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L. K. DURST

1* Introduction. If L and Mare rational integers and L is positive,
the sequence

(p\. p p p . . . p . . .

is called the Lehmer sequence generated by

f(z) = z2- Lll2z + M ,

if

Pn = (an - βn)/(a - β), for n odd ,

= (an - βn)l(a2 - β2), for n even ,

where a, β are the roots of f(z) = 0. Since Po = 0, P1 = 1 and the
remaining terms of (P) satisfy the recursion relations

P — P — M P
-1- 2Π •*• 2n~l J.r±± 271-2

p T p 7l/fP
•^2W+1 -LJΓ2Π 1V1Γ2Ύl-l t

it is clear that every Lehmer sequence is a sequence of rational integers.
In Lehmer [1], Pn is denoted by Un.

The sequence (P) is called real if K = L — 4M, the discriminant of
/(z), is positive. An index w greater than 2 is called exceptional if each
prime dividing Pw also divides a term POT, where 0 < m < n. The
sequence (P) is called exceptional if it contains a term whose index is
exceptional.

This paper continues the classification of exceptional real Lehmer
sequences begun by Morgan Ward [2]. The main result is the following
theorem.

THEOREM 1.0. For real Lehmer sequences, the only possible excep-
tional indices are six and twelve. Twelve is exceptional only in the
sequences determined by

L = 1, M = - 1 and L = 5, M = 1.

Six is exceptional if and only if

L = -SK + 2S+2, M = - K + 2%
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where s ^ 1, 2S+2 > 3K, and K is odd and positive. Thus for each odd
positive value of K, there are infinitely many exceptional Lehmer
sequences.

For K = 5, s = 2, and for K — 1, s = 1, the expressions for L and
M in Theorem 1.0 reduce to

L = 1, M = - 1 and L = 5, M = 1,

respectively. The first of these Lehmer sequences is the Fibonacci
sequence Fn, and the second is closely related to the Fibonacci sequence
since P2n = F2n. These two exceptional sequences (the only real Lehmer
sequences in which both six and twelve are exceptional) were found by
Ward. It has long been known that the Lucas sequence generated by
z2 — 3z + 2 has six as its only exceptional index (Ward [2]); on the other
hand, the Lehmer sequence generated by the same polynomial has no
exceptional indices. (Cf. Theorem 2.0.) In Theorem 1.2 of [2], "eight-
een" should be deleted, since F18 = 2M7.19.

In this discussion, L and M are assumed to be coprime. Ward has
shown that this assumption leads to no loss of generality.

2* Apparition and repetition of primes in Lehmer sequences* If p
is a rational prime, and if p \ Pk but p \ Pm for 0 < m < fc, then k is
called the rank of apparition of p in (P). The theorem governing the
apparition of rational primes in Lehmer sequences is the following law
of apparition given by Lehmer [1] in a slightly different form.

THEOREM 2.0. / / k is the rank of apparition of p in the sequence
(P), then

k — 2p if p\L

and

k\p - σε if p\ 2LM ,

where σ = {Kip), ε — {Lip) are Legendre symbols. If p = 2, then k = 3
for L odd, and k = 4 for L even. If p\M, then p divides no term of
(P), save Po = 0.

Since each Lehmer sequence is a divisibility sequence (Lehmer [1]),
the fundamental property of the appearance of primes is given by the
following theorem.

THEOREM 2.1. // k is the rank of apparition of p in (P), then
p\Pn if and only if k\n.

Given L and M and a prime p dividing (P), the determination of
the exact power of p dividing Pk is a generalization of the unsolved
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problem of the quotients of Fermat; consequently it would appear to be
premature to ask for an answer to this question. Theorem 2.1 prescribes
those terms, other than Pfc, containing the factor p, and the law of
repetition tells the exact power of p dividing Pkm, provided the highest
power of p dividing Pk is supposed known. However, the law of repeti-
tion (as given by Lehmer [1]) fails to cover the repetition of the prime
2 in the case in which 2 initially appears to the first power. For the
problem at hand a detailed study of this case is required and will be
found in § 3.

Let pι\\Pn mean that pι\Pn but pt+1 \ Pn. Then Lehmer's law of
repetition may be stated as follows.

