, with the set H replaced by Gif for each x in Mt(zM(Gi9 T) there

exists a unique analytic function f(x, •) from — G4 to 5 such that

(Γ — zl)f(x,z) — x for all z in — G4. As before, for each 2 in — G<

define the linear transformation Tz from Mt to B by Γβα5 = f(x, z). As

before, Tz is a bounded linear transformation for each z in —Gt. If

the set iΓifc is bounded and — Hik is connected, we see as before that the

spaces M(Hίk,T) are invariant under Tz for each z in —Hilc~D—Gι.

Since otherwise Hί!c has the property that M(Hik1 T) consists only of

the vector 0, and since the M{Hik, T) span M, it follows that M% is

invariant under Tz for all z in — Gt. Thus the operator Γ0 on Mt is a

right inverse of (T — z/)/ikf4. As before, it follows that 7\ is the in-

verse of ( Γ - s/)/Λft for each z in - G t . Thus σiT/M^ciG,, as was to

be proved.

As an immediate consequence of the preceding theorems, it follows
that T and T* both admit duality theories of types 1, 2, 3, and 4 when-
ever T and T* both satisfy condition β.

DEFINITION 10. Let r be a function from the complex plane to the
set [0, oo]. The function r will be said to be a modulus of control for
analytic functions if for every open set U and every sequence [fn] of
complex-valued analytic functions on U such that \fn(z) \ <̂  r(z) for all z
in U the sequence {fn} is uniformly bounded on all compact subsets of U.

THEOREM 6. Let T be an operator on a reflexive Banach space B.
Let the function r defined by r(z) — \\(T — zl)~ι\\ if ze—σ(T) and
r(z) = oo if zeσ(T) be a modulus of control for analytic functions.
Then both T and T* satisfy condition β and therefore admit duality
theories of types 1, 2, 3, and 4.

Proof. Since | | (Γ - ziy'W = | | (T* - ziy'W whenever ze -σ(T), it
is sufficient to show that T satisfies condition β. To do this, let U be
open and let {fn} be a sequence of analytic functions from U to B such
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that (Γ — zl)fn(z) -> 0 uniformly on U as n -• oo. It is then possible to
choose a constant if such that \\fn(z)\\ ^ K\\(T - ziy'W for all n and
all z in U. Assume that there exists a compact subset C of U on which
{fn} is not uniformly bounded. By the uniform boundedness theorem
[3], it is possible to choose u in B* such that the sequence {gn} of com-
plex-valued analytic function on U defined by gn(z) = <jfw(#), u) is not
uniformly bounded on C. Since \gn(z)\ <: K\\u\\τ(z) for all z in U and
since r is a modulus of control for analytic functions, it follows that
{gn} is uniformly bounded on C. This contradiction shows that {fn} is
uniformly bounded on compact subsets of U, so that T satisfies condition
β, as was to be proved.

The following corollary is closely related to and was suggested by
an unpublished result due to F. Wolf.

COROLLARY. If T is an operator on a reflexive Banach space such
that o(T) is a subset of the real line and such that

Jlog+ log+ sup {||(Γ - sJ)-1!!: I(z) = y}dy

is finite, then T admits duality theories of types 1, 2, 3, and 4.

Proof. By Wolf [6], the function r defined by r(z) = 11(7- ziy'W
is a modulus of control for analytic functions, so that the result follows
from Theorem 6.

It follows that a Hermitian operator, for instance, admits duality
theories of types 1, 2, 3, and 4. From this fact it is not difficult to
derive the spectral theorem.
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