THEOREM 2.2. If k is the rank of apparition of p in (P), pι\\Ph

for t ^ 1, p* ψ 2, and (p, I) = 1, then pr+t \\ P Λ ι .
Following Ward [2], the associated sequence (Q) is defined as follows:

Qo = 0, Q1 = 1, Q2 - 1, and Qn = βφ^Fn(alβ) for n ^ 3,

where Fn(z) is the nth. cyclotomic polynomial, of degree φ(n). Qn is an
integer for each n ^ 0 and Pn— HQa, the product being taken over
all divisors d of n. Expressed in terms of L and M, the Q's are ho-
mogeneous polynomials of degree iφ(ri). A few of the Q's are exhibited
here for purposes of reference:

Q3 = L- My Q, = L-2M, Q6 = L - 3M,
Q8 = L2 - 4LM + 2M\ Q12 = L2 - 4LM + M2 .

3. The appearance of powers of 2. The cases in which 2 appears
in (P) are given by

(i) L = 2l + 1, M = 2 m + 1,

(ii) L = 2l, M = 2 m + 1.

In case (i) the rank of 2 is 3; indeed

Q 3 = L - M - 2 ( ί - m ) Ξ 0 (mod 2J) , t ^ 1,

whenever I = m (mod 2*"1). Suppose £ = m + 2ί-1w. Then

Q6 = L - 3M = 2έ % - 2M = 2 (mod 4), if ί > 1

= 2(w-Λf), if t = 1.

Hence, if 2 |[ Q3, then Q6 = 0 (mod 2s), s ^ 1, whenever w = M (mod 2s"1).
Thus, for suitably chosen L and M, any given power 2f of 2 may be
made to divide Q3. As the law of repetition requires, if t > 1, then
2 || Qβ. On the other hand, if 2 || Q3, then L and Jkf may be chosen
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so that any given power 2s will divide Q6; this is the case not covered
by Theorem 2.2. Since L and M are odd,

Q12 = QJ - 2LM = 2 (mod 4) ,

whether t — 1 or t > 1.

In case (ii) the rank of 2 is 4; and

Q4 = L - 2M = 2(Z - M) = 0 (mod 2'), ί ^ 1 ,

whenever Z = M (mod 2 ί"1). But

Q8 = U - 4LM + 2M2 = 2 (mod 4)

since L is even and M is odd. In this case 2 || Q8, whatever power of
2 may divide Q4.

The following lemma completes the discussion of the repetition of 2.

LEMMA 3.0. If 2f | | P2n and 2t+1 \\ P4n9 then 2 t + 2 1 | P8n.

Proof. For m even, Sm = am + βm is a rational integer. Because
Pin = P2W S2W, the hypotheses imply that 2 1 SU. But S4n = SL ~ 2M2W = 2
(mod 4), hence 2 ί + 21| P8ϊ>> since P 8, = P4nS4n.

From Lemma 3.0 it follows that when n exceeds fc, the rank of 2,
then 2 | | Q n implies 2 || Q2n.

The results of the present section show that Lemmas 3.3 and 3.4 in
Ward [2] need not hold for n = 6 when Q6 is even.

4. Sequences in which six is exceptional. The only cases left open in
Ward's analysis are those in which Q6 is even and, hence, K, L and M
are odd.

LEMMA 4.0. For K odd, six is exceptional if and only if L =
-SK+ 2S+2 > 0, M = - K + 2s, where s ^ 1.

Proof. Let L = 21 + 1, M = 2m + 1, then Q3 = L - M = 2(1 - m)
and Q6 = L — SM = 2(Z — 3m — 1). Six is exceptional if and only if

I — 3m — 1 = 2s"xδ where ί — m = <Zδ, and s ^ 1 .

But 2s-χδ = Z - 3 m - l = <Zδ-ilf, so M = δ(d - 2s"1), and L = 21 + 1 =
M + 2dδ. Since (L, M) = 1, δ must be ± 1 . Thus the conditions become

L = ± (3d - 2s"1), M= ±(d- 2s-1) .

Since K = L - 4M, ίΓ = ± (3.2s"1 - d), or d = 3.2s"1 ± if, givng

L = - 3iΓ ± 2S+2, M = - K ± 2s .
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Because L > 0, the upper sign must be chosen and s must be taken
large enough to make 2s+2 > 3K.

The values of L and M given in Lemma 4.0 yield Q3 — L — M =
2{3.2S - K} and Q6 = L - 3M = 2s.

Theorem 1.0 now follows from Lemma 4.0 and Ward's results.
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